VIVEKANANDHA

COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2008 Certified Institution,
Affiliated to Periyar University, Salem,
(Approved by AICTE and Re-Accredited with 'A' Grade by NAAC,
Recognized Under 2(f) and 12(b) of UGC Act, 1956).
Elayampalayam, Tiruchengode - 637 205, Namakkal Dt., Tamilnadu, INDIA.

DEPARTMENT OF BIOTECHNOLOGY BACHELOR IN SCIENCE (B.Sc.)

B. Sc., BIOTECHNOLOGY REGULATIONS AND SYLLABUS

[FOR CANDIDATES ADMITTED FROM 2017-18 ONWARDS UNDER AUTONOMOUS & CBCS PATTERN]

SPONSORED BY ANGAMMAL EDUCATIONAL TRUST

Elayampalayam – 637 205, Tiruchengode Tk., Namakkal Dt., Tamil Nadu. Veerachipalayam - 637 303, Sankari Tk., Salem Dt., Tamil Nadu. Tel.: 04288 234670 (4 lines), Mobile: 64437 34670, Fax: 04288 234894

Website: www.vivekanandha.ac.in email: vivekaadmission@gmail.com

About the College

Vivekanandha College of Arts and Sciences for Women (Autonomous) was established and hailed into Women's Educational Service in the Year 1995. Angammal Educational Trust Chaired by the great Educationalist 'Vidhya Rathna' Prof. Dr. M. KARUNANITHI, B.Pharm., M.S., Ph.D., D.Litt., sponsors this college and other institutions under the name of the great Saint Vivekanandha. Our institutions are situated on either side of Tiruchengode-Namakkal Main Road at Elayampalayam, 6 kms away from Tiruchengode. This is biggest women's college in India with more than 7500 girl students and more than 18 departments. The strength of the college was just 65 at the time of its establishment. With the dedication, work, sacrifice and long vision of the chairman, this institution has grown into a Himalaya stage. As a result of which UGC, New Delhi, awarded 2f and 12b, extended Autonomous status for second cycle. The National Assessment and Accreditation Council reaccredited with grade 'A' for its successful performance.

As an Autonomous Institution, academic professionals of the college framed Curriculum and Syllabi in consultation with all its stakeholders to cater the needs of the young women to fulfill the women empowerment and present Industrial needs to the local benefits. The students are empowering with confidence and required skills to face the society.

Quality Policy

To provide professional training by establishing a high level center of learning that provides quality education at par with the international standards and Provide excellence education with well equipped infrastructure to all the rural women.

Our Vision

To be an academic institution exclusively for women, in dynamic equilibrium with the social and economic environment, strive continuously for excellence in education, research and technological service to the nation.

Our Mission

The mission of our institution is to discover, teach and apply knowledge for the intellectual, cultural, ethical, social and economic growth of women students.

S. No.	TOPICS	P. No.
	REGULATIONS	·
1	SCOPE OF THE COURSE	1
2	SALIENT FEATURES	1
3	OBJECTIVES	1
4	ELIGIBILITY FOR ADMISSION	2
5	DURATION OF THE COURSE	2
6	ASSESSMENT	2
7	PASSING MINIMUM	3
8	CLASSIFICATION OF SUCCESSFUL CANDIDATES	3
9	ELIGIBILITY FOR AWARD OF THE DEGREE	3
10	PROCEDURE IN THE EVENT OF FAILURE	4
11	COMMENCEMENT OF THESE REGULATIONS	4
12	COURSE PATTERN	5
	SYLLABUS FOR YEAR I (Semester I)	
1	COURSE PATTERN WITH PAPERS	
2	Language I - Tamil I	
3	Malayalam I	
4	Hindi I	
5	French I	
6	English I - Foundation English I	
7	Core I - Cell Biology and Evolution	
8	Core I – Practical Lab in Cell Biology	
9	Allied I - Plant Science	
10	Allied Practical I - Lab in Plant science	
11	Value Education I – Yoga	
	SYLLABUS FOR YEAR I (Semester II)	
1	COURSE PATTERN WITH PAPERS	
2	Language II - Tamil II	
3	Malayalam II	
4	Hindi II	
5	French II	
6	English II - Foundation English II	
7	Core II - Genetics and Molecular Biology	
8	Core II – Lab in Genetics and Molecular Biology	
9	Allied II - Animal science	
10	Allied Practical II - Lab in Animal Science	
11	Value Education II – Environmental Studies	

S. No.	TOPICS	P. No.
	SYLLABUS FOR YEAR II (Semester III)	
1	COURSE PATTERN WITH PAPERS	
2	Language III - Tamil III	
3	Malayalam III	
4	Hindi III	
5	French III	
6	English III - Foundation English III	
7	Core III – Immunology	
8	Core III – Practical Lab in Immunology	
9	Allied III – Biochemistry	
10	Allied III- Practical Lab in Allied Biochemistry	
11	SBEC I – Bio-farming and Plant tissue culture	
	SYLLABUS FOR YEAR II (Semester IV)	T
1	COURSE PATTERN WITH PAPERS	
2	Language IV- Tamil IV	
3	Malayalam IV	
4	Hindi IV	
5	French IV	
6	English IV - Foundation English IV	
7	Core IV - Recombinant DNA Technology	
8	Core IV- Lab in Recombinant DNA Technology	
9	Allied IV- Microbiology	
10	Allied Practical IV- Lab in Microbiology	
11	SBEC II – Biofertilizer Production	
	SYLLABUS FOR YEAR III (Semester V)	
1	COURSE PATTERN WITH PAPERS	
2	Core V- Plant Biotechnology	
3	Core VI - Animal Biotechnology	
4	Core V - Lab in Plant Biotechnology	
5	Core VI - Lab in Animal Biotechnology	
6	Elective I- Bio-Process and Industrial Biotechnology	
7	SBEC III- Bioinformatics	
8	NMEC I - Forensic science and technology	
	SYLLABUS FOR YEAR III (Semester VI)	
1	COURSE PATTERN WITH PAPERS	
2	Core VII- Nanobiotechnology	
3	Core VII - Lab in Nanobiotechnology	
4	Core VIII - Environmental Biotechnology	
5	Core VIII - Lab in Environmental Biotechnology	
6	Elective II- Entrepreneurship in Biotechnology	
7	SBEC IV- Biodiversity conservation	
8	NMEC II - Medical coding and medical transcription	
U	a mountai county and medical dansemphon	

REGULATIONS

I SCOPE OF THE COURSE

Projections for the next 20 years indicate that there will be thousands of unfulfilled science and engineering jobs. The demand for highly trained workers and scholars will be great. Scientists are rushing to use their new techniques to unravel the secrets of life, to tap that knowledge to create valuable products, and to develop a new generation of sophisticated techniques that will unlock new knowledge. Biotechnology is one of the most revolutionary and beneficial scientific advances of the last quarter century. It is an interdisciplinary science including not only biology but also subjects like mathematics, physics, chemistry and many more. It is also a conglomeration of various combined technologies applied to living cells for production of a particular product or enhancing its quality according to our preferences. Biotech is undoubtedly the future for drug discovery and design, structural biology, microbial biotechnology, agricultural biotechnology, enzyme technology, gene technologies, metabolic engineering, biomaterials and tissue engineering, biosensors and food biotechnology.

II. SALIENT FEATURES

The course covers how life began on earth (Cosmogenesis & Evolution), what are the molecules of Life (Biochemistry, Molecular Biology), what is the structure of life (Cytology & Developmental Biology), how life continues (Principles of Genetics, Molecular Biology) how is it maintained (Comparative physiology, Biophysics), how does it respond to the environment (Ecology & Environmental Biotechnology), how organisms interact with each other (the offense & defence), how mathematics helps biology (elementary mathematics & Biostatistics), what aids we need to study organisms (Biophysics, Biotechniques), how life may be manipulated (Genetic Engineering), what organisms offer us and how they might be turned into factories (Microbial, Plant, Animal resources & technology, Fermentation Technology).

III. OBJECTIVES

- Impart importance of biological processes that guide to evolve technology that sustain living organisms on the globe
- Encourage women students to imbibe interest in present and future biotechnological research
- Evolve biotechnological skills for present and future global needs in food, shelter and medicine towards their livelihood options.

IV. ELIGIBILITY FOR ADMISSION

Candidates seeking admission to the first year Degree course shall be required to have passed

PUC/12th Std. / 10+2/ its equivalent with at least Biology and Chemistry as two optional subjects.

V. DURATION OF THE COURSE

- The course shall extend over a period of three academic years consisting of six semesters. Each academic year will be divided into two semesters. The First semester will consist of the period from July to November and the Second semester from December to March.
- The subjects of the study shall be in accordance with the syllabus prescribed from time to time by the Board of Studies of Vivekanandha College of Arts and Sciences for Women with the approval of Periyar University.

VI ASSESSMENT

Assessment of the students would be made through Continuous Internal Assessment (CIA) and External Assessment (EA) for passing each subject both theory and practical papers.

A candidate would be permitted to appear for the External Examination only on earning 75 % of attendance and only when his / her conduct has been satisfactory. It shall be open to grant exemption to a candidate for valid reasons subject to conditions prescribed.

A. CONTINUOUS INTERNAL ASSESSMENT (CIA)

The performance of the students will be assessed continuously by the teacher concern and the Internal Assessment Marks will be as follows:

Distribution Of Continuous Assessment Marks (25/40)

Activity	Period (WD)	Marks (25)	Activity	Marks (40)
Attendance	90	5	Attendance	5
CA Test I	30 to 35	2.5	CA Test I/Review	5
CA Test II	60 to 65	2.5	CA Test II/Review II	5
Model	After 90	10	Model/Model Presentation	10
Assignment	15 to 20	1	Observation note	10
Poster	30 to 35	1	Results in lab/Work	5
PowerPoint	45 to 50	1		
Skit	60 to 65	1		
Group discussion	65 to 70	1		
Total		25		40

Distribution of attendance mark

S. No.	Percentage	Marks			
		Theory	Practical		
1	76-80	1	2		
2	81-85	2	4		
3	86-90	3	6		
4	91-95	4	8		
5	96-100	5	10		

A. EXTERNAL ASSESSMENT (EA)

The performance of the students would be assessed by examination at the end of each semester with a written test for theory for three hours and practical examination at the end of even semesters for six hours. Question papers would be set by the selected external examiners in the prescribed format and valuated by the external examiners with the help of the teacher concern.

The pattern of assessment is as follows:

Distribution Of Final Assesment Marks (75/60)

Section	Activity Ma		Activity	Marks (60)
A	One mark (20)	20	Record work	5
В	Five marks (Either or)	25	Viva Voce	5
С	Ten marks (3/5)	30	Spotter	20
			Major (Performance)	5
			Major (Result)	5
			Major (Writeup)	10
			Minor (Performance)	2
			Minor (Result)	3
			Minor (Writeup)	5
	Total	75	Total	60

VII. PASSING MINIMUM

INTERNAL

There is no passing minimum for CIA

EXTERNAL

In the EA, the passing minimum shall be 30% out of 75 Marks. (30 Marks)

VIII. CLASSIFICATION OF SUCCESSFUL CANDIDATES

Successful candidates passing the examination of Core Courses (main and allied subjects) and securing marks

- a) 75 % and above shall be declared to have passed the examination in first class with Distinction provided they pass all the examinations prescribed for the course at first appearance itself.
- b) 60% and above but below 75 % shall be declared to have passed the examinations in first class without Distinction.
- c) 50% and above but below 60% shall be declared to have passed the examinations in second class.
- d) All the remaining successful candidates shall be declared to have passed the examinations in third class.
- e) Candidates who pass all the examinations prescribed for the course at the first appearance itself and within a period of three consecutive academic years from the year of admission only will be eligible for University rank.

IX. ELIGIBILITY FOR AWARD OF THE DEGREE

A candidate shall be eligible for the award of the degree only if undergone the above degree for a period of not less than three academic years comprising of six semesters and passed the examinations prescribed and fulfilled such conditions has have been prescribed therefore.

X. PROCEDURE IN THE EVENT OF FAILURE

Candidates fail in any subject would be permitted to appear for each failed subject or subjects in the subsequent EA. However, final year students failed in one or two subjects would be allowed to appear for a supplementary exam within a month of the final result.

XI. COMMENCEMENT OF THESE REGULATIONS

These regulations shall take effect from the academic year 2011-12 (i.e.,) for the students who are to be admitted to the first year of the course during the academic year 2011-12 and thereafter.

XII. COURSE PATTERN

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) **SYLLABUS FRAME WORK**

Subjects	Inst. Hour/Week	Credit	Exam Hours	Internal	External	Total Marks	Subjects	Inst. Hour/Week	Credit	Exam Hours	Internal	External	Total Marks
							YEAR I						
	Seme			1					Semeste				T
Language I	4	3	3	25	75	100	Language II	4	3	3	25	75	100
English I	4	3	3	25	75	100	English II	4	3	3	25	75	100
Core I	5	5	3	25	75	100	Core II	5	5	3	25	75	100
Core I Practical	5	3	3	40	60	100	Core II Practical	5	3	3	40	60	100
Allied I	4	4	3	25	75	100	Allied II	4	4	3	25	75	100
Allied I Practical	4	3	3	40	60	100	Allied II Practical	4	3	3	40	60	100
Valued added course	2	2	3	25	75	100	Valued added course	2	2	3	25	75	100
Library	1	0	0	0	0	0	Library	1	0	0	0	0	0
Sports	1	0 23	0	0	0	0	Sports	1	0	0	0	0	0
Total	30	23	21	205	495	700	Total	30	23 46	21 42	205	495 990	700
			11 Y	EAR '	EAR I				40	42	410	990	1400
•	Semes	stor I	TT	11	LAKI	L	Semester IV	7					
Language III	4	3	3	25	75	100	Language IV	4	3	3	25	75	100
English III	4	3	3	25	75	100	English IV	4	3	3	25	75	100
Core III	5	5	3	25	75	100	Core IV	5	5	3	25	75	100
Core III Practical	5	3	3	40	60	100	Core IV Practical	5	3	3	40	60	100
Allied III	4	4	3	25	75	100	Allied IV	4	4	3	25	75	100
Allied III Practical	4	3	3	40	60	100	Allied IV Practical	4	3	3	40	60	100
SBEC I	2	2	3	25	75	100	SBEC II	2	2	3	25	75	100
Library	1	0	0	0	0	0	Library	1	0	0	0	0	0
Sports	1	0	0	0	0	0	Sports	1	0	0	0	0	0
Total	30	23	21	205	495	700	Total	30	23	21	205	495	700
			II Y	EAR '	ГОТА	L			92	84	820	1980	2800
						,	YEAR III						
:	Seme							S	emeste	er VI			
Core V	5	5	3	25	75	100	Core VII	5	5	3	25	75	100
Core VI	5	5		25	75	100	Core VIII	5			25	75	100
Core V Practical	5	3	3	40	60	100	Core VII Practical	5	3	3	40	60	100
Core VI Practical	5	3	3	40	60	100		5	3	3	40	60	100
Elective I	4	3	3	25	75	100	Elective II	4	3	3	25	75	100
NMEC I	2	2	3	25	75	100	NMEC II	2	2	3	25	75	100
SBEC III	2	2	3	25	75	100	SBEC IV	2	2	3	25	75	100
Library/Sports	1	0	0	0	0	0	Library/Sports	1	0	0	0	0	0
Mini project	1	1	6	0	0	0	Extension work	1	1	0	0	0	100
Total	30	24	29	245	555	800	Total	30	24	23	21	205	495
	TOT	AL C	CREI	OIT FO	OR TH	E COU	JRSE		140	126	1230	2970	4200

Distribution Of Duration And Credit Under Different Papers

Part	Paper	Hours/Week	Weeks/Semester	Hour/Paper	No. of Papers	Credit/Paper	Total Hours	Total credit			
I	Language	4	15	60	4	3	240	12			
II	English	4	15	60	4	3	240	12			
III	Core paper	5	15	75	8	5	600	40			
III	Core practical	5	15	75	8	3	600	24			
III	Allied	4	15	60	4	4	240	16			
III	Allied practical	4	15	60	4	3	240	12			
IV	Value Education	1	15	15	2	2	30	4			
IV	SBEC	2	15	30	4	2	120	8			
III	Elective	4	15	60	2	3	120	6			
IV	NMEC	2	15	30	2	2	60	4			
IV	Mini project	1	15	15	1	1	15	1			
IV	Extension work	1	15	15	1	1	15	1			
	T	OTAL	TOTAL								

Distribution Of Duration And Content Under Different Papers

S. No.	Hours/Week	Duration/Unit	Topic/Unit
1	1	3	3
2	2	6	6
3	3	9	9
4	4	12	12
5	5	15	15

SYLLABUS FOR YEAR I

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) DEPARTMENT OF BIOTECHNOLOGY **CBCS SYLLABUS - UG**

(For candidates admitted from 2017-2018 onwards)

COURSE PATTERN WITH PAPERS

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
	· L	l	SEMESTER I			l		ı
17U1LT01 17U1LM01 17U1LH01 17U1LF01	I	Language I	Tamil I Malayalam I Hindi I French I	4	3	25	75	100
17U1LE01	II	Language II	Foundation English I	4	3	25	75	100
17U1BTC01	III	Core I	Cell Biology and Evolution	5	5	25	75	100
17U1BTCP01	III	Core I Practical	Lab in Cell Biology	5	3	40	60	100
17U1BTA01	III	Allied I	Plant Science	4	4	25	75	100
17U1BTAP01	III	Allied Practical I	Lab in Plant science	4	3	40	60	100
17U1VE01	IV	Value Education I	Yoga	2	2	25	75	100
		Library	Reference	1	-	-	-	-
		Sports	Health Maintenance	1	-	-	-	-
		Total		30	23	205	495	700
			SEMESTER II					
17U2LT02 17U2LM02 17U2LH02 17U2LF02	I	Language II	Tamil II Malayalam II Hindi II French II	4	3	25	75	100
17U1LE02	II	Language II	Foundation English II	4	3	25	75	100
17U2BTC02	III	Core II	Genetics and Molecular Biology	5	5	25	75	100
17U2BTCP02	III	Core Practical II	Lab in Genetics and Molecular Biology	5	3	40	60	100
17U2BTA02	III	Allied II	Animal science	4	4	25	75	100
17U2BTAP02	III	Allied Practical II	Lab in Animal Science	4	3	40	60	100
17U2VE02	IV	Value Education II	Environmental Studies	2	2	25	75	100
		Library	Reference	1	-	-	-	-
		Sports	Health Maintenance	1		-	-	-
		Total		30	23	205	495	700
	G	rand Total of F	irst Year		46	410	990	1400

YEAR II 2017-18

Subject code	Part	Course	Title	Hrs/ Week	Credit	Internal	External	Total
SEMESTER I	II			·			l .	
17U3LT03 17U3LM03 17U3LH03 17U3LF03	I	Language III	Tamil III Malayalam III Hindi III French III	6	3	25	75	100
17U3LE03	II	Language III	Foundation English III	6	3	25	75	100
17U3BTC03	III	Core III	Immunology	5	5	25	75	100
17U3BTCP03	III	Core Practical III	Lab in Immunology	5	3	40	60	100
17U3BCA03	III	Allied III	Allied biochemistry	4	4	25	75	100
17U3BCAP03	III	Allied III	Lab in Allied biochemistry	4	3	40	60	100
17U3BTS01	IV	SBEC I	Bio-farming techniques	2	2	25	75	100
		Total		30	23	205	495	700
			SEMESTE	ER IV				
17U4LT04 17U4LM04 17U4LH04 17U4LF04	I	Language IV	Tamil IV Malayalam IV Hindi IV French IV	6	3	25	75	100
17U4LE04	II	Language IV	Foundation English IV	6	3	25	75	100
17U4BTC04	III	Core IV	Recombinant DNA Technology	5	5	25	75	100
17U4BTCP04	III	Core Practical IV	Lab in Recombinant DNA Technology	4	3	40	60	100
17U4BTA04	III	Allied IV	Allied Microbiology	4	4	25	75	100
17U4BTAP04	III	Allied practical II	Lab in Allied Microbiology	3	3	40	60	100
17U4BTS02	IV	SBEC II	Food Processing Technology	2	2	25	75	100
		Total		30	23	205	495	700
T	Total of	Second Ye	ar		92	820	1980	2800

CBCS SYLLABUS – UG (OBE PATTERN) (For candidates admitted from 2017-2018 onwards)

YEAR III

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
			SEMESTER V					
17U5BTC05	III	Core V	Plant Biotechnology	5	5	25	75	100
17U5BTC06	III	Core VI	Animal Biotechnology	5	5	25	75	100
17U5BTCP05	III	Core practical V	Lab in Plant Biotechnology	5	3	40	60	100
17U5BTCP06	III	Core practical VI	Lab in Animal Biotechnology	5	3	40	60	100
17U5BTE01	III	Elective I	Bioprocess Technology	4	3	25	75	100
17U5BTS03	IV	SBEC III	Lab in Bioinformatics	2	2	25	75	100
17U5BCN02	IV	NMEC I	Biochemistry in Diagnosis	2	2	25	75	100
17U5BTEX01	IV	Internship		1	1	40	60	100
		Library/Sports	Reference/Health Management	1	-	-	-	-
	1	Total		30	23	245	555	800
			SEMESTER VI	•				•
17U6BTC07	III	Core VII	Nanobiotechnology	5	5	25	75	100
17U6BTC08	III	Core VIII	Environmental biotechnology	5	5	25	75	100
17U6BTCP07	III	Core practical VII	Lab in Bioprocess technology & Environmental biotechnology	5	5	40	60	100
17U6BTE02	III	Elective II	Enzymology & Enzyme Technology	5	4	25	75	100
17U6BTS04	IV	SBEC IV	Biosafety, Bioethics and IPR	2	2	25	75	100
17U6BCN03	IV	NMEC II	Molecular basis if human diseases	2	2	25	75	100
17U6BTMP01	IV	Research Activity	Mini project	5	5	40	60	100
		Extension activ	ity	_	1	-	_	_
		Library/Sports	Reference/Health Management	1	-	-	-	-
		Total		30	29	205	495	700
VIVEKANAN	NDHA-F8		SCIENCES FOR WOMEN [A	итопом	ous]140	1270 ⁹	3030	4300

YEAR I - SEMESTER I CELL BIOLOGY AND EVOLUTION

Paper	: Core I	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 17U1BTC01	External	: 75

SUBJECT DESCRIPTION:

Cell biology deals with brief information on the structural behavior of a cell with respect to its organization and function. The paper also gives introduction to basic concepts of evolution.

OBJECTIVES:

- Impart knowledge on cell, its classification and its importance.
- Understand cellular architecture and its physiological functions.
- Study structure and function of sub cellular organelles.
- Study chromosomal organization.
- Understand biological evolution.

OUTCOME:

Upon successful completion of the course, students will be exceptionally well prepared to pursue career in cellular and sub cellular biological research.

CONTENT:

Unit I - (10 Hrs.): Discovery of cell and its history: Cell theory. Classification of cell types (prokaryotic & eukaryotic). Organization of plant and animal cell. Cell cycle: Mitosis and Meiosis.

Unit II - (20 Hrs.): Cellular architecture and its physiological functions: Cell wall and cell membrane. Cell membrane components. Cell membrane model. Cytoskeletal structures - (Micro tubules, Micro filaments and intermediary filaments). Cytoskeleton movement (Gliding mechanism and Contraction). Nutrient transport through cell (Active transport, passive transport and facilitated diffusion).

Unit III - (15 Hrs.): Sub cellular organelles: Discovery, structure and functions Endoplasmic reticulum, Golgi apparatus, Chloroplast, Ribosomes. Mitochondria, Vacuoles, Lysosomes, Glyoxysomes and Peroxysomes.

Unit IV - (15 Hrs.): Chromosomal organization: Nucleus (Nuclear membrane, nuclear pore, Nuclear sap). Chromosome: Morphology, Structure (Chromatid, centromere, telomere, Chromatin, Histone - types). Special chromosomes (Lambrush, Polytene and Giant chromosome).

Unit V – (15 Hrs.): Introduction to evolutionary biology: Lamarck; Darwin-Concepts of variation (Adaptation, struggle, fitness and natural selection). The evolutionary time scale, Eras, periods & Epoch. Molecular evolution – Concepts and tools in phylogeny. Neutral evolution and molecular divergence.

Text Book:

- Verma, P. S. and Agarwal, V. S. 2005. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S Chand and Company Ltd., New Delhi 110 055, pp-294.
- Arumugam, N. 2014. Organic Evolution, Saras Publication, Kanyakumari, p-500.

Reference Books:

- Paul, A. 2007. Text Book of Cell and Molecular Biology, Books and Allied (P) Ltd. 2nd edition, Kolkata 700 009, pp-1310.
- Malacinski, G. M. 2008. Freifelder's Essentials of Molecular Biology. 4th edition, Narosa Publishing House Private Ltd., Chennai 600 006, pp-491.
- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 2002. Molecular biology of the cell (4th ed.): Garland Publishing, New York, pp-1462.
- Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D. Darnell, J. 2000. Molecular Cell Biology, 4th ed. W. H. Freeman and Company, New York 10010, pp-1084.
- Karp G. 2002. Cell and Molecular Biology, 3rd Edition. John Wiley and Sons Inc., United States, pp-785.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY **YEAR I - SEMESTER I (2017-18)**

CELL BIOLOGY AND EVOLUTION

Paper	: Core Paper I	Section - A (20X1)	: 20
Examination	: External	Section – B (5X5)	: 25
Time	: Three Hours	Section – C (3X10)	: 30
Paper Code	: 17U1BTCO1	Maximum Marks	: 75

Pape	r Code : 17U1BTCO1	Maximum Marks	: 75
	Section A (A	nswer all the questions)	
1.	The cell theory is one of the unify statements would be part of the c	ring themes of biology. Which of the following theory?	ng
	. All life is made of cells Cells come from preexisting cells.	c. Cells are the smallest units of life.d. All of the above	
2.	The type of cell division that occu	ırs in body cells is known as.	
	. Cytosis . Meiosis	c. Osmosis d. Mitosis	
3.	You look at them through a micro organelles. You conclude that the	oscope and see cell walls and membrane-bou cells.	nd
	. are plant cells could be either plant or bacterial.	c. are animal cells.d. could be plant, animal, or bacterial.	
4.	The diameter of most animal and	plant cells ranges from.	
	. 1.0 to 10 microns. . 0.01 to 0.1 microns	c. 10 to 100 microns.d. 100 to 1000 microns.	
5.	Cells without a membrane-bound are cells.	nucleus and membrane systems in the cyto	plasm
	. Prokaryotic . Eukaryotic	c. Fungal d. Protest	
6.	The cytoskeleton is a system of $_$	in cells.	
	. Proteins – prokaryotic . Proteins – eukaryotic	c. DNA – prokaryotic d. DNA – eukaryotic	
7 .	The cytoskeleton is a system of $_$	_ in cells.	
	. Proteins – prokaryotic . Proteins – eukaryotic	c. DNA – prokaryotic d. DNA – eukaryotic	
8.	DNA is stored in the cell nucleus	as.	
	. Ribosomes . Chromosomes	c. Chlorophyll d. Lysosomes	
9.	What is the immediate source of e	energy for active transport?	
b	. carbohydrates . lipids	c. ATP d. A & B	
10.	Microtubules, microfilaments and	intermediate filaments are components of	the.

- - a. cell wall in plants c. chromosome in eukaryotes
- 11. Most organelles in a eukaryotic cell are found in the.

a. Cell wall c. Nucleus b. Cytoplasm d. Capsule

12. The nucleus of a cell.

are degraded

b. plasma membrane in prokaryotes

a. Is the region of the cell where ribosomes c. is contained inside the nucleolus.

d. chromosome in prokaryotes

b.contains DNA and controls cell d. is surrounded by a single layer of activities membrane.

13. The function of mitochondria is. a. intracellular transport of proteins. c. intracellular digestion. b. photosynthesis. d. cellular respiration (ATP synthesis) 14. Lysosomes. a. Destroy harmful bacteria engulfed by c.Recycle materials within the cell. white blood cells. b. Help to digest worn-out or damaged d.All of the choices are correct organelles 15. The function of chloroplasts is. a. Intracellular transport of proteins. c. Lipid synthesis. b. Intracellular digestion. d. Photosynthesis. 16. 16. Darwin began to formulate his concept of evolution by natural selection after. a. experimentation with animals c. reading the writings of Wallace. b. observations of many species and d. agreeing with Lamarck about the driving their geographical locations. force behind evolution 17 Lamarck proposed that organisms. a. have an innate tendency toward **b.** inherit all of the adaptations they display complexity and perfection. b. have an innate tendency to become d. belong to species that never change. more simple as time passes 18 Organelles found outside a eukaryotic cell and usually involved in movement of the cell or movement of substances past the cell are called. a. cilia and flagella c. Nucleus and nucleolus d. cytoplasm and endoplasm b. Cell walls and plasmodesmata 19. Unlike animal cells, plant cells have and and a. chloroplasts . cell walls . mitochondria c. chloroplasts . cell walls . vacuoles b. centrioles . cell walls . glycocalyx d. centrioles . chloroplasts . vacuoles 20. located within the Nucleus, it is responsible for producing ribosomes. a. Centrosome c. Lysosme b. Nucleolus d. Endoplasmic reticulum Section-B (Answer All The Questions) 1. a) Write about the history of cell biology. (or) b) Differentiate mitosis and meiosis. 2. a) Elucidate the Cell Membrane Model. (or) b) Write short notes on Passive transport. 3. a) Draw a neat diagram of chloroplast and explain its structure. (or) b) Write short note on structure and function of Endoplasmic reticulum. 4. a) Write a brief account on the structure of DNA. (or) b) Discuss about the types of chromosome.

Section-C (Answer Any Three Questions)

- 1. Explain the ultra structure of plant cell with neat labeled diagram
- 2. Discuss structure and function of cytoskeletons (microtubules, microfilaments and intermediate filaments).

b) Explain in detail about concepts & tools in concepts and tools in phylogeny.

3. Explain the structure and function of mitochondria.

5. a) Explain in detail about the concepts of variation. (or)

- 4. Give an account on structure of chromosomes.
- 5. Briefly explain about the Lamarck and Darwin concepts of variation.

YEAR I - SEMESTER I LAB IN CELL BIOLOGY AND EVOLUTION

Paper	: Core Practical I	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 3	Internal	: 40
Paper Code	: 17U1BTCPO1	External	: 60

Major Practical:

- Lab 1 (10 hrs.): The Microscope: The Bright Field Microscope, Use of Oil Immersion (100x), Measurements: Ocular and Stage Micrometers, Measuring Depth, Measuring Area and Measuring Volume.
- Lab 2 (10 hrs.): Enumeration of cells (Cell counting by Neubauer chamber), Enumeration of blood cells.
- Lab 3 (10 hrs.): Preparation of mitotic cell stages from onion root tip squash, Preparation of meiotic cell stages from Grass hopper testis cells.
- Lab 4 (10 hrs.): Isolation of mitochondria and Respiration of Mitochondria, solation of chloroplast from spinach leaves and ChlorophyII Content.
- Lab 5 (10 hrs.): Chromosomes: Salivary Gland Preparation (Squash tech.), Extraction of Chromatin, and Chromatin Electrophoresis.

Minor Practical:

- Lab 1 (4 hrs.): The Microscope: Measurement of Cell, Organelles, Use of Darkfield Illumination, The Phase Contrast Microscope, The Inverted Phase Microscope, The Transmission Electron Microscope.
- Lab 2 (4 hrs.): Histochemistry: Selective Staining: Prepared Slides, Basophilia, Periodic Acid Schiff (PAS) Reaction, Methyl Green-Pyronin Staining of DNA and RNA.
- Lab 3 (4 hrs.): Staining of macro molecules (Carbohydrate, Lipid and protein staining) and Buccal smear preparation.
- Lab 4 (4 hrs.): Observation of specialized cells (Nerve cell, sperm cells, muscle cell and cardiac cell).
- Lab 5 (4 hrs.): Phylogenetic analysis and construction of phylogenetic tree.

Spotters (5 hrs.):

Robert hooke, Antonie van Leeuwenhoek, Matthias Jakob Schleiden and Theodor Schwann, Prophase, Metaphase, Anaphase, Telophase, Leptotene, Zygotene, Pachytene, Diplotene, Diakinesis, Nerve cell, Muscle cell, Mitochondria, Chloroplast, Iodine, Methylene blue, Light Microscope, Phase contrast microscope, TEM, SEM, Microtubules, Polytene chromosomes, Lamp brush chromosome, Eosinophil, Basophil, Neutrophil, Lymphocytes, etc.

Reference Books:

- Rajan, S. R. and Christy, R. S. 2015. Experimental Procedures in Life Sciences, Anjana Book House, Chennai-600 107, p-552.
- Kalaichelvan, P. T. 2005. Microbiology and Biotechnology A laboratory Manual. MJP Publishers, Chennai 600 005, p-250.
- Cappuccino, J. G. and Sherman, N. 2004. Microbiology A Laboratory Manual, 6th Edition, Pearson Education Inc. p-491

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY YEAR I - SEMESTER I (2017-18)

LAB IN CELL BIOLOGY AND EVOLUTION

Paper	: Core Practical I	Major (1X20)	: 20
Examination	: External	Minor (1X10)	: 10
Time	: Six Hours	Spotters (5X4)	: 20
Paper Code	: 17U1BTCPO1	Record (1X5)	: 5
Batch	:	Viva Voce	: 5
Date	:	Maximum Marks	: 60

MAJOR (Answer All the Questions)

- a. Isolate mitochondria from the given sample. (or)
- b. Enumerate the cells from the given blood sample.

MINOR (Answer All the Questions)

- a. Perform carbohydrate staining with the given plant sample.
- b. Perform the buccal smear preparation and observe the barr bodies under the microscope.

SPOTTERS (Answer All the Questions)

Identify the given spotters and discuss (A, B, C and D.).

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY **YEAR I - SEMESTER I (2017-18)**

LAB IN CELL BIOLOGY AND EVOLUTION

Paper	: Core Practical I	Major (1X20)	: 20
Examination	: External	Minor (1X10)	: 10
Time	: Six Hours	Spotters (5X4)	: 20
Paper Code	: 17U1BTCPO1	Record (1X5)	: 5
Batch	:	Viva Voce	: 5
Date	:	Maximum Marks	: 60

KEY

MAJOR

Pea seedlings, Test tubes, Homogenization buffer, Potassium buffer, Ascorbic acid, Triton, and Sodium dithionate crystals.

MINOR

Glass slide, microscope, Iodine solution and necessary glassware's are to be provided.

SPOTTERS

- 1. Mitosis,
- 2. Robert hook,
- 3. Nucleus,
- 4. Diakinesis and
- 5. Chromosomes.

RECORD

VIVA-VOCE

YEAR I - SEMESTER I PLANT SCIENCE

Paper	: Allied I	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 17U1BTA01	External	: 75

SUBJECT DESCRIPTION:

The gives brief idea of Plant Kingdom, its classification, characteristics and importance.

OBJECTIVES:

- To enable the students to understand the character and life cycle of Algae and Fungi
- To understand the characters of Pteridophytes and Gymnosperms
- To understand the classification of Bentham and Hooker's system
- To identify various angiospermic plants
- To understand the economic importance of botany

OUTCOME:

Students would be acquiring indepth knowledge on plant kingdom, their classification, characterization and their importance in biotechnology.

CONTENT:

Unit I - (15 Hrs.): Algae - General characteristics, Life cycle and Economic importance of the following scenedesmus, Chlorella, Sargassum, Gracilaria, Gelidium and spirulina.

Unit II - (15 Hrs.): Fungi - General characteristics, Life cyle and Economic importance of the following: Saccharomyces, Penicillium Apergillus and Mucor.

Unit III - (15 Hrs.): Pteridophyta and Gymnosprms - General characters -Structure and life cycle of *Lycopodium* and *Cycas* (Development details are not required).

Unit IV - (15 Hrs.): Plant Taxonomy - Outline of Bentham and Hookers system of classification - study of the following families and their economic importance -Apocynaceae, Asclepiadaceae, Euphorbiaceae and Solanaceae.

Unit V - (15 Hrs.): Economic importance of Botany - Cereals, Legumes, Millets, Pulses, Medicinal plants, Fiber yielding plants, Timber yielding plants, Spices and condiments.

TEXT BOOKS:

- Sing, V., Pande, P. C. and Jain, D. K. 2017. A Text Book of Botany, 5th Edition, Rastogi Publications, Meerut, p-1250.
- Pandey, B. P. 2016. A Text Book of Botany Angiosperms, S. Chand & Company, Private, Ltd. New Delhi, p-990.
- Pandey, B. P. 2015. Economic Botany, S. Chand & Company, Private, Ltd. New Delhi, p-680.

REFERENCE BOOKS:

- Ragland, R., Kumaresan, V. and Arumugam, N. 2014. Algae, Saras Publication Nagercoil, p-719.
- Vasishta, P. C. 2003. Botany for Degree Students Gymnosperms, S. Chand & Company, Private, Ltd. New Delhi, p-500.
- Gangulee, H. C. and Kar, A. K. 2004. College Botany Volume II, New Central Book Agency, p-1198.
- Sharma, O. P. 2006. Textbook of Fungi, Tata McGraw-Hill Publising Company Limited, New Delhi, p-365.
- Vashishta, P. C., Sinha, A. K. and Kumar, A. 2006. Botany for Degree Strudents Pteridophyta, S. Chand & Company, Private, Ltd. New Delhi, p-628.
- Ragland, R., Kumaresan, V. and Arumugam, N. 2014. Algae, Fungi, Bryophytes, and Plant Pathology, Saras Publication Nagercoil, p-668.
- Verma, V. 2009. A Text Book of Economic Botany, Ane Book India, p-332.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY **YEAR I - SEMESTER I (2017-18)**

PLANT SCIENCE

Paper	: Core Paper I	Section - A (20X1)	: 20
Examination	: External	Section – B (5X5)	: 25
Time	: Three Hours	Section – C (3X10)	: 30
Paper Code	: 17U1BTAO1	Maximum Marks	: 75

Section A (Answer all the questions)

1.		Phycology is the study of	_
	a.	Fungai	c. Bacteria
	b.	Algae	d. Protozoa
2.		The term algae was coined by	
	a.	Theopharastus	c. Fritsch
	b.	Engler	d. Linnaeus
3.		Mannitol is the reserve food in	_
	a.	Rhodophyceae	c. Phaephyceae
		Chlorophyceae	d. Xanthophyceae
4.		An antibiotic has been extracted fro	m .
	a.	Chlorella	c. Gelidium
	b.	Laminaria	d. All of these
5.		Fungi usually store the reserve food	material in the form of
	а	Starch	c. Glycogen
		Lipid	d. Protein
6.		Fungi producing usually eight spore	s in a sac like structure belong to
٠.		Phycomycetes	c. Basidiomycetes
		Ascomycetes	d. Deuteromycetes
7.		The fruiting body of Aspergillus is ca	
••		Apothecium	c. Cleistothecium
		Perithecium	d. Hypanthodium
8.		The main plant body in pteridophyte	• •
٥.		Sorus	
		Sporophyte	c. Gametophyte d. Prothallus
a		'Bakers yeast" is	a. Fromanao
Э.			a Asmongillus
		Mucor Saccharomyces	c. Aspergillus d. Agaricus
10		Club mass is the common name of	u. ngaricus
10			0.1 : 11
		Lycopodium isoetes	c. Selaginella d. Pleopeltis
			•
11		Which of the following is considered	
		Pinus	c. Zamia
		Cycas	d. Podocarpus
12		Cycas stem is a good source of edibl	
		Cyco	c. cycas starch
		Sago	d. sigo
13	•	Classical taxonomy is also termed	
		. β taxonomy	c. Descriptivie taxonomy
	t	. Systematics	d. Experimental taxonomy

14. Classification given by Bentham and Hooker is

a. Artificial c. Numerical b. Natural d. Phylogenetic

Number of sepals in family Solanaceae is

a. 2 c. 5 b. 3 d. 6

16. Almost all plants have latex in

a. Fabacea c. Euphorbiaceae.

b. Asteraceae d. Musaceae

Fiber of great commercial importance derived from epidermis is

c. Coir b. Hemp d. Cotton

18 A drug which reduces high blood pressure is obtained from

a. Acontium chasmanthum

c. Centella asiatica

b. Rouwolfia serpentine

d. Solanum nigrum

19. One of the following plants is a rich variety of timber

a. Cassia fistula c. Acacia Arabica b. Dalbergia sissoo d. Morus alba

20. Which one of the following is a plant of great medicinal value?

c. Rauwolfia serpentine a. Brassica oleraceae b. Coffea robusta d. Cryptostegia grandiflora

Section-B (Answer All The Questions)

- 1. a) Describe the general characteristics of algae (or)
 - b) Explain the thallus structure and life cycle of chlorella
- 2. a) Describe the process of sexual reproduction in Penicillium. (or)
 - b) Enumerate any five economic importances of fungi.
- 3. a) Draw and describe the morphology of *lycopoidum*. (or)
 - b) Bring out the asexual reproduction in cycas.
- 4. a) Describe the characteristics of *Apocynaceae*. (or)
 - b) Outline the economic importance of *Euphorbiaceae*.
- 5. a) Describe the importance of pulse crop in India. (or)
 - b) Discuss the economic importance of spices and condiments.

Section-C (Answer Any Three Questions)

- 1. Briefly explain about the thallus structure and life cycle of Sargassum.
- 2. Discuss in detail the morphology and life cycle of Aspergillus.
- 3. Illustrate the sexual and asexual reproduction in lycopodium.
- 4. Give a detailed account on the Bentham and Hookers system of classification.
- 5. Enumerate the economic importance of medicinal and fiber yielding plants in India.

YEAR I - SEMESTER I LAB IN PLANT SCIENCE

: Allied Practical I Total Hours : 75 Paper Hours/Week Exam Hours : 4 : 06 Credit : 4 Internal : 40 Paper Code : 17U1BTAP01 External : 60

MAJOR PRACTICAL:

- Lab 1 (8 hrs.): Study of the vegetative and reproductive organs of Algae and Fungi.
- Lab 2 (8 hrs.): Study of morphology and anatomy of Pteridophytes.
- Lab 3 (8 hrs.): Study of vegetative and reproductive organs of Pteridophytes.
- Lab 4 (8 hrs.): Study of morphology and anatomy of Gymnosperms.
- Lab 5 (8 hrs.): Study of vegetative and reproductive organs of Gymnosperms.

MINOR PRACTICAL:

- **Lab 1 (3 \text{ hrs.}):** Preparation of plant herbarium.
- Lab 2 (3 hrs.): Identification of Apocynaceae family.
- Lab 3 (3 hrs.): Identification of Asclepiadaceae family.
- Lab 4 (3 hrs.): Identification of Euphorbiaceae family.
- Lab 5 (3 hrs.): Identification of Solanaceae family.

Spotters (5 hrs.): Amoeba, Paramecium, Aurelia, Fasciola hepatica, Ephyra larva, Taenia scolex, Fasciola hepatica. C.S., Ascaris – Male and Female, Taenia solium, Amphioxus, Shark, Ichthyophis, Cobra, Sea Anemon on Hermit crab, Pigeon, Blastula of frog, 24 and 48 hours of chick embryo, Star fish, Redia / Cercaria, Nauplius and Mysis Larva.

Text Books:

- Pandey, B. P. 2014. Modern Practical Botany, (Volume I), S. Chand & Company Private, Ltd., New Delhi, p-512.
- Pandey, B. P. 2010. Modern Practical Botany, (Volume II), S. Chand & Company Private, Ltd., New Delhi, p-408.
- Pandey, B. P. 2015. Modern Practical Botany, (Volume III), S. Chand & Company Private, Ltd., New Delhi, p-326.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY **YEAR I - SEMESTER I (2017-18)**

LAB IN PLANT SCIENCE

Paper	: Allied Practical I	Major (1X20)	: 20
Examination	: External	Minor (1X10)	: 10
Time	: Three Hours	Spotters (5X4)	: 20
Paper Code	: 17U1BTAPO1	Record (1X5)	: 5
Batch	:	Viva Voce	: 5
Date	:	Maximum Marks	: 60

MAJOR (Answer All the Questions)

- a. Identify the organism based on vegetative and reproductive organs and describe. (or)
- b. Identify the organism based on morphology and anatomy and describe.

MINOR (Answer All the Questions)

- a. Identification of family 1
- b. Identification of family 2.

SPOTTERS

Identify the given spotters and discuss (A, B, C and D.).

RECORD

VIVA-VOCE

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY **YEAR I - SEMESTER I (2017-18)**

LAB IN PLANT SCIENCE

Paper	: Allied Practical I	Major (1X20)	: 20
Examination	: External	Minor (1X10)	: 10
Time	: Six Hours	Spotters (5X4)	: 20
Paper Code	: 17U1BTAPO1	Record (1X5)	: 5
Batch	:	Viva Voce	: 5
Date	:	Maximum Marks	: 60

KEY

MAJOR

Vegetative and reproductive organ of Algae glass slide and Microscope.

MINOR

Branch and flower of a plant.

SPOTTERS

- 1. Amoeba,
- 2. Taenia scolex, Fasciola hepatica.
- 3. Taenia solium,
- 4. Sea and
- 5. Blastula of frog, 24 and 48 hours of chick embryo.

RECORD

VIVA-VOCE

YEAR I – SEMESTER II GENETICS AND MOLECULAR BIOLOGY

Paper : Core II Total Hours : 75 Hours/Week : 5 Exam Hours : 03 : 5 Credit Internal : 25 Paper Code :17U2BTCO2 External : 75

SUBJECT DESCRIPTION:

This paper emphasizing the science of heredity and variation in living organism and ways in which the traits are passed down from generation to another and also it imparts the molecular structure of different constituents of a cell.

OBJECTIVE:

- Describing Mendelian principles of inheritance.
- Reviewing the chromosomal changes.
- Highlighting the genetic developments
- Explaining the basics of the molecular processes of DNA replication, transcription and translation.
- Highlighting the gene regulation and cancer biology.

OUTCOME:

Students were exposed with the strong basic knowledge in Genetics and Molecular biology which elevate them to the next level in their academic.

CONTENT:

- Unit I (15 Hrs.): History of Genetics: Mendelian Laws of Segregation, Independent Assortment, Dominance relations. co-dominance of gene. Multiple alleles. Gene interaction, Epistasis, lethality and lethal genes. Linkage and crossing over.
- Unit II (15 Hrs.): Chromosomal variations: Chromosomal variations in number, Changes in Chromosomal structure, Chromosomal aberrations. Gene mutationlethal, conditional and biochemical, loss of function, gain of function. Genetic disorders. Transposable elements in prokaryotes and eukaryotes.
- Unit III (15 Hrs.): Genetic control: DNA replication- Unit of replication, enzymes involved, replication origin and replication fork, extrachromosomal replicons, homologous and site-specific recombination. Transcrption- Transcrption machinery, RNA polymerase, initiation complex, activator and repressor. Gene regulation- Lac and Trp operons, House keeping genes.
- Unit IV (15 Hrs.): Translation: Translation of protein (prokaryotes and eukaryotes) - post translational modifications in eukaryotes. Protein folding, protein export (nuclear, ER and golgi-bodies).
- Unit V (15 Hrs.): DNA damage: DNA repair- Types and mechanisms photo

reactivation excision repair, post replication recombinant repair, SOS repair. Cancer- Tumour- Begnin and Malignant, prevention of cancer, Tumour suppressor gene-P53.

TEXT BOOKS:

- Gardner, E. J., Simmons, M. J. and Snustad, D. P. 2006. Principles of Genetics, 8th Edition, John Wiley & Sons, Inc. p-649.
- Paul, A. 2007. Text Book of Cell and Molecular Biology, Books and Allied (P) Ltd. 2nd edition, Kolkata 700 009, pp-1310.

REFERENCE BOOKS:

- Weaver, R. F. and Hedric, P. W. 1995. Basic genetics, Wm. C. Brown Publisher, p-498.
- Friefelder, D. 2002. Microbial genetics, Narosa Publising House. P-601.
- Watson, J. D. Hopkins, N. H., Roberts, J. W., Steitz, J. A. and Weiner, A. M. 1987. Molecular Biology of the genes 4th Edition, The Benjamine /Cummings Publishing Company, Inc., p-1163.
- Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D. Darnell, J. 2000. Molecular Cell Biology, 4th ed. W. H. Freeman and Company, New York 10010, pp-1084.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY YEAR I - SEMESTER II (2017-18) CELL GENETICS AND MOLECULAR BIOLOGY

: 20 Paper : Core Paper II Section - A (20X1) Examination : External Section – B (5X5) : 25 Time : Three Hours Section - C (3X10) : 30 : 17U2BTCO2 Paper Code Maximum Marks : 75

Section A (Answer all the questions)

An individual that is heterogenous for two pairs of alleles is called as

a. Trihvbrid.

c. Dihybrid.

b. Monohybrid

d. None of the above

The alternative forms of a gene that at a given locus in a chromosome is called as

a. Trait

c. Gene

b. Allele

d. locus

Interaction among the products of nonalleles is kinown as

a. Epitasis

c. Dominance.

b. Suppression.

d. Co dominance.

The exchange of chromosomes materials through breakage and reunion is called as

a. Covalent bond.

c. Cross breedings.

b. Transformation

d. Crossing over.

5. A rearrangement in chromosomes that reverses the order of a linear array of genes is known as

a. Deletion b. Subtraction c. Inversion d. Multiplication

An agent that causes the mutation is called as

a. Protein c. Chemical b. Mutagen d. Mutation

DNA elements that can move from one position to another position is known as

a. Ribosomes

c. Chromosomes

b. Transposons

d. Lysosomes

The chromosome compliment of Turner syndrome is

a. 44+XY

c. 46+XY

b. 45+X

d. 44+XX

Replicon is a

a. Unit of Transcription b. Unit of Translation

c. Unit of Repair system

d. Unit of Replication

10. The point on chromosomes where crossing over occurs during recombination is called

a. Chiasmata

c. Locus

b. Recombination point

d. Gene

11. The process of RNA synthesis is called as

a. Translation

c. Replication

b. Transcription

d. RNA production

12. RNA polymerase enzyme synthesis

a. Protein c. RNA

b. DNA d. Amnio acids

13. 70S ribosomes consist two subunits are

a. 40S and 30S c. 50S and 20S b. 40S and 40S d. 50S and 30S

14. Proteins are made up of

a. Proteins c. Sugars

b. Amnio acids d. None of the above

15. DNA region to which the RNA polymerase binds is called

a. i Enhancer . c. Terminator. b. intracellular digestion d. photosynthesis

16. 16. Darwin began to formulate his concept of evolution by natural selection after

a. experimentation with animals c. reading the writings of Wallace. b. Promoter d. Activator

Exchange of genetic material between the chromosomes are called as

a. Exchange c. Recombination

d. Translocation b. Transfer

Dimer repair mechanism include 18

a. Excision Repair c. Photoreactivation b. Recombinational Repair d. All of these

19. Which of the following is dark repair

a. Nucleotide excision repair c. Base excision repair

d. None of these b. Both a and b

20. Cancer is caused by

a. Unconcontrolled mitosis c. Uncontrolled meiosis

b. Rupturing of cells d. Loss of immunity of the cells

Section-B (Answer All The Questions)

- 1. a) Write about the Mendelian Laws of Segregation. (or)
 - b) Explain shortly about Multiple alleles.
- 2. a) Explain the Genetic disorders. (or)
 - b) Write short notes on Chromosomal aberrations.
- 3. a) Explain homologous recombination. (or)
 - b) Write short note on enzymes involved in DNA replication.
- 4. a) Write a brief account on the post translational modifications. (or)
 - b) Discuss about the protein export.
- 5. a) Explain shortly about photo reactivation repair system. (or)
 - b) write a short notes on prevention of cancer.

Section-C (Answer Any Three Questions)

- 1. write an account on Linkage and crossing over.
- 2. Explain in detail about Transposable elements.
- 3. Write an elaborate note on the Lac and Trp operons.
- 4. Give an account on Translation of protein.
- 5. Explain in detail about the Tumour suppressor gene-P53.

YEAR I – SEMESTER II LAB IN GENETICS AND MOLECULAR BIOLOGY

Paper	: Core Practical II	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 17U2BTCPO2	External	: 75

MAJOR PRACTICAL:

- Lab 1 (10 hrs.): Mendel's law of Genetics-Monohybrid and Dihybrid Experiments.
- Lab 2 (10 hrs.): Isolation and visualization of Plasmid DNA.
- Lab 3 (10 hrs.): Isolation and visualization of Genomic DNA.
- Lab 4 (10 hrs.): Separation of proteins by SDS.
- Lab 5 (10 hrs.): Bacterial Transformation.

MINOR PRACTICAL:

- Lab 1 (4 hrs.): Isolation of proteins and purification of proteins.
- Lab 2 (4 hrs.): Replica plating technique.
- Lab 3 (4 hrs.): Karyotypic analysis.
- Lab 4 (4 hrs.): Isolation autrophic mutants by gradient plate technique.
- Lab 5 (4 hrs.): Observation of Genetic model organisms (Arabidopsis thaliana and Coenorrabditis elegans.

Spotters (5 hrs.): Monohybrid cross, Dihybrid cross, Drosophila melanogaster, P^{BR322} plasmid, Proteinase K, SDS, X Gal, Lac operon, IPTG, Agarose, Agarose gel electrophoresis, Karotype, Replica Plate Technique, Dialysis membrane, Acrylamide Bis acrylmide, Bacterial Transformation, Bacterial Conjugation, DNA replication, Translation, TEMED, 2-Mercaptoethanol, Bromophenol blue, Ethidium bromide, Tris Buffer, Gel Documentor, Uv-Transilluminator, Crossing over, Homologus recombination, Isoamyl alcohol and Transposons.

Manual

Swamy, P.M. 2009 Laboratory manual on Biotechnology, Ist Edition, Rastogi publications, India, p-617.

Sinha, J., Chatterjee, A. K. and Chattopadhyay, P. 2001. Advanced Practical Zoology, 2nd Edition, Books and Allied (P) Ltd., Kolkata, p-1038.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY YEAR I – SEMESTER I (2017-18)

GENETICS AND MOLECULAR BIOLOGY

Paper	: Core Practical II	Major (1X20)	: 20
Examination	: External	Minor (1X10)	: 10
Time	: Six Hours	Spotters (5X4)	: 20
Paper Code	: 17U1BTCPO2	Record (1X5)	: 5
Batch	:	Viva Voce	: 5
Date	:	Maximum Marks	: 60

MAJOR (Answer All the Questions)

- a. Isolate Plasmid DNA from the given sample. (or)
- b. Separate proteins from the given sample through SDS.

MINOR (Answer All the Questions)

- a. Demonstrate replica plating technique.
- b. Demonstrate Karyotypic analysis.

SPOTTERS (Answer All the Questions)

Identify the given spotters and discuss (A, B, C and D.).

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY **YEAR I - SEMESTER I (2017-18)**

LAB IN GENETICS AND MOLECULAR BIOLOGY

Paper	: Core Practical II	Major (1X20)	: 20
Examination	: External	Minor (1X10)	: 10
Time	: Six Hours	Spotters (5X4)	: 20
Paper Code	: 17U1BTCPO2	Record (1X5)	: 5
Batch	:	Viva Voce	: 5
Date	:	Maximum Marks	: 60

KEY

MAJOR

Bacteria, Centrifuge, CTAB, Gel Documentation Instrumentation, etc.

MINOR

Media, Incubator, Culture, etc.

SPOTTERS

- 1. Monohybrid cross,
- 2. Karotype,
- 3. Bacterial Transformation,
- 4. Tris Buffer and
- 5. Transposons.

RECORD

VIVA-VOCE

YEAR I – SEMESTER II ANIMAL SCIENCE FOR B.Sc. BIOTECHNOLOGY

: Allied II Total Hours : 60 Paper Hours/Week : 4 Exam Hours : 03 : 4 Credit Internal : 25 Paper Code : 17U2BTA02 External : 75

SUBJECT DESCRIPTION:

This paper emphasizing basic animal science in which classification and anial kingdom based on their morphological, anatomical characteristers, their reproduction and development.

OBJECTIVE:

- To enhance their knowledge on classification of animal kingdom.
- Idetification of animals based on morphological and anatomical features.
- Understand animal reportction and development.

OUTCOME:

Students will acquire knowledge on animal kingdom their classification based on morphology, anatomoical characterists, their reproductive and growth nature.

CONTENT:

Unit I - (15 Hrs.): Animal Kingdom: Introduction to animal Kingdom, Classification and Protozoa.

Unit II - (15 Hrs.): Porifera, Coelenterata, Ctenophora and Platyhelminthes.

Unit III - (15 Hrs.): Nematoda, Annelida, Arthropoda and Mollusca.

Unit IV – (15 Hrs.): Echinodermata, Hemichordata and Chordata.

Unit V - (15 Hrs.): Animal cells and Tissues, Organs and Organ systems, Reproduction and Development.

REFERENCE BOOKS:

- Agarwal, V. K. 2000. Invertebrate Zoology S.Chand and Company Ltd., publications, New Delhi.
- Iyer, E. 1993. Manual of Zoology -Vol. I &II Invertebrata, S. Viswanathan (Printers & Publisher) Chennai.
- Kotpal, R. L. 2003. Modern text book of Zoology Invertebrates, Rostogi publication,
- Jordan, E. L. and Verma, P. S. 2000. Chordate Zoology, S. Chand & Co, New Delhi.
- Bernice Anantharaj Allied Zoology

- Hill, R. W. and Wyse, G. A. 2004. Animal Physiology, Second Edition, Sinauer Associate, Inc Publishers, USA.
- Wolpert, L. 2007. Principles of Development (III edition) Oxford University Press, UK.
- Verma, P. S. and Agarwal, V. L. 2005. Concepts of Evolution S. Chand & Company, New Delhi.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY YEAR I - SEMESTER II (2017-18)

ANIMAL SCIENCE

Paper	: Allied Paper II	Section - A (20X1)	: 20
Examination	: External	Section – B (5X5)	: 25
Time	: Three Hours	Section – C (3X10)	: 30
Paper Code	: 17U2BTAO2	Maximum Marks	: 75

Section A (Answer all the questions)

c. Coelenterates

1.	Which of the	following class	s has the la	argest numb	er of animals?

a. Mammals c. Insects b. Fishes d. Reptiles

The largest animal ever existed on earth is.

a. Woolly mammoth c. Tyrannosaurus b. African elephants d. Blue whale

Name protozoa was given by.

a. Goldfuss c. Hall

d. None of these b. Jablot

Largest fresh water protozoa is.

a. Paramecium caudatum c. Pelomyxa palustris d. Spirostomum ambiguum. b. Vorticella minim

A sponge can be distinguished from other animals by the presence of.

a. Hollow body c. Choanocytes b. Coelenteron d. Dermal papillae

Nematocysts are the specialized cells found in the members of

a. Cnidaria c. Annelida b. Porifera d. Mollusca

The First invertebrate to develop a true nervous system are.

a. Flat worms b. Sponges d. Annelids

Free living platyhelminthes forms belong to the class.

a. Cestoda c. Turbellaria d. Nematoda b. Trematoda

Anticoagulant secreted by leech is.

a. Heparin c. Haematin b. Hirudin **d.** Hamoglobin

10. Hemocoelic body cavity is a characteristic of

a. Ascaris c. Cockroach d. Snails b. Leech

11. Most primitive arthropods belongs to the class.

a. Archnida c. Onychophora d. Myriapoda b. Insecta

12. Which of the following produces a shell of great ornamental value?

a. Pila c. Unio b. Nautilus d. Ostrea

13. Which of the following systems is found in echinoderms?

a. Nervous system . c. Excretory system

d. System of internal skeleton b. Respiratory system

14. Starfishes are

a. Herbivorous c. Filter feeders b. Carnivorous d. Omnivorous

15. Which of the following structures is present in all the chordates?

a. Cranium c. Spinal cord.

b. Notochord d. Vertebral column

16. Which of the following is a characteristic chordate character?

a. Autonomy c. Pharyngotomy

b. Myotomy d. Dermatotomy

Animal cells do not contain

a. Chloroplast . c. Nucleus

b. Cytoplasm d. Cell membrane

The layer of actively dividing cells of skin is termed as.

a. Stratum compactum c. Stratum lucidium

b. Stratum corneum d. Stratum malpighii

19. Genetic idientity of a human male is determined by.

a. Autosomes c. Cell organelles

b. Nucleolus d. Sex chromosomes

20. Fertilization of ova in human take place in.

c. Fallopian tube a. Ovary

b. Vagina d. Uterus

Section-B (Answer All The Questions)

- 1. a) Outline the classification of animal kingdom. (or)
 - b) Bring out the life cycle of plasmodium.
- 2. a) Give an account of the skeleton in the sponges. (or)
 - b) Compare the digestive system of Leech and Nereis.
- 3. a) Describe the classification of phylum arthropoda. (or)
 - b) Bring out the general characteristics of phylum annelida.
- 4. a) Give an account of air bladder in fishes. (or)
 - b) Write an account of biology and distribution of prototheria
- 5. a) Describe the types of tissues found in animals. (or)
 - b) Discuss the digestive system of animals.

Section-C (Answer Any Three Questions)

- 1. Briefly explain about the various methods of reproduction in protozoa.
- 2. Give a detailed account of the canal system in the sponges.
- 3. Illustrate the economic importance of *mollusca*.
- 4. Mention the chief characters of the phylum Echinodermata and classify upto classes with their distinguishing characters and examples.
- 5. Discuss in detail about the reproductive system in animals.

YEAR I – SEMESTER II ANIMAL SCIENCE PRACTICAL

: Allied II Total Hours Paper : 60 Hours/Week Exam Hours : 03 : 3 Credit Internal : 40 Paper Code : 17U2BTA02 External : 60

MAJOR PRACTICAL:

- Lab 1 (8 hrs.): Animal Kingdom-Key to common taxa.
- Lab 2 (8 hrs.): Identification and characterization of Protozoa, Porifera and Coelenterata.
- Lab 3 (8 hrs.): Identification and characterization Ctenophora, Platyhelminthes and Nematoda.
- Lab 4 (8 hrs.): Identification and characterization Annelida, Arthropoda and Mollusca.
- Lab 5 (8 hrs.): Identification and characterization Echinodermata, Hemichordata and Chordata.

MINOR PRACTICAL:

- Lab 1 (3 hrs.): Characterization of Animal cells and tissues.
- Lab 2 (3 hrs.): Characterization of Animal organs.
- Lab 3 (3 hrs.): Structure and function of Animal organ systems.
- Lab 4 (34 hrs.): Study on Animal reproductive systems.
- Lab 5 (3 hrs.): Study of Animal development.
- Spotters (5 hrs.): Amoeba, Paramecium, Aurelia, Fasciola hepatica and Ephyra larva, Taenia scolex, Fasciola hepatica. C.S., Ascaris - Male and Female, Taenia solium, Amphioxus, Shark, Ichthyophis, Cobra and Sea Anemon on Hermit crab, Pigeon, Blastula of frog, 24 and 48 hours of chick embryo, Star fish, Redia / Cercaria, Nauplius, Mysis Larva.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY **YEAR I - SEMESTER I (2017-18)**

LAB IN ANIMAL SCIENCE

Paper	: Allied Practical I	Major (1X20)	: 20
Examination	: External	Minor (1X10)	: 10
Time	: Three Hours	Spotters (5X4)	: 20
Paper Code	: 17U1BTAPO2	Record (1X5)	: 5
Batch	:	Viva Voce	: 5
Date	:	Maximum Marks	: 60

MAJOR (Answer All the Questions)

- a. Depict key to common taxa to Animal Kingdom and identify the given species A. (or)
- b. Depict key to common taxa to Animal Kingdom and identify the given species B.

MINOR (Answer All the Questions)

- a. Characterize the given animal cells and tissues.
- b. Identify structure and function of given animal organ.

SPOTTERS (Answer All the Questions)

Identify the given spotters and discuss (A, B, C and D.).

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY **YEAR I - SEMESTER I (2017-18)**

LAB IN ANIMAL SCIENCE

Paper	: Allied Practical I	Major (1X20)	: 20
Examination	: External	Minor (1X10)	: 10
Time	: Three Hours	Spotters (5X4)	: 20
Paper Code	: 17U1BTAPO2	Record (1X5)	: 5
Batch	:	Viva Voce	: 5
Date	:	Maximum Marks	: 60

KEY

MAJOR

Microscope, Stain, Slide, etc. .

MINOR

Permanent slide, Microscope, stain.

SPOTTERS

- 1. Fasciola hepatica and Ephyra larva,
- 2. Taenia solium,
- 3. Sea Anemon on Hermit crab,
- 4. Blastula of frog, 24 and 48 hours of chick embryo and
- 5. Mysis Larva

RECORD

VIVA-VOCE

YEAR I - SEMESTER II **ENVIRONMENTAL STUDIES**

FOR ALL UNDER GRADUATE STUDENTS

Paper : Value Education II Total Hours : 30 Hours/Week : 4 Exam Hours : 03 Credit : 4 Internal : 25 Paper Code : 17U2VE02 External : 75

SUBJECT DESCRIPTION:

In spite of the deteriorating status of the environment, study of environment have so far not received adequate attention in our academic programmes. Recognizing this, the Hon'ble Supreme Court directed the UGC to introduce a basic course on environment at every level in college education. Accordingly, the matter was considered by UGC and it was decided that a six months compulsory core module course in environmental studies may be prepared and compulsorily implemented in all the University/Colleges of India. The experts committee appointed by the UGC has looked into all the pertinent questions, issues and other relevant matters. This was followed by framing of the core module syllabus for environmental studies for undergraduate courses of all branches of Higher Education. We are deeply conscious that there are bound to be gaps between the ideal and real. Geniune endeavour is required to minimize the gaps by intellectual and material inputs. The success of this course will depend on the initiative and drive of the teachers and the receptive students.

OBJECTIVES:

- Inculcate the importance of environmental science and environmental studies.
- Enhanced the need for sustainable development is a key to the future of mankind in the minds of students.
- Create awareness on problems of pollution, solid waste disposal, degradation of environment, issues like economic productivity and national security, Global warming, the depletion of ozone layer and loss of biodiversity
- Importance of managing environmental hazards.

OUTCOME:

Create environmentally conscious citizen of the country.

CONTENT:

Unit I - (2 Hrs.): Multidisciplinary nature of environmental studies: Definition, scope and importance, Need for public awareness.

Unit II - (8 Hrs.): Natural Resources: Renewable and non-renewable **resources**: Natural resources and associated problems.

a) Forest resources: Use and over-exploitation, deforestation, case studies (Timber extraction, mining, dams and their effects on forest and tribal people). b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. e) Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Case studies. f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

Unit III - (6 Hrs.): Ecosystems: Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids, Introduction, types, characteristic features, structure and function of the following ecosystem: - a. Forest ecosystem, b. Grassland ecosystem, c. Desert ecosystem, d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

Unit IV - (8 Hrs.): Biodiversity and its conservation: Introduction - Definition: genetic, species and ecosystem diversity, Biogeographical classification of India, Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic, and option values, Biodiversity at global, National and local levels, Inida as a mega-diversity nation, Hot-sports of biodiversity, Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Unit V - (8 Hrs.): Environmental Pollution: Definition, Cause, effects and control measures of :- a. Air pollution, b. Water pollution, c. Soil pollution, d. Marine pollution, e. Noise pollution, f. Thermal pollution, g. Nuclear hazards, Solid waste Management: Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution, Pollution case studies, Diaster management: floods, earthquake, cyclone and landslides.

Unit VI - (7 Hrs.): Social Issues and the Environment: From Unsustainable to Sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rahabilitation of people; its problems and concerns. Case Studies, Environmental ethics: Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies, Wasteland reclamation, Consumerism and waste products, Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation and, Public awareness.

Unit VII - (6 Hrs): Human Population and the Environment: Population growth, variation among nations, Population explosion - Family Welfare Programme, Environment and human health, Human Rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in Environment and human health and Case Studies.

Unit VIII - (8Hrs): Field work: Visit to a local area to document environmental assetsriver/forest/grassland/hill/mountain, Visit to a local polluted site-Urban/Rural/Industrial/Agricultural, Study of common plants, insects, birds, Study of simple ecosystems-pond, river, hill slopes, etc. (Field work Equal to 5 lecture hours).

TEXT BOOK:

• Bharucha, E. 2004. The text book for Environmental Studies, University Grants Commission, New Delhi. p-286.

REFERENCE

- Agarwal, K. C. 2001. Environmental Biology, Nidi Publ. Ltd. Bikaner.
- Erach, B. The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad - 380 013, India, Email:mapin@icenet.net (R)
- Brunner, R. C. 1989. Hazardous Waste Incineration, McGraw Hill Inc. p-480p
- Clark, R. S. 2001. Marine Pollution, Clanderson Press Oxford (TB)
- Cunningham, W. P. Cooper, T. H. Gorhani, E. and Hepworth, M.T. 2001. Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- De, A. K. 1993. Environmental Chemistry, Wiley Eastern Ltd. Down to Earth, Centre for Science and Environment (R)
- Gleick, H. P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford Univ. Press. 473p
- Hawkins, R. E. Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay (R)
- Heywood, V. H. and Waston, R. T. 1995. Global Biodiversity Assessment. Cambridge Univ. Press 1140p.
- Jadhav, H & Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi p-284.
- Mckinney, M. L. and School, R. M. 1996. Environmental Science systems & Solutions, Web enhanced edition. P-639.
- Mhaskar, A. K., Matter Hazardous, Techno-Science Publication (TB)
- Miller, T. G. Jr. Environmental Science, Wadsworth Publishing Co. (TB)
- Odum, E. P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, p-
- Rao, M. N. and Datta, A. K. 1987. Waste Water treatment. Oxford & IBH Publ. Co. Pvt. Ltd. p-345.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY YEAR I – SEMESTER II (2017-18) ENVIRONMENTAL STUDIES

Paper	: VALUE EDUCTION II	Section - A (20X1)	: 20
Examination	: External	Section – B (5X5)	: 25
Time	: Three Hours	Section – C (3X10)	: 30
Paper Code	: 17U2VE2	Maximum Marks	: 75

Section A (Answer all the questions)

1	Which	of	the	following	is	the	example	of	impact	of	development	activities	on
	hvdros	nhe	re?										

a. Air pollutionb. Noise pollutiond. Water pollution

2 The drop in air temperature at a rate of 6.50 C per 1000 m increase in altitude of troposphere is known as.

a. Environmental lapse rate c. Environmental degradation

b. Green house effect d. Global warming

Earthworms and bacteria are called.

3

a. Producersb. Decomposersc. Consumerse. None of these

4 In India, Tropical rain forest occurs in.

a. Jammu and Kashmir c. Andaman & Nicobar b. Uttar Pradesh d. Himachal Pradesh

5 Noise is measured using sound meter and the unit is.

a. Hertz c. Decibel b. Joule d. Sound

6 Area of land, water and air where the life exists is called.

a. Biosphereb. Atmospherec. Lithosphered. Hydrosphere

7 Troposphere has altitude range of

a. 8 to 18 km from earth surface c. 50 km from earth surface b. 800 km from earth surface d. 80 km from earth surface

8 The layer which provides ideal site for flying of jet planes is.

a. Thermospherec. Stratosphereb. Mesosphered. Troposphere

9 The green plants are also called.

a. Producersb. Reducersc. Consumersd. Detritivores

10 Sequence of eating and being eaten in a ecosystem is called.

a. Food webb. Ecological Pyramidc. Natural cycled. Food chain

11 Biodiversity means.

a. The living natural resources c. Land and forest b. Oceans and sea d. Atmosphere

12 Gaseous nitrogen can be used by plants only after the process of.

a. Nitrogen cyclingb. Ammonificationc. Nitrogen fixationd. Nitrifications

13 Conversion of ammonia to nitrite and then nitrate is called.

a. Nitrogen fixationb. Nitrificationc. De nitrificationd. Ammonification

14 The subsurface sources of water is.

a. Riverb. Streamc. Dug welld. Ocean

15 71% of earth surface is covered with.

a. Land c. Air b. Water d. Coal

16 Major cause of increment in population growth

a. Decrees in birth rate c. Decrees in mortality rate

b. Illiteracy d. None of the above

17 Which of the following is an air pollutant

a. Ozone c. CFC b. Carbon dioxide d. Oxygen

18 Which of the following are major causes of land degradation?

a. Soil erosion c. Deforestation b. Water logging d. Desertification

19 Biochemical oxygen demand means

a. Industrial pollution c. Air pollution

b. Polluting capacity of effluent d. Dissolved O2 needed for plants

20 Eutrophication means

a. Thermal change in water c. Filling up of water body with aquatic plants

b. Solid waste b. None of the above

Section-B (Answer All The Questions)

- 1. a) Write short notes on scope of environmental studies. (or)
 - b) Role of forest resources towards human welfare.
- 2. a) Explain different issues related to land resources. (or)
 - b) Describe structure and function of ecosystem.
- 3. a) What is econlogical sucession and its role. (or)
 - b) State Biogeographical classification of India.
- 4. a) Write a brief account on endangered and endemic specie of India. (or)
 - b) Discuss about pollution with examples.
- 5. a) Explain in detail about Solid waste management. (or)
 - b) Write short notes on Wildlife Protection Act and Forest Conservation Act.

Section-C (Answer Any Three Questions)

- 1. Discribe social issues related to environment.
- 2. Enumerate different types of environmental pollution and explain.
- 3. Give an account of different types biodiversity conservation.
- 4. Classify different types of ecosystems and descrive.
- 5. What are renewable and non renewable resources explain.

YEAR II - SEMESTER III **IMMUNOLOGY**

Paper	: Core III	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 17U3BTCO3	External	: 75

Subject description

The chapters in the paper provide a fundamental knowledge on principle and concepts in immunology.

Objectives

To enable the students to understand the basic concepts of immunology and molecular mechanism behind immunological reactions that enables them to apply them to develop methods for diagnostic assays, treatment strategies, vaccine production, therapeutical drugs and Monoclonal antibody production.

Goal

The thorough understanding of this paper enables the students to confidently pursue their career in the field of Immunology, diagnostics, Healthcare, Pharmaceuticals, Clinical research, Biomedical and Genetic engineering research and Allied health fields.

UNIT	CONTENT	HOURS
I	History and scope of immunology; Infection & Immunity – types and mechanisms; Haematopoiesis and cells of the immune system. Organs of immune system – Primary and secondary lymphoid organs – structure and functions	15
II	Antigen and immunogen – Properties; Haptens, mitogens, adjuvants, epitopes. Immunoglobulin – Basic structure, classes, function, Generation of antibody diversity. Immune responses – Humoral & Cell mediated immune responses & antigen recognition. Generation of lymphocyte specificity and clonal selection of lymphocytes. MHC – types, organization and its role in antigen processing and presentation.	15
III	Antigen- antibody interactions: Principle and applications of Precipitation & Agglutination reactions; Complement – components, properties and activation of pathways (Classical, alternative and lectin), biological significance of complements; Cytokines- properties, structure and function.	15

IV	Hypersensitivity reactions : Types and mechanisms; Mechanism of transplantation and graft rejection; Immunosuppressive therapy; Autoimmune diseases; Immunodeficiency diseases.	15
V	Principles of vaccination: Passive & active immunization, immunization programs & role of WHO in immunization programs. Vaccines types – Live and attenuated vaccines, inactivated vaccines, Polysaccharide capsular vaccine, peptide vaccine, DNA vaccines, recombinant vaccines, multivalent subunit vaccines to other infectious agents, edible vaccines.	15

REFERENCES

- 1. Goldsby RA, Kindt TJ. Osborne BA, Kuby J (2003) Immunology 6th Edition. WH Freeman & Co. New York.
- 2. Kuby J (2000) Immunology 4 th Edition. WH Freeman & Co. New York.
- 3. Benjamini E, Coico R and Sunshine G (2000). Immunology 4th Edition. A John Wiley & Sons, Inc. Publications.
- 4. Roitt I, Brostoff J and Male D (1993). Immunology 3 rd Edition. Mosby
- 5. Tizard IR (1995). Immunology 4th Edition. Saunders College Publishing Harcourt. Brace College Publishers.
- 6. J. Darnell, H. Lodish and D. Baltimore (1994). Molecular Biology 2nd Edition. Scientific American Book, USA

Paper Code: 17U3BTC03

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) ELAYAMPALAYAM, TIRUCHENGODE DEPARTMENT OF BIOTECHNOLOGY

MODEL EXAMINATION B.Sc. BIOTECHNOLOGY II SEMESTER IMMUNOLOGY

Time: 3 Hours

SECTION – A

Answer all the questions

Max. Marks: 75

(20 X 1 = 20)

1. Formation and development of red and white blood cells from stem cells is called as a) Hemopoiesis b) Hematopoiesis c) Hemoglobin d) None of these. 2. Which of the following is a primary lymphoid organ? b) Thymus c) Peyer's patch a) Spleen d) Lymph node 3. Which of the following cell produce antibodies? a) T cells b) NK cells c) Plasma cells d) Dendritic cells 4. In Thymus the cortex is densely packed with immature T cels called a) Dead cell b) Thymocytes c) Epithelial cell d) Macrophage 5. Both mast cells and basophils are _____ b) Circulate in the blood strean a) Phagocytic c) Found primarily in lymph nodes d) Release histamine 6. Which of the following antibody cross from mother to child through the placenta? c) IgG b) IgM a) IgA d) IgE 7. ______ is responsible for quick secondary response. a) Antibodies b) Plasma cells c) B cells d) Memory cells 8. Class I MHC molecules are found on a) B cells and macrophages b) erythrocytes, B cells and T cells d) all nucleated cells c) T cells only 9. ______ is a substance which makes the hapten immunogenic a) T cells b) B cells c) carriers d) complex haptens 10. ______ of an antigen is complementary to the paratope of an antibody. a) MHC b)TCR c) Fab d) Epitope 11. The complement cascade can be initiated by a) antibody:antigen complexes. b) properdin:antigen complexes c) peptidoglycan:LPS complexes. d) None of these. 12. Activation of alternative pathway involves a) C1 b) C2 d) C4 13. Immediate hypersensitivity usually involves ___ a) Mast cells b) Antibodies to mast cells c) Platelets d) IgG 14. Which hypersensitivity is caused by T-lymphocytes? a) Acute b) Delayed c) Chronic d) None of these 15. A graft that is transplanted from one person to a genetically identical individual is _____ a) Allograft b) Autograft c) Isograft d) None of these

	Fransplanted cells are mainly dest a) Neutrophils b) Macrophag	•	d) T-cells					
	17. Which is considered the gold standard of existing vaccines?							
	a) Purified proteins b) Whole-organism c) DNA-based d) Inactivated exotoxin.							
	18. The organism suitable for use in recombinant vaccines is							
	a) Influenza virus b) Poliovirus		Vaccinia virus.					
19. 7	The process of weakening a patho	gen is called						
a)	Vaccination b) Attenuation c) In	nmunization d) None of	hese.					
	A Vaccine can be							
	An antigenic protein	b) Weakened pathogen						
c)	Live attenuated pathogen	d) All of these						
		SECTION - B	(5 X5 = 25)					
		Answer ALL the quest	ion					
21.	a) Describe the contribution of Ed	dward jenner and Louis p	asteur to immunology.					
		Or						
	b) What is immunity? Discuss ab	out innate immunity.						
22.	a) What is immunogen? Discuss t	the properties of immuno	gen.					
		Or						
	b) Draw and describe structure of	•						
23.	 a) Discuss the biological function 	•						
		Or						
	b) What are cytokines? Explain a							
<i>2</i> 4.	a) Describe the mechanism of gra	or Or						
	b) What is autoimmunity? Mentic		e auto immuno disassas					
	a) Describe the steps involved in							
23.	a) Describe the steps involved in	Or	acenic.					
	b) What are edible vaccines? How							
	o) what are earlie vaccines. How	vare they produced.						
		SECTION - C	(3X10=30)					
	\mathbf{A}	nswer any THREE que	stions					
26 V	What are primary lymphoid organ	s? Discuss in detail abou	t its structures and functions					
	Give an elaborate note on structur							
	llustrate the Classical pathway of							
	What is hypersensitivity? Discuss	-	anism of Type I reaction.					
			at vaccine using rDNA technology.					

YEAR II - SEMESTER III LAB IN IMMUNOLOGY

Paper : CORE PRACTICAL III Total Hours : 75 Hours/Week Exam Hours : 03 : 5 Credit : 3 : 25 Internal Paper Code : 17U3BTCPO3 : 75 External

Experiment No.	Title	Hours
1	Determination of blood grouping and Rh typing in human beings.	5
2	Preparation of serum and plasma.	5
3	Total count of blood cells - WBC & RBC.	10
4	Differential count of WBC.	5
5	Ouchterclony double immunodiffusion technique (ODD)	10
6	Radial immune diffusion (RID)	5
7	Rocket immunoelectrophoresis.	5
8	ELISA.	10
9	Western blotting.	10
10	WIDAL Test.	10

YEAR II – SEMESTER IV RECOMBINANT DNA TECHNOLOGY

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 17U4BTCO4	External	: 75

Subject description

The chapters in the paper provide a fundamental knowledge on principle and concepts in Recombinant DNA technology.

Objectives

To enable the students to understand the basic concepts of genetic engineering and importance of cloning vectors for recombinant DNA technology enabling students to apply vectors on cloning new therapeutically important candidate gene. The subject also deals with the new regulation and guideline of recombinant molecules as suggested by Department of Biotechnology(DBT)-India.

Goal

The thorough understanding of this paper enables the students to confidently pursue their career in the field of Cloning, Genetic engineering, Biosafety levels and Biocontainment, Vector Biology and in the field of Pharmaceutical Industries for developing Genetically cloned products.

UNIT I: 15 Hrs

Tools in rDNA technology: Scope and applications: DNA polymerases, DNA Ligase, Methylase, Taq polymerase, Reverse transcriptase. DNA modifying enzymes (Alkaline phosphatase, Polynucleotide kinase, Terminal deoxy nucleotidyl transferase). S1nuclease, RNAse H and DNAse I.

UNIT II: 15 Hrs

Cloning vectors: Plasmids (PBR322, PUC and BAC), Lambda vectors, Phagemids, Cosmids, M13 vectors, Shuttle vectors (YEP, YIP & YRP) and Artificial chromosomes (YAC and BAC).

UNIT III: 15 Hrs

Nucleic acid technology: Purification and yield analysis of DNA. Nucleic acid sequencing methods (Maxam-Gilbert and Dideoxy methods). PCR - Principles and Types (RT PCR & Nested PCR). DNA Library construction and screening:

(Genomic & cDNA libraries). mRNA enrichment.

UNIT IV: 15 Hrs

Gene transfer techniques: Transformation (CaCl₂ mediated, microinjection, Biolistic-Particle bombardment). Protein expression from recombinant clones: Protein expression in E.coli and Yeast (Glucose & Alcohol).

Screening & Selection of recombinant clones: Hybridization techniques (Northern, Southern & Western), microarray, Site directed mutagenesis: Yeast two hybrid system. Positive and negative selection (IPTG-Xgal, insertional inactivation). Selectable markers and reporters.

UNIT V: 15 Hrs

Regulations and Guidelines of recombinant DNA: Scope and regulations in rDNA research. rDNA Advisory Committee (RAC), Review Committee on gene ic manipulation (RCGM), Institutional Biosafety committee (IBC), Gene ic engineering appraisal Committee (GEAC), State Biotechnology Coordinate rs Committee (SBCC). Biocontainment-Laboratory maintaining, decontamination and disposal (BSL-1, 2, 3) (Plant, animal and microbe)

REFERENCES:

- 1. dbtindia.nic.in
- 2. www.who.int
- 3. Molecular cloning: a laboratory manual. J. Sambrook, EF. Frisch and T. Maniatis, Cold Spring Harbor Laboratory Press, New York.2000.
- 4. DNA cloning: a practical approach, DM. Glover and BD Hames, IRL Press, Oxford, 1995.
- 5. Molecular and Cellular Methods in Biology and Medicine, PB. Kaufman, W.Wu. D, Kim and L.J Cseke, CRC Press, Florida, 1995.
- 6. Methods of Enzymology vol. 152, Guide to molecular cloning techniques, SL. Berger and AR. Kimmel Academic Press, Inc. An Diego, 1998.

- 7. Methods in Enzymology. Vol 185, gene expression technology, DV. Goeddel Academic Press, inc. San Deigo, 1990.
- 8. DNA science. A first Course in Recombinant Technology. DA. Mickloss and GA. Freyer; CokJ Spring Harbor Laboratory Press, New York, 1990.
- 9. Molecular Biotechnology. SB. Primrose, Blackwell Scientific Publishers, Oxford, 1994.
- 10. Milestones in Biotechnology. Classic papers on genetic Engineering. JA. Davis and WS. Reznikoff, Butterworth-Heinemann, Boston, 1992.
- 11. Route maps in Gene technology, MR. Walker and R. Rapley, BlackwelScience Ltd., Oxford, 1997.
- 12. Genetic Engineering. An Introduction to gene analysis and exploitation in eukaryotes, SM. Kingsman and AJ. Kingsman, Blackwell Scientific Publications, Oxford, 1998.
- 13. Molecular Biotechnology Glick and Pasternak.
- 14. Principles of gene manipulations Old & Primrose.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) ELAYAMPALAYAM, TIRUCHENGODE DEPARTMENT OF BIOTECHNOLOGY

B.Sc. BIOTECHNOLOGY II SEMESTER

MODEL QUESTION PAPER (RECOMBINANT DNA TECHNOLOGY)

Section - A (Answer all the questions) $(20 \times 1 = 20 \text{ marks})$

1.	Taq Pol	lymerase is isolated fro	om		
	a.	E.coli	b. Thermus aquaticus	c. Thermus me	arinus
	d. <i>B</i>	Bacillus stereothermop	hilus		
2.	Which	of the following seque	nce is		
3.	recogni	zed by Hin d III?			
	_	AA GCTT	b. A AGCTT	c. GTCGA C	d. GT CGAC
4.	RNase 1	H cleaves hyd	rid		
	a.	DNA-DNA	b. DNA-RNA	c. RNA-RNA	d. RNA-Protein
5.	Which	of the following enzyn	ne is used to create the	e sticky ends on DNA?	
	a.	Acid phosphatase			
	b.	Polynucloetidyl kinase	e		
	c.	Terminal deoxy nucle	otidyl transferase		
	d.	Alkaline phosphatase			
5.	Which	of the following vector	rs contains Ori 'C' site	es from two different s	pecies?
	a.	Cosmids	b. M13 vectors	c. Shuttle vectors	d. Phagemids
7.	The ins	ertional vector λgt10 c	an able carry up to	of new DNA	
	a.	4 kb	b. 5 kb	c. 7 kb	d. 8 kb
8.	The size	e of YRp7 is			
	a.	5.8 kb	b. 6.8 kb	c. 5.7 kb	d. 6.7 kb
9.	Which	of following contains of	covalently closed circu	ılar DNA strands?	
		C	b. M13 vectors		d. Cosmids
10.	Which	of the following DNA	is used as template in	Chain termination me	thod of DNA
	sequenc	•			
			b. Genomic DNA		d. λ DNA
11.		ration of DNA during	<u>-</u>		
	a.		b. 84	c. 64	d. 74
12.	-	cessed RNA is partial		cleases to produce fund	ctional transcriptome.
		ethod is called as			
		cDNA library construc	ction		
		mRNA enrichment			
		DNA sequencing			
		DNA amplification			
13.		east two hybrid analys			
		ption factors and the v	_		
		YAC	b. BAC	c. SEN	d. Lambda
14.	_	coamylase (GOX) pro	moter found in Aspers	gillus nidulans 1s 1nduc	ced by and
	-	ed by	1.0.1.5	C. 1 C.1	1.0. 1.37.1
. ~		Starch, Glucose	b. Starch, Fructose	c. Starch, Galactose	d. Starch, Xylose
15.		emical method of DNA	A sequencing can be us	sea to rapidly sequence	e DNA that are
	- kb	41 0 F	1	1 O - 1 1	1 0
	a.	< than 0.5	b. > than 0.5	c. < than 1.0 d. > th	an 1.0

16. The DNA-phosphate conta	aining mixture is incuba	ited with the recip	pient cells for
a. 24 hrs	b. 48 hrs	c. 72 hrs	d. 98 hrs
17. Short pulses are generated	in electroporation in hi	gher voltage at th	ne rate of
a. 1100 V	b. 1200 V		d. 1400 V
18. Which of the competent at	uthority involved in pol	icy regulations of	recombinant DNA?
a. RAC	b. RCGM	c. SBCC	d. DLC
19. A micro organism that is u	isually causes serious/le	thal human or an	imal disease but does not
ordinarily spread from one	•		
a. RG - 4	b. RG - 3	c. RG - 2	d. RG - 1
20. Arthropods and insect bios	safety level comes unde	r to	
a. BSL-1 to BSL-4	b. ASBL-1 to ASB		L-1 to PBSL-4
d. AQBSL-1 to AQB	SL-4		
21. Genetic engineering Appra	aisal Committee has bee	en established une	der the
a. Ministry of Science	e & Technology (MST)		
b. Ministry of Human	Resource Developmen	t (MHRD)	
c. Ministry of Enviro	nment, Forest and Clim	ate Change (MoF	EF & CC)
-	fic and Industrial Resea		
Sec	tion - B (Answer all th	e questions) (5 x	5 = 25 marks
22. A) Write short notes on ty	pe III endonucleases		(or)
B) Write short notes on Di	NA modifying enzymes	.	
23. A) Write about PBR322 w	ith neat illustrations		(or)
B) Write about YEP and Y	IP vectors		
24. A) Write about Maxam-G	ilbert method of DNA s	equencing	(or)
B) Explain RT PCR			
25. A)Write about microinject	tion method of DNA tra	nsformation	(or)
B) Explain site directed m	utagenesis		
26. A) Explain IBC & GEAC			(or)
B) Write short notes on B	SL-1 & BSL-2		
Section - C (Answe	er any THREE of the f	ollowing question	ons) $(10 \times 3 = 30 \text{ marks})$
27. Give a detailed account or	restriction endonucleas	ses	
28. Give a detailed account or	M13 vectors		

- 29. Explain the DNA library construction and its screening
- 30. Give a detailed account on DNA transfer techniques
- 31. Write elaborately on various committees involved in framing regulations and guidelines of recombinant DNA.

YEAR II - SEMESTER IV LAB IN rDNA TECHNOLOGY

Total Hours Paper : CORE PRACTICAL IV : 75 Hours/Week Exam Hours : 5 : 03 Credit : 3 Internal : 25 Paper Code : 17U4BTCPO4 External : 75

Experiment	Title	Hours
No.		
1	Isolation of Genomic DNA from <i>E.coli</i>	
2	Isolation of Plasmid DNA mini prep and	
	maxi prep from <i>E.coli</i>	
3	Restriction digestion of plasmid DNA by	
	Hind III and BamHI	
4	Ligation of DNA and plasmid by T4 DNA	
	ligase (Vector-Vector & Vector-Target)	
5	Purification of DNA fragment from gel by	
	electro-elution	
6	Amplification of ligated plasmid by PCR	
7 Transformation of recombinant DNA in Host		
	E.coli by CaCl method	
8	Selection of recombinant clones by IPTG-X-	
	gal method	

YEAR II – SEMESTER IV FOOD PROCESSING TECHNOLOGY

Paper	: SBEC II	Total Hours	: 32
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U3BTS02	External	: 75

DESCRIPTION

This paper deals with the technological aspects of food and their preservation, processing, industries etc., developments in the field

Objectives

- To help the students understand the basic concepts of food preservation and processing
- To enable them to be aware of the food industries and food safety.

Unit I

Introduction: Historical aspects of food preservation – ancient (Wine, dry fish) medieval (cheese), modern (Packaged food – aerated packets)- Significance of food preservation.

Unit II Food processing and preservation

Packaged foods – food colorants (Natural & artificial) – food flavoring agents – food stabilizers – emulsifiers – processing of food (Pasteurization, refrigerated and deep-frozen food)

Unit III Food industry

General principal – Industry design & construction - machinery (fermenter) - working - maintenance of process industries – quality control

Unit IV Food spoilage and food safety

Food contamination – Shelf life – food carcinogens and mutagens – food allergens; Food safety – foodpreservatives (class I& II).

Unit V Agencies & regulations governing food processing

 $Grading\ of\ packaged\ food-quality\ factor\ for\ consumer\ safety-PFA-FSSAI-Training\ and\ education\ for\ safe\ methods\ of\ handling\ and\ food\ processing.$

REFERENCES:

- 1. **B.Siva**2011.Food Processing & Preservation –PHI Learning Pvt Ltd.
- 2. D.G. Rao, 2010. Fundamentals of Food Engineering –PHI Learning Pvt Ltd.
- **3.** Narang, Food Microbiology
- **4. Michael P. Doyle, Larry. R.** Food Microbiology Fundamentals & Frontiers
- **5. Frazier,** Food Microbiology
- **6. Yiu Hui & G. Khachatourians,** Food Biotechnology
- 7. Ibek, Laramie & Bhunia, Fundamentals of Food Microbiology, CRC Press.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

MODEL QUESTION PAPER B.Sc. BIOTECHNOLOGY YEAR II - SEMESTER IV (2017-18)

B.Sc., BIOTECHNOLGY

QUESTION PAPER PATTERN

Section - A (20 marks)

- a. acidic pH
- b. alkaline pH
- c. neutral pH
- d. any of the pH
- 2. The undesirable change in a food that makes it unsafe for human consumption is referred as
 - a) food decay
 - b) food spoilage
 - c) food loss
 - d) all of the above

3. Food preservation involves

- a) increasing shelf life of food
- b) ensuring safety for human consumption
- c) both a and b
- d) none of these

4. Pasteurization is a

- a) low temperature treatment
- b) steaming treatment
- c) high temperature treatment
- d) low and high temperature treatment
- 5. Common food poisoning microbes are
 - a) Clostridium and Salmonella
 - b) Clostridium and E.coli
 - c) E.coli and Salmonella
 - d) Clostridium and Streptococcus
- 6. Botulism is caused by
 - a) clostridium botulinum

d) Food material

- b) all clostridium species
- c) clostridium tetenai
- d) clostridium subtilis

7.	Stateme	nt	1:	A1	1	food		additive	s a	re	(carcinogenic.
	Statement	2:	Food	additive	es	must 1	be	avoided	l as	far	as	possible.
	a)					True	,					False
	b)					True) ,					True
	c)					False	÷,					False
	d) False, T	Γrue										
8.	A substance	inten	ntionally	added	that	preserves	flavo	our and	improves	taste	is	called
	a)					Food						additive
	b)					Food						adulterant
	c)					Food						contaminant

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]
ENVIRONMENTAL STUDIES (VALUE EDUCTION II)

- 9. Who is non toxic to fumigants
 - a) insects
 - b) humans
 - c) microbes
 - d) all the above
- 10. Most common pest in the food processing unit
 - a) bandicoots
 - b) cockroaches
 - c) flies
 - d) all the above
- 11. Food processing unit requires
 - a) Sufficient water supply
 - b) Pest control management
 - c) Convenient plant location
 - d) all the above
- 12. which cannot be found in the food processing unit
 - a) meat mincher
 - b) fumigator
 - c) hot air oven
 - d) fermentor
- 13. What has been banned for tea bag products by FSSAI from 2018?
 - **a.** Use of stapler pins
 - **b.** Thread for dipping
 - c. Cloth bag containing the tea leaves
 - **d.** Herbal tea leaves
- 14. FDA stands for
 - a) food and drug authority
 - b) food and drug administration
 - c) food drug adulteration authority
 - d) none of the above
- 15. FSSAi stands for
 - a)food safety and standards authority of India
 - b) Food Safety Satisfy All India
 - c) Food Safely Storage Authority of India
 - d) Food Storage Standards Authority of India
- 16. Process control is carried out
 - a) before production
 - b) during production
 - c) after production control
 - d) All of the above
- 17. Edible vaccines are produced from
 - a) genetically modified plant
 - b) genetically modified microbe
 - c) produced in laboratory
 - d) none of the above
- 18. Which foods use genetically modified organisms in their production to the largest extent?
 - a)Cheese
 - b)Vegetables
 - c) Meat
 - d) all the above

- 19. Which of the following is a biodegradable waste?
 - a) Polythene bags
 - b) Synthetic fiber
 - c) Food waste
 - d) Paper
- 20. Food is a ____ commodity.
 - a) global b) local c) national d)state

SECTION – B (5 \times 5 = 25 marks)

- 1. Write a short note on three major food borne pathogens? (or) Which organisms are key in food spoilage?
- 2. Define Food borne disease. (or) Write about the role of salt or sugar in food preservation?
- 3. What is true of food poisoning? (or)
- Write short notes on pest management in food industry?

 4. What is FDA? (or)
 Write about the role of QC?
- 5. Define Solid waste management
 Give an account on Genetically Modified Food?

 (or)

SECTION - C (3 X 10 = 30 marks) Any three out of five (open choice)

- 1. Give an account on of food contaminants?
- 2. Write about the importance of food preservation
- 3. Give an example of plant layout of food industry.
- 4. Write about FSSA, HACCP
- 5. Explain the classification & Characterization of waste from food industry

DEPARTMENT OF BIOTECHNOLOGY ALLIED BIOTECHNOLOGY SEMESTER IV

PAPER CODE: 17U4BTA04

CREDIT:3 Hrs/Week : 4

Aim

To provide a fundamental knowledge about applications of molecular biology and recombinant DNA technology in different field of Science

Objective

- To enhance the basic understanding about plant, animal and microbial culture systems
- To make the students to explore the commercial opportunities of biotechnology in different fields like medicine, environment and industrial aspects.
- Learning outcome
- Students are able to understand the potential application in Biotechnology in different fields including plant, animal, medical, industrial and environmental Sciences.

UNIT	CONTENT	HOURS
I	Plant biotechnology –Basic principles and techniques in plant tissue culture, Secondary metabolites in plants, Plant growth Hormones, Plant based vectors for gene transfer in plants, transgenic production in plants	12
II	Animal biotechnology - Animal cell culture techniques: Basic principles and applications. Animal as a bioreactor, Animal viral vectors, Cloning strategies and production of transgenic mice and sheep. <i>Invitro</i> fertilization, embryo transfer and Cryopreservation	12
III	Medical biotechnology – Stem cell technology, Gene therapy, DNA fingerprinting, Production and applications of Monoclonal antibodies, DNA Vaccine, Tissue engineering, Molecular diagnosis.	12
IV	Industrial biotechnology - Production of microbial products, Production of Antibiotics, Citric acid and Vinegar, Industrial uses of enzymes in detergents, leather, food, beverages and pharmaceutical industries	12
V	Environmental biotechnology- Genetically modified Microorganisms, Microbial and phyto bioremediation of xenobiotics, Biological weapons, Biogas, Biomass and Single cell proteins.	12

Text books

- 1. Animal biotechnology, M.M.Ranga, (2000), Agro bios (India)
- 2. Introduction to plant biotechnology **Chawla**, 2003(2nd edition) oxford and IBH Publisher
- **3.** Biotechnology, **Satyanarayana.U** (2008), Books and allied (p) Ltd.
- 4. Biotechnology and Genomics, Gupta .P.K. (2004) Rastogi Publication.
- 5. A Textbook of Biotechnology, R.C.Dubey, (2001), Rajendra printer, New Delhi.

Reference books

- 1. Principles of gene manipulation, **Old and Primrose**, (1989)), 3rd Edition
- 2. Culture of Animal cells, **R.Ian freshney**, 2000 (4th edition). Wiley-liss.
- 3. Industrial biotechnology-A.H.Patel, Macmillan Publisher, 2005
- 4. Gene cloning and DNA Analysis, **T.A.Brown** (1996), Blackwell science, osney mead, Oxford.

Cyber source

Plant tissue culture: Current status and opportunities www.intechopen.com/books/recent-advances-in-plant-in-vitro-culture/plant-tissue-culture-current-status-and-opportunities

Use of Transgenic Animals in Biotechnology: Prospects and Problems

www.intechopen.com/books/recent-advances-in-plant-in-vitro-culture/plant-tissue-culture-current-status-and-opportunities

Stem cell technologies: Basic and applications: https://accessengineeringlibrary.com/browse/stem-cell-technologies-basics-and-applications Industrial enzymes – Present status and future perspective for India. http://nopr.niscair.res.in/bitstream/123456789/17451/1/JSIR%2072%285%29%20271-286.pdf

Industrial Biotechnology and Biomass Industrieshttps://industry.gov.au/industry/IndustrySectors/nanotechnology/IndustrialBiotechnology/Pages/default.aspxGenetically modified organisms https://www.britannica.com/science/genetically-modified-organism

LAB IN ALLIED BIOTECHNOLOGY

PAPER CODE: 17U3BTAP04

CREDIT: 3 Hrs/Week:3

- 1. Preparation and sterilization of PTC media.
- 2. Surface sterilization of explants and inoculation
- 3. Callus induction
- 4. Micro propagation of explants
- 5. Preparation of animal cell culture media and sterilization
- 6. Disaggregation of tissues and Establishment of primary cell culture
- 7. Cell counting and viability assay
- 8. RAPD fingerprinting
- 9. Production of citric acid using A. niger
- 10. Clarification of fruit juice using enzymes (cellulose, pectinase and amylase)
- 11. Biogas production- Demo
- 12. Production of SCP

REFERENCE BOOKS

- 1. R. Ian Freshney and R. Alan. (1987). Culture of Animal Cells. Liss. Inc.
- 2. G. Shanmugam. (1988). Cell Biology: A Laboratory Manual. Macmillan Publications.
- 3. Razdan. (2003) Methods in plant tissue culture
- 4. Jha & Ghosh. (2005). Plant tissue culture: Basic and applied. Orient Blackswan Publishers
- 5. Gamborg., O. and Phillips, G.(1995) .Plant cell, Organ & tissue culture. Springer Lab Manuals
- 6. J. Sambrook, E. F. Fritsch & T. Maniatis. (1989). Molecular cloning: A laboratory Manual. Cold Spring Harbour Laboratory.
- 7. Benson H. J. Microbiology Applications (A Laboratory Manual in General Microbiology), Wm C Brown Publishers.
- 8. Cappuccino J.G. and Sherman N., A Laboratory Manual, Addison-Wesley.
- 9. Pandey, A.: Handbook of plant-based biofuels. In CRC Press, New York, 2009, 297 p. ISBN 978-1-56022-175-3

B.Sc. Biotechnology-Syllabus	2017-18
SEMESTER V	
VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS] ENVIRONMENTAL STUDIES (VALUE EDUCTION II)	62

PLANT BIOTECHNOLOGY

: Core V **Total Hours** : 75 Paper Hours/Week : 5 Exam Hours : 03 Credit : 5 Internal : 25 : 75 Paper Code : 17U5BTC05 External

PREAMBLE

To make students on exposing plants technically, so as manipulate them for the production of disease free, nutritive elite plant varieties. In addition candidates are exposed to the use of vector based engineering of plant genome for the generation of genetically modified plants and food products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about the historical development of plant tissue culture and basic tissue culture techniques and their principles	K1 & K2
CO2	Gaining knowledge on plant secondary metabolites and their role in defence mechanisms	K1 & K2
CO3	To acquire knowledge on the generation novel plant varieties by genetic manipulation strategies	K3, K4 & K5
CO4	Exposing towards the application of secondary metabolites in drug development and value added products	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S: Strong; M: Medium; L: Low

UNIT	CONTENT	HOURS
I	INTRODUCTION: Plant tissue culture history, Laboratory organization sterilization methods, media preparation, plant growth regulators. Applications of crop improvement in agriculture, horticulture and forestry.	12
II	PLANT TISSUE CULTURE TECHNIQUES: Micropropagation, Callus induction. Cell culture techniques, Protoplast culture and fusion. Organogenesis and somatic embryogenesis. Haploid production of plants (Anther, Pollen and embryo cultures).	12
III	PLANT SECONDARY METABOLITES: Basic biosynthesis pathway of auxins and cytokinins. Role of secondary metabolites in plant defence. Plant genome organization (Chloroplast and mitochondria), Agrobacterium mediated gene transfer (Ti plasmid and Ri plasmids) methods in plants.	18
IV	GENETIC ENGINEERING IN PLANTS: Selectable markers, Reporter genes and promoters used in plant vectors. Development of Insect resistant, Herbicide resistant and virus resistant plant varieties. Production of antibodies and viral antigens in plants. Biodegradable	18
V	APPLICATIONS OF PLANT SECONDARY METABOLITES: isolation and characterization – drug development. Production of Biopesticides and Biofertilizers. Development of value added plant products (Saline tolerance & Delayed fruit ripening). Cytoplasmic Male sterility (CMS).	15

SUGGESTED READINGS:

- 1. Plant Biotechnology: An introduction to genetic engineering by Adrian Slater, Nigel W. Scott, Mark R. Fowler. Oxford University, Press, 2008.
- 2. Biochemistry and Molecular Biology of Plants. Bod Buchananm Wilhelm Gruissem, Russell Jones. John Wiley & Sons, 2002.
- 3. Molecular Biotechnology by Glick, B.R. and J.J. Pasternak. Scond Edition, ASM press, Washington, 1998.
- 4. Plant propagation by tissue culture: volume 1 & 2. E.F George. Exegetics Limited, 1999.
- 5. Natural products: A laboratory Guide by Raphael Ikan, Academic press, 1991.
- 6. Chemistry of Natural products by sujatha V. Bhat, Bhimsen A. Nagasampagi, meenakshi Sivakumar. Birkhausr, 2005.
- 7. An introduction to plant tissue culture by MK Razdan. M.K. 2003. Oxford & IBH Publishing Co, New Delhi, 2003.
- 8. Plant tissue culture by Bhojwani, S.S and Razdan, M.K. 2004.
- 9. Phytochemical Methods: A guide to Modern Techniques of Plant Analysis by J.B. Harborne. Springer, 1998.
- 10. Plant cell culture, A practical approach, 2nd Edition, Edited by R.A. Dixon and R.A. Gonzales.

MODEL QUESTION PAPER (PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: PLANT	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	17U5BTC05	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS										
1. Who is the father of tissue culture?										
a. Bonner b.Haberlandt		dt	c Laibach			b. Gautheret				
2.The growth of plant tissues in artificial media is called										
a. Gene expression		1	b. Transgenesis			c. Plant tissue culture		ture	d. Cell hybridization	
3.Ais an excised piece of leaf or stem tissue used in micropropagation.										
a.Micro shoot		b	b.Medium			c.Explant			d.Scion	
4.Cellular totipotency is the property of										
a. Plant b. Ani		imal			c. Bacteria			d. All of these		
5. In plant tissue culture, what is the term ORGANOGENESIS means?										
a. Formation of callus culture			b. Formation of root shoot from callus cult					an	d. None of the above	
6. In a cell, protoplast consists the following EXCEPT										
a. Cell wall			b. Cell membrane		e	c. Nucleus		d.	d. Cytoplasm	
7.In a callus culture										
a. Increasing level of cytokinin to a callus induces shoot formation and increasing level of auxin promote root formation		b. Increasing level of auxing callus induces shoot formation and increasing level of cytokinin promoteroot formation		ng	c. Auxins and cytokinins are not required			Only auxin is required for root and shoot formation		
8. The phenomenon of the reversion of mature cells to the meristematic state leading to the formation of callus is known as										
a. Redifferentiation b.		. Dedifferentiation		c. either (a) or (b)		(b)	d. none of these			
9. T-DNA transfer and processing into plant genome requires products of which of the following genes?										
a. vir A,B	a. vir A,B b. vir G,C		vir G,C	c.vir D,E			d.	All the above		

Neomycin	ving are used as selection marker for b. Streptomycin phosphotransferase	c. Hygromycin	d. Any of the above
phosphotransferase		phosphotransferase	
11. Which technique is	used to introduce genes into dicots?		
	LLEGE OF ARTS AND SCIENCES FOR WOMEN		

a. Electroporation	b. Particle acceleration	c. Microinjection		d. Ti plasmid infection			
12. Genome is	12. Genome is						
DNA chloroplast DNA Mitochond				Mitochondrial DNA +			
13. The process of express	Chloroplast DNA 13. The process of expression of foreign genes in a plant is called						
a. Gene expression b. Transgenesis c. Genetic transformation d. Cell hybridization							
14. Which of the following is considered as a visual marker?							
a. Antibiotic marker							
15 Name the first transge	15. Name the first transgenic virus resistant plant?						
a. Rice					Tomato		
16. Which of the following is supplemented with vitamin A in order to improve its nutritional quality?—							
a. Cotton b. Potato c. Tomato d. rice							
17. Which of the followin	g is NOT the class of secon	ndary meta	bolite?				
	a. Amino acid b. Terpenes c. Phenolics d. alkaloids						
18. Name the class of sec	18. Name the class of secondary metabolites which is characterized by the presence of the hydroxyl						
	group with an aromatic ring?						
a. Glycosides	b. Phenolics				d. Terpenes		
	lla is used as biofertilizer as it has zobium b. Cyanobacteria c. Mycorrhiza d. Large quantity of						
a. Rhizobium	b. Cyanobacteria	Mycorrhiza d. Large quantity of humus					
20. Which sterility is exploited in hybrid seed production?							
20. Which sternity is expi							
a.Male genetic sterility	male	nale c. Cytoplasmic sterility		d. Genetic			
SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS							
21. A) List out the types of media. (OR)							
B) Mention about auxin.							
22. A) Write note on callus induction. (OR) B) Explain embryo culture.							
23. A) Briefly discuss particle bombardment. (OR)							
B) Biosynthesis pathway of cytokine-explain.							
24. A) What is called selectable marker? Explain with two examples. (OR)							
B) Write note on virus resistance.							
25. A) Explain about saline tolerance. (OR) B) Briefly explain Cytoplasmic male sterility.							

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

- 26. Illustrate on the application of crop improvement in agriculture, horticulture and forestry.
- 27. Explain protoplast isolation, culturing and fusion.
- 28. Draw and explain agrobacterium mediated gene transfer.
- 29. Write note on genetic engineering in plants.
- 30. Describe about isolation and characterization of secondary metabolites.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ANIMAL BIOTECHNOLOGY

Paper : Core VIII **Total Hours** : 75 Hours/Week : 5 **Exam Hours** : 03 Credit : 5 Internal : 25 Paper Code External : 75 : 17U5BTC06

PREAMBLE

To make students on understanding the concepts of biotechnological approaches in animals so as to produce therapeutically products from animal systems.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understanding the development of animal cell culture techniques and basic concepts of cell lines	K1 & K2
CO2	Gain knowledge on cell culture, animal cell growth dynamics	K1 & K2
CO3	Manipulating animal cell for genetic improvement by modern recombinant techniques	K3 & K4
CO4	Knowing about the principles of ethical, legal and public issues on using genetically animals in producing value added products	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction and history of animal cell culture development. Types of cell culture methods (Primary & secondary). Animal Cell lines (Primary & Continuous cell lines). Suspension culture and organ culture. Culturing of lymphocytes, epithelial cells & stem cells.	15

п	Basics of cell culture: Different types of animal cell culture media, growth supplements serum free media, Balanced salt solutions. Behaviour of cells in culture cell division, Cell growth kinetics, Metabolism and estimation of cell number.	15	
Ш	Gene transfer methods in animals: Microinjection, Embryonic stem cell gene transfer, Retroviral gene transfer. Transgenic animals (Production of transgenic Mice, Cow and Sheep). Animal viral vectors (SV40 virus and Retro virus). Baculo virus expression system. Improvement of silk production and quality.	15	
IV	Animal Propagation and health care: Artificial insemination, Embryo transfer techniques. Gene therapy and its types. Production and development of animal vaccines for FMD, BTD, Rabbies and anthrax.	15	
v	Public aspects if Animal Biotechnology: Ethical issues in Animal Biotechnology, Management aspects of Biotechnology and Genetic Engineering. Manipulation of animal growth using hormones and probiotics. Manipulating lactation and wool growth in sheep and rabbits.	15	

SUGGESTED READINGS:

- 1. Portner R. Animal Cell Biotechnology: Methods and Protocols, Second Edition, Humana Press, 2007.
- 2. Babink L.A. and Philips J.P. Animal Biotechnology, Comprehensive Biotehcnology First Supplement, Pregamon press, Oxford, 1989.
- 3. Rossant J. and Pederson R.A. Experimental approaches to Mammalian Embryonic Development, Cambdrige University Press, Cambridge, 1996.
- 4. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.
- 5. Lewis R. Human Genetics: Concept and applications. McGraw Hill Company, 2003.
- 6. Barrer JSF, Hammond K, McClintok AE, Eds., Future Developments in the Genetic improvements of Animals. Academic Press, 1992.
- 7. Freshney R.L. Animal Cell culture A practical approach, IRL press, 1992.
- 8. Freshney R.L. Culture of animal cells: A manual of basic technique and specialized applications. 6th Edition, Wiley and Blackwell publications, 2010.
- 9. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.

MODEL QUESTION PAPER (ANIMAL **BIOTECHNOLOGY**)

NAME OF THE COURSE: ANIMAL	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	17U5BTC06	
MAX MARKS: 75		

SECT	ION – A	(1 X 20	0 = 20 MA	RKS)	ANS	WER ALL THE	OU	ESTIONS
The growth of animal cells in vitro in a suitable culture medium is called?								
a. LB medium b.		b. MS	medium		c. NITCH's medium d. MEM		d. MEM medium	
2. Who introduced HAT medium?								
a. Littlefield		b.	Ham		c.	Amold	(d. Rous and Jones
3. Name the to organism			_	pared	by in	oculating directly	fro	m the tissue of an
a. Primary cell cu	lture	b. Seco	ondary cell	l cultu	re	c. Cell lines		d. Transformed cell culture
4. What is ce	ll line?							
a. Multilayer culture	b. Tra	ansform	ed cells		Iultip cells	le growth of	d.	Sub culturing of primary culture
5. Which of t	he follow	ing is N	OT the pa	art of g	growt	h medium for ani	mal	culture?
a. Starch	b. Se	erum		c. Ca	rbon	source		d. Inorganic salts
6. Which of t	he follow	ing is N	OT the m	ajor fu	inctio	on of the serum?		
a. Promotion and bulb		n	b. Stimulate cell c. Enhance growth cell attachn		transport			
7. For culturi	ng, plasm	a from	the adult c	hicke	n is p	referred to mamn	nalia	an plasma because
a. It forms a c solid coaş after dilut	gulum eve	en	b. It is too opaque c. It doesn't produce solid clot			d. It forms a semi solid coagulum		
8. Disaggrega	ating of c	ells can	be achieve	ed by				
a. Physical disruption		o. Enzyr dige:		c.	Treat	ing with chelatin	g	d. All the above
9. The technic	que of or	gan cult	ure may b	e divid	ded or	n the basis of emp	ploy	ring
a. solid medium b. liquid medium c. semi-solid medium d. both (a) and (b)								
10. What are	the main	constitu	ients of cu	lture f	or an	imal cell growth	?	1
a. Glucose and Glutamine b. Growth factors c. Cytokines d. All of the above								
11. In animal	cell cultu	ıre, part	icularly m	amma		cell culture, transf	forn	nation means:

a. Uptake of new gen material	modi	otypic fications of in culture	c. both (a) and (b)	d. Releas	se of genetic ion
-	investigation, this	is found that			
a) Ethyl alcohol is being produced in excess	bably wrong with b) The cells ha much oxyge	ve too	c) Glycolysis being inhib	oited	d) The cells do not have enough oxygen
13. Sometimes cell li	nes can be cultured b-cultured indefinition				
a) established cell	b) primary		c) second		d) propagated cell lines
14. Higher dissolved	oxygen concentrat	ion in the cul		toxic and	
a) DNA degradation	b) lipid per oxidation		metabolism is gre	ater d) all of the above
15. Which of the fol	lowing is the techn		•	lture?	
a) Organ cultures on plasma clots	b) Organ cultu	ures on	c) Whole embryo cultur) All of these
16. The major proble		the isolation	of free cells ar	nd cell ag	gregates from
organs is that of - a) releasing the cells from their supporting matrix	b) inhibiting the c		c) disintegrating cells from the		none of the above
17. The technique of	organ culture may	he divided o	supporting mann the basis of e		
-	liquid medium		(a) and (b)	1 .	ni-solid medium
18. An established ce	Il line can be called	d where it ha	s been sub-cult	ured at le	ast?
a) 70 times at an interval of 3 days between subcultures	b) 40 times at an i days between s		c) 70 times at an interval of 1 d between	ay	50 times at an interval of 3 days between
19. In animal cell cul	ture, particularly n	nammalian qe	subcultures ell culture, tran		subcultures n means
a) Uptake of new	b) Phenotypic		c) both (a)and	•	Release of
genetic material 20. Which of the foll	modification in		(b)		genetic information
	Carrel flask culture	1	est tube culture		herent primary Iture
SECTION –	B (5 X 5 = 25 MA)	RKS) ANSW	VER ALL THE		
21. A) Write notes abo	out primary cell cu	lture techniqu	ues.		(OR)
B) Explain the technique	es and application	in organ cult	ture.		
22. A) Write a detailed	account on differe	nt types of m	nedia used in ar	nimal cell	culture. (OR)
B) Explain the behavi	our of cell division	and cell kin	etics.		

23. A) Explain the principle and methodology of PCR Techniques (OR)

-B) Give detailed account of the mechanism application of Microinjection

-24. A) Explain the principle, methodology and application of embryo transfer technology (OR)

-B) Write detailed about production and development of animal vaccines.

-25. A) Explain various strategies of ethical issues in Animal Biotechnology. (OR)

B) Discuss about a special features and applications of Stem cell culture.

	SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26.	Write a detailed account on Animal cell culture Steps and maintenance?
27.	Explained in detail about the Animal cell culture Media and Balanced salt solutions?
28.	Describe about the Gene Transfer Techniques in Detail?
29.	Production and development of Animal vaccines with Good examples?
30.	Explain about cancer Gene therapy and Stem cell in detail?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN PLANT BIOTECHNOLOGY

Paper : CORE PRACTICAL V **Total Hours** : 75 Hours/Week : 5 **Exam Hours** : 03 Credit Internal : 40 : 3 Paper Code : 17U5BTCP05 : 60 External

PREAMBLE

To make students familiar on basic plant tissue culture techniques and isolating plant pigment by chromatographic technique

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about basic aseptic conditions to be followed in plant tissue culture laboratory and preparing various tissue culture media	K1, K2 & K3
CO2	Micropropagation of explant for shooting and rooting and to isolate protoplast from plant cells	K4, K5, & K6
CO3	Extraction of plant pigments by column chromatography	K4 & K5
CO4	Exposing them in preparing synthetic seeds and its preservation	K4 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Plant genomic DNA	5
2	Sterilization of performance of aseptic condition in plant tissue culture lab	5
3	Preparation of MS media	10
4	Establishment of seed germination from carrot seeds	5
5	Establishment of shoot tip culture using MS media	10

6	Establishment and maintenance of callus culture	10
7	Micro propagation of callus culture (Shoot & Root systems)	10
8	Isolation of protoplast (Enzymatic method)	5
9	Extraction & separation of Plant pigments (Chlorophyll A & B) Column chromatography	10
10	Preparation of synthetic seeds	5

MODEL QUESTION PAPER (LAB IN PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN PLANT BIOTECHNOLOGY	COURSE CODE: 17U5BTCP05	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMEN	T		
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS
1. (i) Isolate plant g	enomic DNA from the g	given plant sample (A)	(OR)
(ii) Perform shoot ti	p culture from the given	explant sample (A)	(OR)
(iii) Perform callus	induction from the giver	n explant (A)	
MINOR EXPERIMEN	T		
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS
2. (i) Isolate protop	last from the given plant	mesophyll tissue sample	e (B) (OR)
(ii) Prepare synth	etic seeds from the give	n plant seed sample (B)	(OR)
(iii) Separate chlo	prophyll pigments from	the plant leaf extract san	nple (B) by appropriate
method			
SPOTTERS		(5 X ·	4 = 20 MARKS)
3. Identify the given	spotters C, D, E, F & G	and comment on them	
RECORD $(1 \times 5 = 5 \text{ MARKS})$			$\overline{S} = 5 \text{ MARK} \overline{S}$
VIVA-VOCE 5 MARKS			5 MARKS
TOTAL			60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN ANIMAL BIOTECHNOLOGY

Paper : CORE PRACTICAL VI **Total Hours** : 75 Hours/Week : 5 Exam Hours : 03 Credit : 40 : 3 Internal Paper Code : 17U5BTCP06 : 60 External

PREAMBLE

To make students familiar on basic animal tissue culture techniques and handling of animal cell lines and its establishment.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about basic aseptic conditions to be followed in animal tissue culture laboratory and preparing various tissue culture media	K1, K2 & K3
CO2		K4, K5, & K6
CO3		K4 & K5
CO4		K4 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of genomic DNA from animal tissues	5
2	Culturing of chick embryo fibroblast cells (Preparation of monolayer)	5
3	Disintegration of animal tissues using trypsin (trypsinization)	10
4	Viability test and cell counting	5
5	Preparation of animal cell culture media	10
6	Preparation and sterilization of BSS & DMEM	10

7	Single cell suspension culture	10
8	Inoculation and cultivation of animal viruses in embryonated egg (Ave)	5
9	Sterilization of animal cell culture media by membrane filtration technique	10
10	Observation & Characterization of Different types of cell lines (MCF-7, HEP G-2, HeLa & Vero)	5

MODEL QUESTION PAPER (LAB IN **ANIMAL BIOTECHNOLOGY**)

NAME OF THE COURSE: LAB IN ANIMAL BIOTECHNOLOGY	COURSE CODE: 17U5BTCP05	DURATION: 6 Hrs
MAX MARKS: 60	1,00010100	

MAJOR EXPERIMEN	NT			
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS	
1. (i) Isolate plant g	genomic DNA from the g	given animal tissue samp	ole (A) (OR)	
(ii) Perform chick e	embryo fibroblast culture	from the given embryo	sample (A) (OR)	
(iii) Determine the	viability of the given sus	spension culture sample ((A) and total number of	
cells.				
MINOR EXPERIMEN	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform singl	le cell suspension culture	of the given tissue samp	ole (B) (OR)	
(ii) Inoculate the	(ii) Inoculate the given infectious sample (B) in the given embryonated egg by appropriate			
route	(OR)			
(iii) Disintegrate	the given monolayer sar	mple (B) by appropriate	enzymatic method	
SPOTTERS		`	4 = 20 MARKS)	
3. Identify the given spotters C, D, E, F & G and comment on them				
RECORD		(1 x 5	5 = 5 MARKS	
VIVA-VOCE			5 MARKS	
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE I

BIOPROCESS TECHNOLOGY

Paper	: ELECTIVE I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 17U5BTE01	External	: 75

PREAMBLE

To make students on understanding basic principles of fermentation techniques and applying them in the production value added products such as antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of fermentation principles and its scope in	K1 & K2
	downstream processing	
CO2	Understand the concepts of designing fermentor both in laboratory	K1, K2 & K3
	and pilot scale and its mode of operation	
CO3	Gaining added information on the production of value added products	K4, K5 & K6
	from microorganisms	
CO4	Propagate mass production of agriculturally important value added	K4, K5 & K6
	products	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	S	S	S	M	S
CO3	S	S	S	M	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	BASICS OF BIOPROCESS TECHNOLOGY: Introduction,	
	Definition, Scope and applications of Bioprocess. Introduction to	
	fermentation and downstream processing technology. Isolation and screening of industrially important microorganism. Strain improvement, preservation of microorganisms.	15

II	DESIGN OF FERMENTOR: Fermentation types. Design of fermentor – parts and its functions. Types of Bioreactors (Air lift, cyclone, column, packed tower) Mixed bioreactor systems. Monitoring and controlling Bioreactors (pH, temperature and dissolved oxygen), Instrumentation for process control - Heat and mass transfer, oxygen transfer mechanism.	13
III	bown stream processing – microbial cell disruption methods (Centrifugation, filtration fermentation broths). Cell separation techniques (Ultra filtration, Liquid-Liquid extraction) Chromatographic techniques: (Column & Ion exchange), Physical methods (Distillation, Fluid extraction and Electro dialysis).	15
IV	INDUSTRIAL BIOTECHNOLOGY: Microbial synthesis and applications – organic acids (Citric acid & acetic acid), Enzymes (Amylase), Antibiotics (Penicillin & Streptomycin), Vitamins (ascorbic acid & B12) an amino acids (Lysine & Aspartic acid).	17
V	PRODUCTION OF AGRICULTURAL PRODUCTS: Importance of micro algae and its cultivation (<i>Spirullina & Chlorella</i>). Mass production of Biofertilizer (<i>Rhizobium & Azolla</i>). Mushroom cultivation (Milk and button mushroom). Production and applications of Biopesticide (<i>Bacillus thuringiensis</i>).	15

SUGGESTED READINGS:

- 1. Peppler H.J. and Perlman D. 2006. Microbial Technology: Microbial Processes, 2nd Edition, Vol I, Academic Press
- 2. Stanbury F, Whittaker A and Hall J.S. 1997. Principles of Fermentation Technology, Adithya Books, New Delhi.
- 3. Jogdand S.N. 2000. Medical Biotechnology, Himalayan Publishing House.
- 4. Jayanto A. 2006. Fermentation Biotechnology, Dominant Publishers and Distributors, New Delhi.
- 5. Cassida J.R. 2005. Industrial Biotechnology, New Age International (P) Ltd, New Delhi.
- 6. Juan A and Senjo A. 2007. Separation Process Biotechnology, Taylor & Francis group.
- 7. Patel A.H. 1997. Industrial Microbiology, Macmillan India limited.
- 8. Glazer A.N. and Nikaido, H. 2007. Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd Edition, Cambridge University Press.
- 9. Prescott C and Dunn G. 2006. Industrial Microbiology, Agrobios (India).
- 10. Purohit S.S. Saluja A.K. and Kakrani H.N. 2004. Pharmaceutical Biotechnology. 1st Edition, Agrobios (India).

MODEL QUESTION PAPER (BIOPROCESS **TECHNOLOGY**)

NAME OF THE COURSE: BIOPROCESS TECHNOLOGY	COURSE CODE: 17U5BTE01	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	$N - A (1 \times 20 = 20)$	MARK	KS) A	NSWER ALL	THE O	UES	TIONS
1. Fed batch process belong to							
a. Closed system	b. Continuo system	b. Continuous system		c. Intermediate fed batch system			d. Discontinuous system
2. Soyameal, peptone and tryptone are used as the source of							
a. Carbon	b. Carbon & nit	rogen		c. Minera	1	(d. Nitrogen
3. Batch sterilizati	on cycle time consi	sts of -					
a. Two phases	b. Three phase	es	С	. Four phases	(l. Fi	ve phases
4. Protected ferme	ntation uses which	of the g	given	below			
a. Sterilized media	b. Pasteurized media		c. Pas	teurized media		l. Uı	nsterilized media
5. A spray dryer w	orks on the princip	le of			•		
a. Contact drying	b. Sublimatio	n	С	. Lyophilisatio	n	d.	Adiabatic drying
6. Which is not a f	ruit or a vegetable	based fo	erme	nted product?	I		
a. Wine	b. Beer			c. Vinegar			d. Sauerkraut
7. Which of the fo	llowing is an upstre	eam pro	cess	?			
a. Product	b. Product			c. Media			d. Cell lysis
recovery	purifica			formulation			
	ter is related to						
a. Endotoxin	b. O-polysacc			c. Peptidogly	can		e. Teichoic acid
9. Which one is do	wn steaming proce						
a. Product recovery	b. Screening	c. I	Medi	a formulation	d.	Steri	lization of media
10. Which is the fo	ollowing is not a ph	ysical ı	meth	od for the cells	rupturin	g?	
a. Milling b. I	Homogenization	c. U	ltra s	onication	d.	Enz	ymatic digestion
11. Ethanol fermentation is carried by							
a. Lactobacillus b. E.coli c. Saccharomyces cerevisiae d. Bacillus sp.					d. Bacillus sp.		
12. What is the pe	rcentage range of v	ariation	n in re	ecovery costs?			
a. 50-55%	b. 0-20%			c. 5-7%			d. 15-75%
13. Cell lysis beco	mes an important o	peratio	n if t	he product is -		1	
<u> </u>		7	24				

		b. Heat labile		d. Intra cellular	
	14 Bacillus thuring	iensis is used as			
			c. Microbicidal agent	d. Rodenticide	
		ood sources of	_		
a.					
			ed in fermentation ranges		
	a. 10-18%	b. 20-30%	c. 4-5%	d. 30-38%	
	17. The protein found			,	
	a. Rennin	b. Pepsin	c. Casein	d. Trypsin	
	18. Spirullina is a				
		b. Bio fertilizer	c. Biopesticidal	d. Single cell protein	
	19. What is the scien	tific name of mushroon	n?		
a.				stris d. Fergus sp.	
	20. Agar-Agar is obt				
	a. Diatoms	b. <i>Gracilaria</i>	c. Fomes	d. <i>Laminaria</i>	
	,				
			ANSWER ALL THE Q	UESTIONS	
		e and application of bid	pprocess technology	(OR)	
	B) Write notes or	strain improvements			
	22. A) Explain about	airlift bioreactors		(OR)	
	· •	acked tower bioreactor	with its uses.	, ,	
	23. A) Briefly mention	on the principles and us	ses of centrifugation	(OR)	
	B) Elaborate on cell separation techniques				
	24. A) List out the application of amylases (OR)				
		production and applicat			
	, ,	importance of bio fertil		(OR)	
		hrooms? Explain its cu			
	SECTION	$C (3 \times 10 - 30 \text{ MAE})$	RKS) ANSWER ALL TH	JE OHECTIONS	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

- 26. How will you develop an improved strain through recombination technique?
- 27. Illustrate the criteria for design of fermenters and specify its functions.
- 28. Explain basic principles of down streaming process
- 29. Explain the large scale production of penicillin and state its uses.

30. Describe the production and application of <i>Bacillus thuringiensis</i> .				

SBEC – III

LAB IN BIOINFORMATICS

: SBEC III **Total Hours** : 30 Paper Hours/Week : 2 **Exam Hours** : 03 : 2 Credit Internal : 25 Paper Code : 17U5BTS03 External : 75

PREAMBLE

To make students on understanding basic principles of biological soft wares and their usage for generating molecular and genetic databases of living organisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

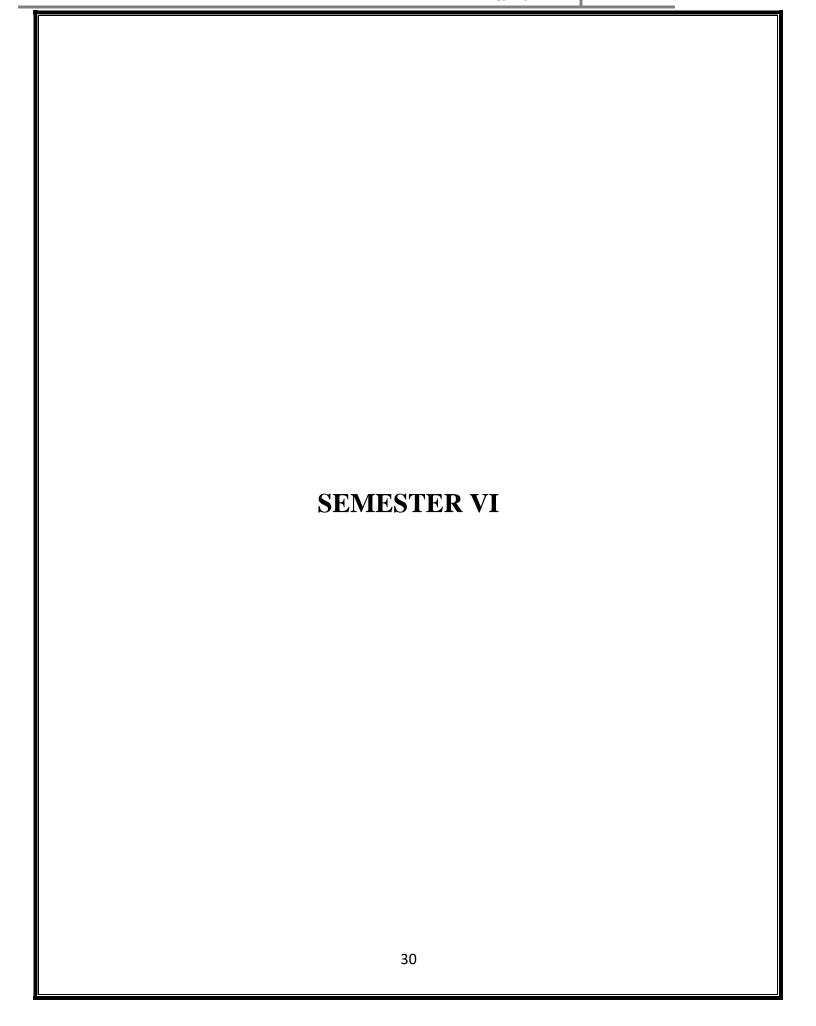
COs	Outcome	CPD
CO1		K2, K3, K5 & K6
	computational genomics and proteomics	
CO2	To acquire knowledge on the usage of biological software on	K2, K3, K5 & K6
	generating databases both online/offline	
CO3	To understand the existence of globally available online soft	K2, K3, K5 & K6
	wares and databases for nucleic sequence retrieval	
CO4	To understand the usage and deposition of sequences in to	K2, K3, K5 & K6
	globally available structural databases	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

Exp.	TITLE	HOURS
No		
1	Biological Databases with reference to Expasy and NCBI	2
2	Query finding based on biological databases	2
3	Sequence similarity searching using BLAST	3
4	Pairwise alignment	2
5	Multiple Sequence and Phylogenetic Analysis	3

B.Sc. Biotechnology-Syllabus **2017-18**


6	Gene Prediction	3
7	Protein Structure prediction (Secondary and tertiary)	3
8	Homology Modeling Using Modeller	3
9	Protein- Ligand docking	2
10	Program to store a DNA sequence in NCBI: Bankit	3
11	Program to convert DNA to RNA/Protein	2
12	Program to find ORF	2

MODEL QUESTION PAPER (LAB IN **BIOINFORMATICS**)

NAME OF THE COURSE: LAB IN BIOINFOMATICS	COURSE CODE: 17U5BTS03	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 10	Obs: 5	Res: 5	Total 20 MARKS	
1. (i) Ret	rieve the gene sequence f	rom GenBank (A)	(OR)	
(ii) Fin	nd out the given query sec	quence (A) by BLAST ar	nalysis (OR)	
(iii) Fi	nd out ORF in the given	sequence sample (A)		
MINOR EXP	PERIMENT			
Exp: 8	Obs: 4	Res: 3	Total: 15 MARKS	
2. (i) Reta	rieve the protein structure	e of haemoglobin (B)	(OR)	
(ii) Per	form Phylogenetic Analy	sis for the given organis	sm(A) (OR)	
(iii) Fi	nd out the RNA sequence	e from the given DNA se	quence (B)	
SPOTTERS			(5 X 4 = 25 MARKS)	
3. Identify	the given spotters C, D,	E, F & G and comment of	on them	
RECORD $(1 \times 5 = 5 \text{ MARKS})$				
VIVA-VOCE	1		5 MARKS	
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

NANOBIOTECHNOLOGY

Paper : CORE VII **Total Hours** : 75 Hours/Week : 5 **Exam Hours** : 03 : 5 : 25 Credit Internal Paper Code : 17U6BTC07 External : 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know basic concepts of nanotechnology and nano materials	K1, K2 & K3
CO2	Know the concepts of fabrication of bio molecular structures	K3 & K4
CO3	Develop miniaturized nano elements	K3 & K4
CO4	Understand various applications of nanotechnology in the field medicine, health care and drug discovery	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT			
I	Nanobiotechnology: Definition, prospects and challenges; Topology of DNA, protein and lipids and self-assembly from Natural to artificial structures. Top up and bottom down approaches in nanomaterial fabrication.			
II	Nanomaterials and its properties: Carbon nanotubes and nanorods, Quantom dots, metal based nanostructures (Iron oxide nanoparticles), nanowires, polymer based nanostructures (dendrimers), Gold nanostructures (nanorods, nanocages, nanoshells), nanocomposites.			
III	Fabrication and Analysis of biomolecular nanostuructures: Atomic Force Microscopy, Scanning Probe Electron Microscopy and Lithography. Nanoscale detection: Lab on a Chip. Fabrication of bionanochip & microarray technology.			

IV	Miniaturized devices in nanobiotechnology: Types and applications; Nanobiosensors: different classes, molecular recognition elements (MRE), transducing elements, applications of MRE in nanosensing of different analytes.	15
V	Applications of Nanobiotechnology: Nanomedicine, Diagnosis and treatment of infectious diseases, cancer research and therapy, tissue engineering and regenerative therapy; Nanostructures in drug discovery & drug delivery.	15

SUGGESTED READINGS:

- 1. Nanobiotechnoogy: concepts, applications and perspectives. Christ of M. Niemayer, chad A. Mirkin, Wiley VCH publishers 2004.
- 2. Bionanotechnology: Lessons from Nature, David. S. Goodshell, Jhonwiley 2006.
- 3. Buddy, D.R. Allan, S.H. Frederick, J.S. and Jack, E.L. Biomaterials Sciences: An Introduction to Materials in Medicine. 2nd edition.
- 4. David, L.N. and Michael, M.C. (2006). Lehninger's principles of Biochemistry. 4th edition.
- 5. David, S. and Goodshell, J. (2006). Bionanotechnology: Lessons from Nature.
- 6. Molecular Design and Synthesis of Biomaterials. (2005). Biological Engineering Division, MIT Open Course Ware.

MODEL QUESTION PAPER (NANOBIOTECHNOLOGY)

NAME OF THE COURSE: NANO BIOTECHNOLOGY	COURSE CODE: 17U6BTC07	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A	$\frac{1}{1}$ (1 X 20 = 20 MARKS) A	ANSWER ALL THE	OUESTIONS		
SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS 1. Who first used the term nano biotechnology?					
	b. Richard Feynman		er d. Sumio		
2. 10 nm =m					
a. 10 ⁻⁸	b. 10 ⁻⁹	c. 10 ⁻⁷	d. 10 ⁻¹⁰		
3. The size of the na	no particles range from	nm			
a. 100 to 1000	b. 0.1 to 10	c. 1 to 10	d. 1 to 100		
4. Nano science can b	e studied with the help of				
a. Quantum mechanics	b. Newtonian mechanism	c. Macro dynamic	d. Geophysics		
5. The size of <i>E.coli</i>		nm			
a. 2000	b. 5000	c. 50	d. 90		
6. What does 'F' stand			1 2774		
a. Fine	b. Force	c. Flux	d. Front		
7. The two important	properties of nano substar	nces are	•		
a. Pressure and friction	b. Sticking and temperature	c. Sticking and friction	d. Temperature and friction		
8. 1 nanometer is =	-	Hietion	und metion		
		10-7	1 10-6		
a. 10 ⁻⁹	b. 10 ⁻⁸	c. 10 ⁻⁷	d. 10 ⁻⁶		
9. Protein-coding ge	nes can be identified by		•		
a. Transposons	b. ORF	c. Zoo -blotting	d. Northern		
tagging	scanning		analysis		
10. Nano particles tar	get thec	ausing cells and rem	ove them from blood		
a. Tumor	b. Fever	c. Infection	d. Cold		
11. The	to the ceramics are	e superior coating			
a. Nano particles	b. Nano power	c. Nano crystal coding	d. Nano materials		
12. Which one is used	12. Which one is used in electron microscope?				
a. Electron beams	b. Magnetic fields	c. Light waves	d. Electron beams and magnetic fields		

13. Electron microsc	ope can give a magnific	cation up to	
 a. 400,000x	b. 100,000x	c. 15000x	d. 100x
14. Which of these b	iosensors use the princi	ple of heat released or ab	sorbed by a reaction?
a. Potentiometric	b. Optical	e. Piezo-electric	f. Calorimetric
biosensor	biosensor	biosensors	biosensors
15. Biosensor made	up of	 	
A probe and a	b. A sensing layer	c. Transfer the pro	be
surface	and a transducer	molecule	
		d. of	
		thes e	
16. Which materials	are suitable for electrication		
a. PDMS		c. Glass	d. Polyethylene
		c. Glass	d. Torycuryrene
17. Which one is an			
a. Paclitaxol	b. Insulin c.	Polyethylene glycol	d. Poly glutamic acid
18. Which of the foll	owing co-solvents are u	ised to increase the solub	ility of a drug?
a. Ethanol	b. Sorbitol	c. Glycerin	d. All of these
19.The size of the RI	BCis	<u>_nm</u>	
50	b. 90	c. 20000	d. 5000
20. The width of a t	vnical DNA molecule	isnm	1
	b. 2	c. 5	
a. 1	D. 2	C. 3	d. 10
		S) ANSWER ALL THE (
	hallenges faced in the f note on nano material fa	ield of nano biotechnolog	gy?
,	naterials and its propert		
	tes on quantum dots		
23. A) Explain atomic	e force microscope		
_	scanning probe microso	=	
,	tes on types of biosenso		
_	olecular recognition ele Explain its discovery?	ments (MRE)	
B) Short notes on	<u> </u>		
, , , , , , , , , , , , , , , , , , ,		S) ANSWER ALL THE (QUESTIONS
26. Write the essay or	topology of DNA	,	
27. Explain the struct	ure and function nano to	ubes nanowires	
28. Write an essay on	micro array technology	and its applications	
29. Write an essay on	mode action of biosens	sors and application of bio	osensors
	cer research and cancer		

ENVIRONMENTAL BIOTECHNOLOGY

Paper	: CORE VIII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 17U6BTC08	External	: 75

PREAMBLE

This paper provides insight into environmental issues, relevant biotechnological concepts for facing environmental issues, available biotechnological applications in environmental issues, relevant policies. The course also tries to impart knowledge and skill in environmental biotechnology for sustainable development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To provide knowledge in environmental impacts in biotechnology	K1 & K2
CO2	To understand the concepts in various bioremediation techniques related environmental aspects	K2 & K3
CO3	To impart new thoughts about biotechnological applications on environmental issues	K3 & K4
CO4	To create awareness regarding the environmental policies for the improvement of environmental safety	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	M
CO2	S	S	S	S	S
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Biodiversity - definition, hot spots of Biodiversity, National Parks, Sanctuaries and Biosphere reserves, gene pool. Aquatic common flora and fauna in India - phytoplankton, zooplankton and macrophytes, terrestrial common flora and fauna in India - forests, endangered and threatened species.	15

Strategies for Biodiversity Conservation, cryopreservation, gene banks, tissue culture and artificial seed technology, new seed development policy 1988, conservation of medicinal plants. International conventions, treaties and protocols for Biodiversity Conservation.			
III	Bioremediation & Phytoremediation: Bio-feasibility, applications of bioremediation, Phytoremediation. Bio-absorption and Bioleaching of heavy metals: Cadmium, Lead, Mercury, Metal binding targets and organisms, Bio-absorption, metal - microbe interaction, Commercial biosorbents.		
Waste water Treatment: Biological treatment system (Oxidation ponds, aerobic and anaerobic ponds, facultative ponds, aerated ponds), Biological waste water treatment, activated sludge treatment, microbial pollution in activated sludge, percolating filters, waste water treatment by biofilms.		15	
V	Solid waste pollution and its management: Current practice of solid waste management, composting systems, vermicomposting, sewage treatment.	15	

SUGGESTED READINGS

- 1. Samit Ray and Arun K. Ray, Biodiversity and Biotechnology, New Central Book Agency (P) Ltd. (2007)
- 2. Pushpangadan P., Ravi K and V. Santhosh, Conservation and Economic evaluation of Biodiversity Vol.I& II (1997) Wealth of India CSIR, New Delhi.
- 3. An advanced text book of biodiversity. Principles and practice.By K. V. Krishnamurthy. Oxford and IBH company Pvt Ltd.
- 4. Biodiversity conservation: A Genetic Approach by S. Biswas. Oxford Book Company. 2007.
- 5. Alan Scragg. 1999. Environmental Biotechnology. Pearson Education Limited, England.
- 6. Jogdand, S. N. 1995. Environmental Biotechnology. Himalaya Publishing House, Bombay.
- 7. Technoglous, G., Burton, F. L. and Stensel, H. D. 2004. Wastewater Engineering-Treatment, Disposal and reuse. Metcalf and Eddy, Inc., TataMcGraw Hill, New Delhi.
- 8. De, A. k. 2004. Environmental Chemistry. Wiley Eastern Ltd. New Delhi.
- 9. Allsopp, D. and Seal, K. J. 1986. Introduction to Biodeterioration. ELBS/Edward Arnold, London.
- 10. Athie, D and Ceri, C. C. 1990. The use of Macrophytes in Water Pollution Control, Pergamon Press, Oxford.
- 11. Chin, K. K., and Kumarasivam. K. 1986. Industrial Water Technology Treatment, Reuse and Recycling. Pergamon Press, Oxford.

MODEL QUESTION PAPER (ENVIRONMENTAL BIOTECHNOLOGY)

NAME OF THE COURSE: ENVIRONMENTAL BIOTECHNOLOGY		COURSE CODE: 17U6BTC08	DURATION: 3 Hrs		
MAX MARKS: 75		17C0D1C00			
SECTION	$-A (1 \times 20 = 20 \text{ MARK})$	L S) ANSWER ALL THE Q	UESTIONS		
1. Phytoplanktons provide food to					
a. Whales	b. Shrimp	c. Snails	d. All the above		
World		refers to biologicall			
a. 15			45		
	s of the Himalayas forming				
a. Indomalaya ecozo		one c. Indo-Burma	d. Sundaland		
	N), as categorized by	T ====			
a. LC	b. IUCN	c. VU	d. CR		
		al geographical area of the			
a. 4.7	b. 7.7	on of habitats and ecosystem c. 5.7	d. 6.7		
		plated by the ministry of			
a. Science and technology b. Agriculture c. External affairs d. None of the above					
7. The Convention o		for signature at the Earth s	summit in		
a. 5 th June 1992 b. 5 th August 1992 c. 5 th June 1995 d. 5 th August 1995					
8. The Cartagena Prowas adopted in	-	Convention, also known a	s the Biosafety Protocol,		
a. January 2000	b. February 2000	c. March 2000	d. June 2000		
9. Arsenic contamina	ation in soil is recovered b	y			
a. Bioleaching b	c. Phytoremediation c.	Bioremediation d.	Bio feasibility		
10. Heavy metal toxicity increases the production ofthereby decreasing the antioxidant Systems					
a. ROS b.	. Hydrogen ions	c. Organic nutrients	d. Oxygen		
11is defined as the removal of metal or metalloid species, compounds and particulates from a solution by low cost biological materials					
a. Bioleaching	b. Bioremediation	c. Biosorption	d. Phytoremediation		
12. Algae are of special interest in search for and the development of new biosorbents materials due to their and their ready availability in practically unlimited quantities in the seas and oceans					
a.High filtration capacity	b. High reflection capacity	c. High Adsorption capacity	d. High sorption capacity		

a. CO ₂ b. Ammonia c. Nitrate d. All the abo 14. Laggons are also called a. Aerobic ponds b. Oxidation ponds c. Facultative ponds d. Aerated ponds 15. The activated sludge process is a type of wastewater treatment process treating sewage or industrial wastewaters using aeration and a biological floc composes bacteria and				
a. Aerobic ponds b. Oxidation ponds c. Facultative ponds d. Aerated ponds 15. The activated sludge process is a type of wastewater treatment process treating sewage or industrial wastewaters using aeration and a biological floc compose bacteria and				
15. The activated sludge process is a type of wastewater treatment process treating sewage or industrial wastewaters using aeration and a biological floc composed bacteria and				
treating sewage or industrial wastewaters using aeration and a biological floc composed bacteria and				
a. Viruses b. Fungi c. Helminthes d. Protozoa 16. Research performed at the Division of Environmental Microbiology has over the last years resulted in the isolation of with efficient nutrient removal properties a. Comamonas b. Brachymonas c. Aeromonas d. All the all denitrificans hydrophila 17. Which of the following is Not common, and generally not successful because of high capit technical, and operation costs, high moisture content in the waste, and high percentage of inerts? a. Incineration b. Land filling c. Source reduction d. Composting 18. Which of the following is NOT a component of bio compost? a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is				
resulted in the isolation of with efficient nutrient removal properties a. Comamonas b. Brachymonas c. Aeromonas denitrificans 17. Which of the following is Not common, and generally not successful because of high capit technical, and operation costs, high moisture content in the waste, and high percentage of inerts? a. Incineration b. Land filling c. Source reduction d. Composting 18. Which of the following is NOT a component of bio compost? a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is a. Eisenia foetida Lumbricus terrestris c. Oxygen d. Hydrogen 19. The most common worms used in composting systems, red worms feed most rapidly at temperatures of a. 10–25 °C b. 15–20 °C section B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity (OR) B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
a. Comamonas denitrificans denitrificans denitrificans hydrophila 17. Which of the following is Not common, and generally not successful because of high capit technical, and operation costs, high moisture content in the waste, and high percentage of inerts? a. Incineration b. Land filling c. Source reduction d. Composting 18. Which of the following is NOT a component of bio compost? a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is a. Eisenia foetida Lumbricus terrestris Lumbricus rubellus 20. The most common worms used in composting systems, red worms feed most rapidly at temperatures of a. 10–25 °C SECTION B. (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
17. Which of the following is Not common, and generally not successful because of high capit technical, and operation costs, high moisture content in the waste, and high percentage of inerts? a. Incineration b. Land filling c. Source reduction d. Composting 18. Which of the following is NOT a component of bio compost? a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is				
technical, and operation costs, high moisture content in the waste, and high percentage of inerts? a. Incineration b. Land filling c. Source reduction d. Composting 18. Which of the following is NOT a component of bio compost? a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is a. Eisenia foetida Lumbricus terrestris Lumbricus rubellus 20. The most common worms used in composting systems, red worms feed most rapidly at temperatures of a. 10–25 °C SECTION B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species (OR) B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
a. Incineration b. Land filling c. Source reduction d. Composting 18. Which of the following is NOT a component of bio compost? a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is a. Eisenia foetida				
18. Which of the following is NOT a component of bio compost? a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is a. Eisenia foetida Lumbricus terrestris Lumbricus rubellus 20. The most common worms used in composting systems, red worms feed most rapidly at temperatures of a. 10–25 °C SECTION B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation C) C				
a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is a. Eisenia foetida Lumbricus terrestris Lumbricus rubellus 20. The most common worms used in composting systems, red worms feed most rapidly at temperatures of a. 10–25 °C SECTION B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
19. The most common eath worm used for vermicomposting is a. Eisenia foetida C. Tubellus 20. The most common worms used in composting systems, red worms feed most rapidly at temperatures of a. 10–25 °C SECTION B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation C C C C C C C C C C C C C C C C C C C				
a. Eisenia foetida Lumbricus terrestris Lumbricus rubellus 20. The most common worms used in composting systems, red worms feed most rapidly at temperatures of a. 10–25 °C SECTION B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
20. The most common worms used in composting systems, red worms feed most rapidly at temperatures of a. 10–25 °C SECTION—B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species 22. A) Write short notes on Cryopreservation B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
temperatures of a. 10–25 °C SECTION B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species 22. A) Write short notes on cryopreservation B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
a. 10–25 °C SECTION B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species 22. A) Write short notes on cryopreservation B) Write short notes on Biodiversity Conservation COR) B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
21. A) Write short notes on hot spots of Biodiversity B) Write short notes on endangered and threatened species 22. A) Write short notes on cryopreservation B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
22. A) Write short notes on cryopreservation (OR) B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR)				
23. A) Write short notes on Bioleaching of heavy metals (OR)				
24. A) Write short notes on activated sludge treatment (OR)				
B) Write short notes on percolating filters 25. A) Write short notes on composting systems (OR)				
B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS				
26. Give a detailed account on Aquatic common flora and fauna in India				
27. Give a detailed account on tissue culture and artificial seed technology				

- 28. Give a detailed account on Bioremediation
- 29. Give a detailed account on Waste water Treatment
- 30. Give a detailed account on sewage treatment

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN BIOPROCESS TECHNOLOGY AND ENVIRONMENTAL **BIOTECHNOLOGY**

Paper	: Core Practical VII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 40
Paper Code	: 17U6BTCP07	External	: 60

PREAMBLE

To make students on exposing to practical principles of fermentation techniques and applying them in the production value added products such antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agro based products for human welfare. To make students on exposing to practical principles of tissue culture media preparation, cell viability, subculturing and viability assay techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts on the production of alcohol, organic acid and SCP production. Prepare animal cell media and its	K1, K2 & K3
	sterilization techniques.	
CO2	Understand in determining the microbial growth. To filter sterilize the sensitive media ingredients and filtration technique.	K1 & K2
CO3	Estimating the production of single cell protein by biochemical method. Prepare suspension culture and cultivating viruses in embryonated egg.	K2, K4 & K5
CO4	Analysing milk qualitatively and separating aflatoxin fungal species by chromatographic method. Observation of different types of animal cell lines.	K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	M	S	S
CO3	M	S	S	S	S
CO4	M	S	M	S	S

UNIT	CONTENT	HOURS
1	Enumeration of microorganisms from bread	5
2	Production and estimation of alcohol from grapes	5
3	Immobilization of amylase by entrapment method	5
4	Production and estimation of citric acid from Aspergillus species	5
5	Quality analysis of milk by MBRT test	5
6	Enumeration of microorganisms from soil, water and air	5
7	Estimation of BOD of water sample	5
8	Determination water potability	5
9	Determination total suspended particles from water	5
10	Determination of total dissolved oxygen in water	5

MODEL QUESTION PAPER (LAB IN BIOPROCESS TECHNOLOGY AND **ENVIRONMENTAL BIOTECHNOLOGY**)

NAME OF THE COURSE: LAB IN	COURSE CODE:	DURATION: 6Hrs
BIOPROCESS TECHNOLOGY AND	17U6BTCP07	
ENVIRONMENTAL BIOTECHNOLOGY		
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS		
1. (i) Enumeration of microorganisms from bread sample (A) (OR)					
(ii) Estir	nate the amount of alco	hol from the given grape	e sample (A) (OR)		
(iii) Esti	mate the amount of BC	D of from the given wat	er sample (A)		
MINOR EXPE	CRIMENT				
Exp: 6	Obs: 2	Res: 2	Total: 15 MARKS		
2. (i) Determine the total suspended particles from the given water sample (B) (OR)					
(ii) Determine the total dissolved oxygen content from the given water sample (B)			he given water sample (B)		
(OR)					
(iii) Immobilize amylase enzyme from the given crude enzyme sample (B) by					
appropri	ate method				
SPOTTERS (5 X 4 = 20 MARKS)			(5 X 4 = 20 MARKS)		
3. Identify the given spotters C, D, E, F & G and comment on them					
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $			$(1 \times 5 = 5 \mathbf{MARKS})$		
VIVA-VOCE			5 MARKS		
TOTAL 60 MARKS			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE I

ENZYMOLOGY AND ENZYME TECHNOLOGY

Paper	: Elective II	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 17U6BTE02	External	: 75

PREAMBLE

This paper concisely presenting the fundamentals of enzymes, enzyme kinetics and industrial applications of enzymes

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To familiarize the basics of enzyme classification, its unit measurement and extraction	K1 & K2
CO2	To explore to the usage of enzymes at molecular level such as active site, isoenzymes and their biochemical fundamentals	K3 & K4
CO3	To explore the enzyme kinetics and its mechanism of inhibitions	K4
CO4	To explore the industrial and clinical applications of commercial enzymes	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS	
	Enzymes: Introduction, Definition, History, Classification and Nomenclature		
I	of enzymes. Intracellular localization of enzymes, Extraction and purification		
	of enzymes. Enzyme units. Substrate specificity.		
	Active site: Salient features, Theories of ES complex formation - Lock and		
TT	Key, Induced fit and Substrate strain theory. Structure and functions of		
111	coenzymes, Isoenzymes and their separation rates. Collision and transition		
	state theories. Factors affecting enzyme activity		

III	Enzyme kinetics : Order of reaction, Activation energy, Kinetics of enzyme catalyzed reactions – Steady state kinetics – Michaelis Menten equation, and its transformation. Bi – substrate reaction – random, ordered and ping pong mechanisms.	15
IV	Enzyme inhibition : Reversible and irreversible inhibitors. Mechanism of catalysis – acid base, electrostatic, covalent, metal ion and enzyme catalysis, electrostatic proximity and orientation effects. Mechanism and action of chymotrypsin, lysozyme and carboxy peptidase.	15
V	Immobilization of enzymes : Methods and application. Clinical and Industrial application of enzymes, Enzyme engineering – site directed mutagenesis.	15

SUGGESTED READINGS

- 1. Enzymes: Biochemistry, Biotechnology, Clinical chemistry Trevor Palmer, East West Press Edition, New Delhi, 2004.
- 2. Fundamentals of Enzymology Nicholas C. Price Lewis Stevens, 2nd edition, Oxford University Press, Newyork, 1998.
- 3. Biochemistry U.Satyanarayana & U.Chakrapani, Books and Allied (P) Ltd, Kolkata, 2008.
- 4. Lehninger Principles of Biochemistry David L. Nelson and Michael M.Cox, W.H Freeman and Company, New York, 2007.
- 5. Biochemistry Lubert Stryer, Jeremy M. Berg, John L.Tymoczko, V edition, W.H.Freeman & Company, Newyork, 2001.
- 6. Enzyme Technology Ashok Pandey, Colin Webb, Calos Ricardo Soccl, Christian Larroche, Asiatech publishers Inc, New Delhi, 2005.

MODEL QUESTION PAPER (ENZYMOLOGY AND ENZYME TECHNOLOGY)

NAME OF THE COURSE: ENZYMOLOGY AND ENZYME TECHNOLOGY	COURSE CODE: 17U6BTE02	DURATION: 3 Hrs
MAX MARKS: 75	110021202	

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
Enzymes are broadly classified intotypes							
a. 4	b. 5		c. 6		d. 7		
2. The function of is	some	rases is	•		•		
a. Geometrical changes	b	. Isomeric changes	c. Steric changes	d. Suj	er nu	meric changes	
3. Enzyme activity	depen	nds on					
a. Substrate conc.		b. Substrate availability	c. Substrate d. binding site		d. A	All the above	
4. Which of the foll	owing	g method is used in sep	parating specific enzyr	nes fron	n its c	rude sample?	
a. Dialysis	b	. Native PAGE	c. 2D PAGE		d. Is	oelectric focusing	
5. Which of the foll active site of en		g concept model descri ?	ibes the conformationa	l chang	es occ	urring at the	
a. Lock & Key model	b. In	nduced fit hypothesis	c. Substrate strain co	ncept	d. No	one of the above	
6. Michealis – Ment	ton ec	quation describes					
a. Rate of enzyme activi	ty	b. Rate of substrate a	activity c. ES forn	nation		d. All the above	
7. Bi substrate react	ions i	indirectly describes the	e concept of				
a. Lock & Key concept	b.	Induced fit hypothesis	c. Substrate bindin	g theory	/ d.]	None of the above	
8. Which of the foll	owing	g physical factor affect	ts the enzyme activity?)	II.		
a. Enzyme conc.		b. Substrate Conc.	c. Binding site		d. p	Н	
9. Which of the foll	owing	g is an example for iso	enzyme?				
a. ACTH		b. GH	c. LDH		d. F	SH	
10. Activation energ	gy is t	the energy required for	·				
a. Activating enzyme	a. Activating enzyme b. Activating substrate c. Activating co factors d. Activating physical factors						
11. The kinetics of enzyme – catalysed reactions can be analysed in terms of steady state models if the							
substrate concentrations are							
a. More than an order b. Less than an order of c. More than the rate d. Less than the rate of							
of magnitude magnitude lower than higher than the magnitude lower than							
higher than the enzyme level	'	the enzyme level	higher than the enzyme level		me (enzyme ievei	
12. The reaction between ADP and phosphocreatine works under the principle of							
12. The remaining continuous principus of							

a.Random mechanism b. Double displacement mechanism c. Ping pong mechanism d. B & C				
13. Which of the following type of enzyme inhibition shows an increase in KM value with constant				
Vmax? a. Competitive b. Non – Competitive c. Un – Competitive d. None of the above				
14. Allosteric enzymes displays a sigmoidal curve in contrast to the displayed by Michealis –				
Menton enzymes				
a. Hyperbolic curve b. Parabolic curve c. Quadratic curve d. Transcendental curve				
a. Cysteine protease b. Serine protease c. Proline protease d. Leucine protease				
16. Carboxypeptidase A3 (CPA3) involved in the protein digestion by				
a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells				
17. Which of the following method is commonly used in maintaining enzyme activity				
a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries?				
a. Amylase b. Lipase c. Protease d. DNAse				
19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c. Feed back inhibition d. None of the above				
20. Which of following enzyme is used as deworming agent? a. Tryspin b. Papain c. Amylase d. Protease				

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QU	JESTIONS
21. A) Explain about enzyme units	(OR)
B) Explain about substrate specifity	
22. A) Explain about isoenzymes	(OR)
B) Explain the factors affecting the enzyme activity	
23. A) Explain the steady state kinetics of enzymes	(OR)
B) Write short notes on the order of the enzyme reaction	
24. A) Explain the mechanism of action of chymotrypsin	(OR)
B) Write short notes on mechanism of enzyme catalysis	
25. A) Explain the process of site directed mutagenesis	(OR)
B) Explain about enzyme engineering	. ,

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give detailed account on the classification of enzymes
27. Give detailed account on iso-enzymes
28. Give detailed account on MM and LB plot
29. Give detailed account on enzyme inhibition and its types
30. Give detailed account on industrial applications of enzymes

SBEC - IV

BIOSAFTEY, BIOETHICS & IPR

Total Hours Paper : SBEC-IV : 40 Hours/Week : 2 Exam Hours : 03 Credit : 2 Internal : 25 Paper Code : 17U6BTS04 External : 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S: Strong; M: Medium; L: Low

UNIT	CONTENT	HOURS
I	Bio safety: Introduction – bio safety issues in biotechnology – historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	8
II	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	8
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non patentables.	8
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	8

	and general requirements of patent law. Patentable subjects and protection in Biotechnology.	
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy. Ethical implications of GM crops, biopiracy and biowarfare.	8

- 1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.
- 2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.
- 3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.
- 4. Sasson A, Biotechnologies and Development, UNESCO Publications.
- 5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY, BIOETHICS AND IPR	COURSE 17U6BTS04	CODE:	DURATION: 3 Hrs
MAX MARKS: 75			

2. A pathogen that is unlikely to cause any disease in humans or animals a. Risk group I	ONS
2. A pathogen that is unlikely to cause any disease in humans or animals a. Risk group I	
a. Risk group I b. Risk group II c. Risk group III d. I 3. Korean hemorrhagic fever is example for a. Risk group II b. Risk group III c. Risk group IV d. I 4. Physical containment is achieved by a. One type b. Two types c. Three types d. I 5. Which one of the following is not relevant to sterilization technique? a. Ethanol b. Incinerator c. Microscope d. 6. Cartagena Protocol on Biosafety to the Convention on Biological Diversity effect from a. 11 September b. 12 September c. 11 September d. 12 2003 2003 2004 200 7. Each Institutional Biosafety Committee has a nominee for a. DST b. DBT c. UGC d. 8. How many RCGM meeting held in 2018? a. 7 b. 8 c. 9 d. 9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12	d. All
a. Risk group II b. Risk group III c. Risk group IV d. I 4. Physical containment is achieved by a. One type b. Two types c. Three types d. I 5. Which one of the following is not relevant to sterilization technique? a. Ethanol b. Incinerator c. Microscope d. 6. Cartagena Protocol on Biosafety to the Convention on Biological Diversity effect from a. 11 September b. 12 September c. 11 September d. 12 2003 2004 200 7. Each Institutional Biosafety Committee has a nominee for	
a. Risk group II b. Risk group III c. Risk group IV d. I 4. Physical containment is achieved by a. One type b. Two types c. Three types d. I 5. Which one of the following is not relevant to sterilization technique? a. Ethanol b. Incinerator c. Microscope d. 6. Cartagena Protocol on Biosafety to the Convention on Biological Diversity effect from a. 11 September b. 12 September c. 11 September d. 12 2003 2004 200 7. Each Institutional Biosafety Committee has a nominee for a. DST b. DBT c. UGC d. S. How many RCGM meeting held in 2018? a. 7 b. 8 c. 9 d. 9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	Risk group IV
4. Physical containment is achieved by a. One type b. Two types c. Three types d. I 5. Which one of the following is not relevant to sterilization technique? a. Ethanol b. Incinerator c. Microscope d. 6. Cartagena Protocol on Biosafety to the Convention on Biological Diversity effect from a. 11 September b. 12 September c. 11 September d. 12 2003 2004 2004 7. Each Institutional Biosafety Committee has a nominee for a. DST b. DBT c. UGC d. 3. How many RCGM meeting held in 2018? a. 7 b. 8 c. 9 d. 9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	
a. One type b. Two types c. Three types d. F. Which one of the following is not relevant to sterilization technique? a. Ethanol b. Incinerator c. Microscope d. 6. Cartagena Protocol on Biosafety to the Convention on Biological Diversity effect from a. 11 September b. 12 September c. 11 September d. 12 2003 2003 2004 2006 7. Each Institutional Biosafety Committee has a nominee for	Risk group I
5. Which one of the following is not relevant to sterilization technique? a. Ethanol b. Incinerator c. Microscope d. 6. Cartagena Protocol on Biosafety to the Convention on Biological Diversity effect from a. 11 September b. 12 September c. 11 September d. 12 2003 2004 2004 7. Each Institutional Biosafety Committee has a nominee for a. DST b. DBT c. UGC d. 2003 8. How many RCGM meeting held in 2018? a. 7 b. 8 c. 9 d. 9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	
a. Ethanol b. Incinerator c. Microscope d. 6. Cartagena Protocol on Biosafety to the Convention on Biological Diversity effect from a. 11 September b. 12 September c. 11 September d. 12 2003 2004 2006 7. Each Institutional Biosafety Committee has a nominee for	Four types
6. Cartagena Protocol on Biosafety to the Convention on Biological Diversity effect from a. 11 September b. 12 September c. 11 September d. 12 2003 2004 2004 7. Each Institutional Biosafety Committee has a nominee for a. DST b. DBT c. UGC d. 8. How many RCGM meeting held in 2018? a. 7 b. 8 c. 9 d. 9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	
a. 11 September b. 12 September c. 11 September d. 12 2003 2003 2004 200 7. Each Institutional Biosafety Committee has a nominee for a. DST b. DBT c. UGC d. 200 8. How many RCGM meeting held in 2018? a. 7 b. 8 c. 9 d. 9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSI 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. Telephone description of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	Autoclave
2003 2003 2004 2006 7. Each Institutional Biosafety Committee has a nominee for	came with
7. Each Institutional Biosafety Committee has a nominee for	2 September
a. DST b. DBT c. UGC d. 8. How many RCGM meeting held in 2018? a. 7 b. 8 c. 9 d. 9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. Telephone at the concerning production a. Trade b. Trade Secret c. Patent d. Industrial	04
8. How many RCGM meeting held in 2018? a. 7 b. 8 c. 9 d. 9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	
a. 7 b. 8 c. 9 d. 9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	ICAR
9. The RCGM shall not include the following representative a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T. 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	
a. DBT b. ICMR c. UGC d. CSII 10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	6
10. GEAC established under a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	
a. MoEF & b. UGC c. DBT d. D 11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	R
11. Trade name is otherwise called as a. Patent b. Model c. Business name d. T. 12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	
a. Patent b. Model c. Business name d. Trade concerning production a. Trade b. Trade Secret c. Patent d. Indus	OST
12is any information of commercial value concerning production a. Trade b. Trade Secret c. Patent d. Indus	
a. Trade b. Trade Secret c. Patent d. Indus	'rademark
13. IPR initially started in North Italy during the	strial Design
	Renaissance
e era. In era. In 1472 era. In 1473 14. Protection of IPR not allow the following	era. In 1474

a. Innovator

b. Brand owner

c. Teacher

d. Copyright holder

15. Intellectual proj	perty not refers to crea	ations of the mind	
	•		stic works d. Names
16. Which one is eq	mes under type of int	ellectual property (IP)	?
	• •		d. All the above
17. Mathematical a	gorithms are		
		c. Both	d. None of the above
18. Software is a			
		c. Both	d. None of the above
a. Fatenta	b. Non patentable	c. Boul	d. None of the above
19. Patentable biote	chnological inventior	ns is	
a. Prote b. I	NA sequences c.	Both of the (a) and (b	d. None of the above
20. Early founders	f bioethics put forth	four principles which f	form the framework for moral
reasoning		·	
a. 4	b. 3	c. 2	d. 1

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUEST	TIONS
21. A) Explain different levels of biosafety.	(OR)
B) explain different types of sterilization methods.	()
22. A) What is institutional committe and their roles?	(OR)
B) Explain RCGM and GEAC?	
23. A) explain object of Intellectual property law?	(OR)
B) Explain the importance of IPR?	
24. A) Write a note on benefits of patent.	(OR)
B) explain patentable and non-patentable biotechnological inventions?)
25. A) define bioethics, explain purpose and scope of bioethics?	(OR)
B) Explain perspectives and methodology of bioethics?	
SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUES	STIONS
26. Explain different types of bio-safety measures in laboratory?	
27. Explain Cartagena protocol on biosafety.	
28. What is IPR and explain their different types?	
29. Patent - Definition, History and Law	

30. Explain framework for making ethical decisions.

NMEC - I BIOSAFTEY, BIOETHICS & IPR

Paper Paper	: SBEC-IV	Total Hours	<mark>: 40</mark>
Hours/Week	<u>: 2</u>	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 15U5BTN01	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified Organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting Procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S: Strong: M: Medium: L: Low

UNIT	CONTENT	HOURS
I	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	8
II	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	8
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non patentables.	8
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	8

	and general requirements of patent law. Patentable subjects and protection in Biotechnology.		
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy. Ethical implications of GM crops, biopiracy and biowarfare.	8	

- 1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.
- 2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.
- 3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.
- 4. Sasson A, Biotechnologies and Development, UNESCO Publications.
- 5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY, BIOETHICS AND IPR	COURSE 15U5BTN01	CODE:	DURATION: 3 Hrs
MAX MARKS: 75			

SECTION -	A (1 X 20 = 20 MARKS	ANSWER ALL THE C	QUESTIONS		
21. Bio-related research activities may not involve					
e. Micro organisms	e. Micro organisms f. Animal cells g. Plant cells h. All				
22. A pathogen that	22. A pathogen that is unlikely to cause any disease in humans or animals				
e. Risk group I	f. Risk group II	g. Risk group III	h. Risk group IV		
23. Korean hemorri	hagic fever is example for	r			
e. Risk group II	f. Risk group III	g. Risk group IV	h. Risk group I		
24. Physical contain	ment is achieved by				
e. One type	f. Two types	g. Three types	h. Four types		
25. Which one of th	e following is not relevan	nt to sterilization techniqu	ie?		
e. Ethanol	f. Incinerator	g. Microscope	h. Autoclave		
26. Cartagena Proto	col on Biosafety to the C	onvention on Biological	Diversity came with		
effect from					
e. 11 September	f. 12 September	g. 11 September	h. 12 September		
2003	2003	2004	2004		
27. Each Institution	al Biosafety Committee h	nas a nominee for	-		
e. DST	f. DBT	g. UGC	h. ICAR		
28. How many RCC	GM meeting held in 2018	?			
e. 7	f.8	g. 9	h. 6		
29. The RCGM sha	ll not include the following	ng representative			
e. DBT f.IO	CMR	g. UGC	h. CSIR		
30. GEAC establish	ed under				
e. MoEF &	f. UGC	g. DBT	h. DST		
31. Trade name is o	therwise called as				
e. Patent	f. Model	g. Business name	h. Trademark		
32is any information of commercial value concerning production					
e. Trade	f. Trade Secret	g. Patent h.	Industrial Design		
33. IPR initially star	rted in North Italy during	the			
e. Renaissanc	f. Renaissance	g. Renaissance	h. Renaissance		
e era. In	era. In 1472	era. In 1473	era. In 1474		
34. Protection of IP	R not allow the following	<u>.</u>	_		

e. Innovator	f. Brand owner	g. Teacher	h. Copyright holder			
35. Intellectual prop	35. Intellectual property not refers to creations of the mind					
e. Hard	f. Inventions g	Literary and artist	ic works h. Names			
36. Which one is co	mes under type of intelle	ctual property (IP)?				
e. Copyright	f. Patent	g. Trademark	h. All the above			
37. Mathematical al	gorithms are					
e. Patenta	e. Patenta f. Non patentable g. Both h. None of the above					
38. Software is a						
e. Patenta	f. Non patentable	g. Both	h. None of the above			
39. Patentable biote	chnological inventions is					
e. Prote f. D	e. Prote f. DNA sequences g. Both of the (a) and (b) h. None of the above					
40. Early founders of bioethics put forth four principles which form the framework for moral						
reasoning		_				
e. 4	f. 3	<u>g. 2</u>	h. 1			

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTION	ONS
21. A) Explain different levels of biosafety.	(OR)
B) explain different types of sterilization methods.	
22. A) What is institutional committe and their roles?	(OR)
B) Explain RCGM and GEAC?	
23. A) explain object of Intellectual property law?	(OR)
B) Explain the importance of IPR?	
24. A) Write a note on benefits of patent.	(OR)
B) explain patentable and non-patentable biotechnological inventions?	
25. A) define bioethics, explain purpose and scope of bioethics?	(OR)
B) Explain perspectives and methodology of bioethics?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Explain different types of bio-safety measures in laboratory?
27. Explain Cartagena protocol on biosafety.
28. What is IPR and explain their different types?
29. Patent - Definition, History and Law
30. Explain framework for making ethical decisions.

$\underline{NMEC-I}$

BIOINFORMATICS

Total Hours : 40 Paper : NMEC I Hours/Week **Exam Hours** : 03 : 2 Credit : 2 Internal : 25 Paper Code : 17U5BTN02 External : 75

PREAMBLE

To make students on understanding the basic concepts biological soft wares and their applicability in enhancing the need based quality of living systems

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of nucleic acid sequence databases	K1, K2 & K3
CO2	To understand the concepts of specialized databases	K2, K3 & K4
CO3	To understand the basic concepts of sequence analysis and sequence alignment	K2, K3 & K4
CO4	To understand the concepts of gene prediction methods through <i>insilico</i> approaches	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S: Strong; M: Medium; L: Low

UNIT	CONTENT	HOURS
I	Bioinformatics – Biological Databases – Nucleic acid sequence databases – GenBank/NCBI, EMBL, and DDBJ. Protein sequence databases – UniprotKB and PIR, Structure databases – PDB, CATH and SCOP.	8
II	Specialized Databases – BLOCKS, PRINTS and Pfam, Microarrays- Microarray data analysis, Proteomic data Analysis.	8
III	Sequence Analysis- sequence alignment, Dot plot, pairwise Sequence Alignment- Local alignment and Global alignments- Dynamic programming algorithm for sequence alignment, Scoring matrices, gap penalties.	8
IV	Multiple sequence alignment- scoring methods-clustal W- Phylogenetic	8

		Analysis- tree construction methods- Maximum likelihood and maximum	
		parsimony- distance methods- Database similarity search- Basic Local	
		Alignment search tool (BLAST).	
-		Gene prediction methods – ORF finder, Restriction site analysis. Protein	
	V	secondary structure prediction –Comparative Modeling -Drug Designing–	8
		- Molecular Docking	

- 1. Bioinformatics: Sequence, Structure and Databanks: A Practical Approach (The Practical Approach Series, 236), Des Higgins (Editor), Willie Taylor. 1st edition, October 2000, Oxford University Press. ISBN: 978-0199637904.
- 2. Bioinformatics: Sequence and Genome Analysis, David W. Mount. 2nd edition, June 2004, Cold spring harbor laboratory press. ISBN: 978-0879697129
- 3. David, H. M. 2005. Bioinformatics. Second edn. CBS Publishers, New Delhi.
- 4. David, R., Westhead, J., Howard, P. and Richard, M., and Twyman. Instant Notes-Bioinformatics Viva Books Private Limted, Chennai.
- 5. Gribskov, M., Devereux, J. 1989. Sequence analysis primer. Stockton Press.
- 6. Introduction to Bioinformatics, Teresa Attwood, David Parry-Smith, 1st edition, May 2001, Pearson Education. ISBN: 978-8178085074
- 7. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Second Edition, Andreas D. Baxevanis, B. F. Francis Ouellette. 3nd edition, October 2004, A John Wiley & Sons, Inc., Publication. ISBN: 978-0471478782.
- 8. Seizberg, S. L., Searls, D. B. and Kasif, S. 1998. Computational methods in Molecular biology now comprehensive Biochemistry. Elsevier.

MODEL QUESTION PAPER (BIOINFORMATICS)

NAME OF THE COURSE: BIOINFORMATICS				COURSE CODE: 17U5BTN02		DURATION: 3 Hrs
MAX MARKS: 75						
SECTION	I - A (1 X 20 = 20 MAR)	KS) Al	NS.	WER ALL TH	IE QU	ESTIONS
1. A single piece of	information in a databas	e is cal	led			
a. File	b. Field	c.	Re	cord	d.	Data set
2. Which of the follo	owing is a nucleotide sec	quence	dat	tabase?		
a. EMBL	b. SWISPOT	c.	PR	OSITE	d.	TREMBL
3. BLAST Programi	me is used for					
a. DNA Sequence	b. Protein sequence	;	C	. DNA barcoding		d. Sequence analysis
4. The BLAST pro	gram was developed on					
a. 1992	b. 1995	c.	19	90	19	991
5. Phylogenetic anal	lysis is a			I		
a. Dendrogram	b. Genbank	c.		ta retrieval 'ool	d. Data Searching tool	
6. Which of the follo	owing is a part of the sta	tistical	tes	t of sequences	?	
a. An optimal alignment between two chosen sequences is obtained at the end	a. An optimal alignment between two chosen sequences is obtained b. Unrelated sequences of the same length are sequences is obtained c. Unrelated sequences of the different length are then generated		different length n generated n a nization	d. Related sequences of the same length are then generated through a randomization process		
7. Clustal W is a						
a. Multiple sequence alignment tool	b. Protein secondary structure predic	tion too	1	b. Data retriev tool		c. ORF finder
=	align many sequences si					
a. Multiple b. Pairwise sequence alignment			c. Global d. Local alignment		d. Local alignment	
9. Which one is spec	cially made for protein d	ata base	e?			
a. DDBJ	b. EMBL		C	. PIR		d. Genbank
10. Genbank maintained by						
a. DDBJ	b. EMBL			c. Swissport		d. NCBI
11. Submission of so	equences to genbank thre	ough			•	

	a. Bankit	b. Sequin	b. A	& b	c.	None of the above
	-	volves pairwise alignmo	<u> </u>	_	e word	ds in both directions
	while counting the	neusing the sa	me substitu	tion matrix		
	a. Dock score	b. Alignment sco	re c.	Both a & b		d. None of the above
13. Which of the following is not a variant of BLAST?						
	a. BLAST N	b. BLAST P	c	. BLAST X		d. TBLAST X
	14. Phylogenetics is the study of the evolutionary history of living organisms using treelike diagrams to represent of these organisms					
	a. Distance matrix	b. Maximum li	•	c. Ped	igree	d. Maximum
		omains are located in tw		-	oreserv	parsimony re the same
	functionality, the	eir close have t	o be preserv	ved as well.		
	a. Solubility and	b. Proximity		l length and		d. 'N' and 'C'
	Polarity	and	Bonc	lenergy		terminals
	16 Which of the fall	interaction	ding the CT	DINC9		
	10. Which of the for	owing is not true regar	aing the ST.	KINU!		
	a. Search Tool for the Retrieval of Interacting	b. Functional association include only the direct protein-protein	et evide gene	pased on combince of gene linguistion and	kage,	d. It is a web server that predicts gene and protein functional
	Genes/Proteins	interactions		genetic profile		associations
		nces share significant si				
	<u> </u>	en the two sequences ha	<u>-</u>		_	aning that the two
	a. Unlikely	nave derived from a conb. Possible	c. Li			. Relevant
	•	owing is incorrect rega		•		. Relevant
a.	Two sequences can homologous relationship even if have do not have common origin	b. It is an important concept in sequence analysis	When two are descend common ev origin, they have a hom	sequences led from a volutionary vare said to nologous	d. Wl	hen two sequences are scended from a common olutionary origin, they are d to share homology
	10 W1:1 C.1		relationship			1:) 1 : 0
a.	It is a new technology in which all of the genes of an organism are represented by oligonucleotide sequences spread out in an 80 x 80 array on	en statements is incorre b. The oligonucleotide sequences cannot be synthesized directly on the slide	c. The olig are coll hybridi labeled library reverse	gonucleotides ectively zed to a	d. The to	chip) analysis? the amount of label binding to each oligonucleotide spot effects the amount of mRNA at the cell
	• •	vidence for a relationshing uence similarity. These	•	wo genes are	e also g	given that are not
a.	Genes are closely linked on the same		b. Gene trans from	cribed the same	be	ene fusions are observed etween otherwise separate enes
	chromosomes	•	DNA	strand		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS			
21. A) Write an short Biological Database	(OR)		
B) Explain the NCBI data base			
22. A) Give an account on BLOCKS, PRINTS	(OR)		
B) Explain the application of Pfam			
23. A) Write short note on sequence alignment	(OR)		
B) Briefly define Scoring matrices			
24. A) Write short notes on Phylogenetic Analysis	(OR)		
B) Write about database similarity search			
25. A) Explain ORF finder	(OR)		
B) Explain the steps involved in Restriction site analysis			

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS	
26. Give a detailed account on Biological databases	
27. Explain elaborately about the types of Biological data bases	
28. Give a detailed account on BLAST	
29. List out the difference between Local alignment and Global alignments	
30. Give a detailed account on Molecular Docking	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

NMEC – II

CONCEPTS OF BIOTECHNOLOGY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17 U3BTN03	External	: 75

PREAMBLE

To make non major life science students in understanding basic and applied principles of biotechnology and its technical approach in society in generating value added, reliable and reproducible products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the scope and application of biotechnology	K1, K2 & K4
CO2	Use of enzymes in generating basic recombinant DNA concepts	K2, K3 & K4
CO3	Use of plasmid vectors in experimenting and designing cloning Strategies	K3, K4 & K5
CO4	Use molecular techniques of the identification of positive recombinant clones	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

S: Strong; M: Medium; L: Low

UNIT	CONTENT	HOURS
I	Scope of Biotechnology: History of Biotechnology; Conventional and modern Biotechnology – Biotech industries. Biotechnology tree. Strategies for gene cloning.	8
II	Tools used in gene cloning – Restriction endonucleases – Types – Features. Ligases – linkers, adaptors and homopolymer tailing. Modifying enzymes	8
III	Vectors-properties of good vector. Constructed plasmids-pBR 322. Cosmid vectors, Animal vectors-SV40. Plant vectors – Ti derivatives	8
IV	Introduction of genes – vector mode – transformation and transfection. Vector less mode – Biolistics, Electroporation, Microinjection	8

Selection of recombinants, Markers – PCR, RFLP, RAPD and blotting V 8 techniques

- 1. Principles of gene manipulations. Old and Primrose (1989), 3rd edition.
- 2. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 3. Biotechnology and genomics, Gupta PK (2004). Rastogi publications.
- 4. Gene cloning and DNA analysis. Brown TA. (1996). Blackwell science, Osney Mead, Oxford.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- 6. Biotechnology, Singh BD (2004). Kalyani Publications. New Delhi.

MODEL QUESTION PAPER (CONCEPTS OF BIOTECHNOLOGY)

NAME OF THE COURSE: CONCEPTS OF	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	17 U3BTN03	
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. The following is not a branch of Biotechnology					
a. Genetic	b. Tissue c. Physiology d. Microbiology		Microbiology		
engineering	culture				
2. Cell theory was	proposed by				
a. Schleiden and	b. Robert	c. Leeuwen	d.	Beetle and Tatum	
Schwann	Hooke	Hooke			
DNA recombina	nt technology is also call	ed as			
a. Gene manipulatio	n b. Totipotency	c. Splicing		d. Gene cloning	
4. The PCR techn	ique was developed by_		<u>, </u>		
a. Karry mullis	b. Kohler	c. Milstein	d.	Altman	
5. Gene cloning me	eans				
a. Production of	b. Production of	c. Production of	d.	Production of large	
mutated genes	wild genes	dominant		population of desired	
		genes		DNA fragment	
6. A small circular I	NA present in bacterial of				
a. Enzyme	b. Ribosomes	c. Plasmids	d.	Vector	
7. For cloning, DNA	samples are taken from				
a. Same	b. Different	c. Different	d.	None of the above	
individual	individual	species			
8. The function of R	estriction enzyme is to				
a. Cut the DNA	b. Join the DNA	c. Amplify the DNA	d.	None of the above	
9. Who discovered to	he restriction enzymes?				
a. Natham & Arber and smith	b. Watson & Crick	c. Boyer & Coh	en	d. Paul & Berg	
10. Which organism	has the highest number of	of vectors?	1		
a. Yeast	a. Yeast b. Mammalian cells c. E.coli d. Fungi		d. Fungi		
11. Boliver and Rodriguez constructed which vectors					
a. P ^{uc8}	a. P ^{uc8} b. Y ^{ip7} c. P ^{BR322} d. M ¹³			M^{13}	
12. How many set of	f antibiotics resistance do	es the plasmids PBR32	2 carr	y?	
a. 1	b. 2	c.3	c.	Nothing	
13. Cosmids vectors	are used for		-		

	Cloning a small b. Cloning a		a large	c. Cloning		d. Cloning		
		9		prokaryotes		eukaryotes		
	14. Single stranded vectors are useful							
	a. For sequencing b. For oligo nu			1		d. All the above		
	of cloned DNA directed mutagenesis preparation							
15. Chemicals used for gene transfer method								
	a. Polyethylene b. Dextran c. Calcium chloride d. All the above							
16. Polymerase used for PCR is extracted from?								
	a. E.coli b. Bacillus sp c. Thermos aquaticus d. Saccharomyces cerevisiae							
17. At which temperature does the DNA is denatured during PCR?								
	a. 60°C	60°C b. 54°C		e.74°C		d.94°C		
18. Molecular markers include								
	RAPD b.AFLP			c.AFLP		d. All of these		
	19. Western blotting is the techniques for the detection of							
a.	Specific RNA in	b. Specific DNA in	c. S ₁	pecific protein	d. Spec	cific glycolipids in a		
	a sample	a sample	ir	a sample	sample	2		
	20. What is probe?							
a.	Chemically	o. Purified DNA	c. Fra	gmented DNA	d. Either	purified or		
	synthesized DNA		dup			nesized single single		
	-		1		•	ded DNA		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE OUESTIONS

SECTION - B (3 A 3 - 23 WARRS) ANSWER ALL THE QUESTIONS
21. A) Write history of biotechnology
B) Write a short note on biotechnology tree
22. A) Explain ligases enzymes
B) Notes on homopolymer tailing
23. A) Explain the properties of good vectors
B) Explain cosmid vectors
24. A) Write notes on bio plastics
B) Explain microinjection methods
25. A) Write notes on RFLP
B) Application on RAPD

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS				
26. Write the essay strategies of gene cloning				
27. Explain the types and functions restriction enzymes				
28. Write the essay PBR322 and uses of this vector				
29. Write a essay on gene transfer methods				
30. Explain PCR principle methodology and applications				