VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2008 Certified Institution Affiliated to Periyar University (Approved by AICTE and Re-accredited with ,,A" Grade by NAAC) Recognized Under 2(f) and 12 (b) of UGC Act, 1956. Elayampalayam, Tiruchengode-637 205, Namakkal Dt., Tamil Nadu, India

DEPARTMENT OF BIOTECHNOLOGY Bachelor of Science

B. Sc SYLLABUS

[For the Candidates admitted on 2019-2020 onwards under Autonomous, CBCS & OBE pattern] (I to VI SEMESTERS)

SPONSORED BY ANGAMMAL EDUCATIONAL TUST ELAYAMPALAYAM – 637 205, TIRUCHENGODE Tk., Namakkal Dt., Tamil Nadu VEERACHIPALAYAM – 637 303, SANKARI Tk., Salem Dt., Tamil Nadu Tel.: 04288 234670 (4 lines), Fax: 04288 234894 Website: www.vivekanandha.ac.in e.mail: info@vicas.org

B.Sc BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

GRADE	OBJECTIVE
PEO: 1	Biotechnology graduate students shall attain professional/industrial expertise by developing competent, creative and ever ready personality to accept recent, innovative and challenging roles in Industry and Academic and Research sectors
PEO: 2	Students shall inculcate in the development of entrepreneurial traits in order to cuddle innovative opportunities by adapting emerging biotechnological concepts in terms of techniques with subsequent development of leadership in the course of start-up of small- medium scale biotech based industry
PEO: 3	Students shall progressively adapt, follow and learn the concepts of biotechnology continuously by aiding modern teaching tools
PEO: 4	Imparting the basic and outstanding knowledge in all terms of biotechnology
PEO: 5	Students shall acquire the concepts to disseminate the advanced biotechnological aspects and its cutting edge developments in specific and developing area in the field of Biotechnology

PROGRAMME OUTCOMES (POs)

GRADE	OUTCOME
PO: 1	To train and develop students with the much needed biotechnological education, so that they develop added competitive skill metrics (CSM) for industrial employment higher education and employment upon graduation
PO: 2	To comprehend the assorted knowledge of biotechnical concepts domains and their applicability in the development of value added products for the welfare of the society
PO: 3	To develop a broad range of biotechnological skills and knowledge, development of general and specific competences to meet-out current expectations and requirements of medical, pharmaceutical, bio-molecular and agricultural sectors
PO: 4	To understand and merge the knowledge and concepts of biochemical, biophysical and bio statistical domains
PO: 5	To clarify various challenges in health care by integrating different biological domains including clinical, immunological, pharmaceutical and cancer genomics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

GRADE	SPECIFIC OUTCOME
PSO: 1	To provide solutions for the challenges faced by pharmaceutical and molecular diagnostic Sectors
PSO: 2	To provide technical products with high frequency of reproducibility to the society
PSO: 3	To gain vertical mobility in career that will make students more competent to face national/international qualifying exams with practical knowledge acquaintance and in modern biotechnology field
PSO: 4	To solve complex problems in the field of Biotechnology with an understanding of social, ethical, legal and cultural aspects of the society
PSO: 5	To understand the over-all theme/concepts of each specialization in biotechnology and analysing the frequency of its applicability in industry, research and for the goodness of Society

SYLLABUS FRAMEWORK

Subjects	Inst. Hour/Week	Credits	Subjects	Inst. Hour/Week	Credits		
S	emester I	1	Semester II				
Language I	6	3	Language II	6	3		
English I	6	3	English II	6	3		
Core I	5	5	Core II	4	5		
Allied I	4	3	Allied II	4	4		
Core practical I	4	3	Core practical II	3	3		
Allied practical I	3	3	Allied practical II	3	2		
VAC - YOGA	2	2	VAC – EVS	4	2		
Total	30	22	Total	30	22		
Se	mester III		Sen	nester IV	•		
Language III	6	3	Language IV	6	3		
English III	6	3	English IV	6	3		
Core III	5	5	Core IV	5	5		
Allied III	4	3	Allied IV	4	3		
Core practical IV	4	3	Core practical IV	4	3		
Allied practical	3	3	Allied practical IV	3	3		
IV							
SBEC I	2	2	SBEC II	2	2		
Total	30	22	Total	30	22		
Se	emester V		Semester VI				
Core V	5	5	Core VII	5	5		
Core VI	5	5	Core VIII	5	5		
Core practical V	5	3	Core practical V	5	5		
Core practical VI	5	3	Elective II	5	4		
Elective I	4	3	NMEC II	2	2		
NMEC I	2	2	SBEC IV 2		2		
SBEC III	2	2	Library/Sports 1		-		
Library/Sports	1	-	Mini project	5	5		
Extension activity	1	1	Extension activity -		1		
Total	Total 30 24 Total		Total	30	29		
Grand total					140		

CBCS SYLLABUS – UG (OBE PATTERN) (For candidates admitted from 2019-2020 onwards)

YEAR I

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
SEMESTER I								
18U1LT01	Ι	Language I	Tamil I	6	3	25	75	100
18U1LM01	1LM01 Malayalam I		Malayalam I					
18U1LH01	8U1LH01 Hindi I		Hindi I					
18U1LF01			French I					
18U1LE01	Π	Language II	Foundation English	6	3	25	75	100
			Ι					
19U1BTC01	III	Core I	Cell Biology & Genetics	5	5	25	75	100
19U1BTCP01	III	Core I	Lab in Cell	4	3	40	60	100
1)01D1C101	111	Practical	Biology &	+	5	40	00	100
		Tactical	Genetics					
18U1BCA01	III	Allied I	Biochemistry I	4	3	25	75	100
18U1BCAP01	III	Allied	Lab in	3	3	40	60	100
		Practical I	Biochemistry I	5	2	10	00	100
17U1VE01	IV	Value	Yoga	2	2	25	75	100
1,01,201		Education I	8	_	_		, c	100
		Total		30	22	205	495	700
			SEMESTER II			I	1	
18U2LT02	Ι	Language II	Tamil II	6	3	25	75	100
18U2LM02			Malayalam II					
18U2LH02			Hindi II					
18U2LF02			French II					
18U1LE02	II	Language II	Foundation English	6	3	25	75	100
			II					
19U2BTC02	III	Core II	Microbiology	4	4	25	75	100
19U2BTCP02	III	Core	Lab in	3	3	40	60	100
		Practical II	Microbiology					
18U2BCA02	III	Allied II	Biochemistry II	4	4	25	75	100
18U2BCAP02	III	Allied	Lab in	3	3	40	60	100
		Practical II	Biochemistry II					
17U2VE02	IV	Value	Environmental	4	2	25	75	100
		Education II	Studies					
		Total		<u>30</u> 60	22	205	495	700
	Grand Total of First Year				48	410	990	1400

Subject code	Part	Course	Title	Hrs/ Week	Credit	Internal	External	Total
			SEMESTER I	II				
18U3LT03	Ι	Language III	Tamil III	6	3	25	75	100
18U3LM03			Malayalam III					
18U3LH03			Hindi III					
18U3LF03			French III					
18U3LE03	II	Language III	Foundation English III	6	3	25	75	100
19U3BTC03	III	Core III	Molecular	5	5	25	75	100
170021000			Biology	C C	C		, c	100
19U3BTCP03	III	Core	Lab in Molecular	4	3	40	60	100
		Practical III	Biology		_	-		
19U3BOA01	III	Allied III	Plant Science I	4	3	25	75	100
19U3BOAP01	III	Allied	Lab in Plant	3	3	40	60	100
		Practical III	Science I					
	IV	SBEC I	Optional	2	2	25	75	100
	•	Total		30	22	205	495	700
			SEMESTER 1	[V				
18U4LT04	Ι	Language IV	Tamil IV	6	3	25	75	100
18U4LM04			Malayalam IV					
18U4LH04			Hindi IV					
18U4LF04			French IV					
18U4LE04	II	Language IV	Foundation English IV	6	3	25	75	100
19U4BTC04	III	Core IV	Genetic	5	5	25	75	100
			Engineering					
19U4BTCP04	III	Core	Lab in Genetic	4	3	40	60	100
		Practical IV	Engineering					
19U4BOA02	III	Allied IV	Plant Science II	4	3	25	75	100
19U4BOAP02	III	Allied	Lab in Plant	3	3	40	60	100
	TT 7	practical II	Science II			27		100
	IV	SBEC II	Optional	2	2	25	75	100
~	1.77	Total	T 7	30	22	205	495	700
G	rand 'I	otal of Second	Year	60	44	410	990	1400

			YEAR III					
Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
			SEMESTER V	7				
19U5BTC05	III	Core V	Immunology	5	5	25	75	100
19U5BTC06	III	Core VI	Plant Biotechnology	5	5	25	75	100
19U5BTCP05	III	Core practical V	Lab in Immunology	5	3	40	60	100
19U5BTCP06	III	Core practical VI	Lab in Plant Biotechnology	5	3	40	60	100
	III	Elective I	Optional	4	3	25	75	100
	IV	SBEC III	Optional	2	2	25	75	100
		NMEC I	Optional	2	2	25	75	100
19U5BTEX01	IV	Internship		1	1	40	60	100
		Library/Sports	Reference/Health Management	1	-	-	-	-
	•	Total		30	23	245	555	800
			SEMESTER V	Τ			•	•
19U6BTC07	III	Core VII	Bioprocess technology	5	5	25	75	100
19U6BTC08	III	Core VIII	Animal Biotechnology	5	5	25	75	100
19U6BTCP07	III	Core practical VII	Lab in Bioprocess technology and Animal biotechnoogy	5	5	40	60	100
	III	Elective II	Optional	5	4	25	75	100
	IV	SBEC IV	Optional	2	2	25	75	100
	IV	NMEC II	Optional	2	2	25	75	100
19U6BTMP01	IV	Research Activity	Mini project	5	5	40	60	100
		Extension activ	ity	-	1	-	-	-
		Library/Sports	Reference/Health Management	1	-	-	-	-
		Total		30	29	205	495	700
	Tota	l of Third Year			140	1270	3030	4300

LIST OF ELECTIVE PAPERS							
GRADE	SUBJECT	SUBJECT CODE					
	Pharmaceutical Biotechnology	18U5BTE01					
Elective I	Enzymology and Enzyme Technology	18U5BTE02					
	Tissue Engineering	18U5BTE03					
	Genomics and Proteomics	18U6BTE04					
Elective II	Biophysics and Bioinstrumentation	18U6BTE05					
	Environmental Biotechnology	18U6BTE06					
	LIST OF SKILLED BASED ELECTIVE F	PAPERS					
	Lab in food processing and technology	18U3BTS01					
SBEC I	Developmental Biology	18U3BTS02					
	Food biotechnology	18U3BTS03					
	Lab in poultry science	17U4BTS04					
SBEC II	Marine Biotechnology	18U4BTS05					
	Forensic science and technology	18U4BTS06					
	Lab in Bioinformatics	17U5BTS07					
SBEC III	Biosafety, Bioethics and IPR	18U5BTS08					
	Cancer Biology	18U5BTS09					
	Lab in Entrepreneurship in Biotechnology	18U6BTS10					
SBEC IV	Nano Biotechnology	18U6BTS11					
	Biofarming	18U6BTS12					
	LIST OF NON-MAJOR ELECTIVE PAPERS						
NMEC I	Biosafety, Bioethics and IPR	17U5BTN01					
INIVILU I	Bioinformatics	17U5BTN02					
NMEC II	Concepts of Biotechnology	17U3BTN03					
INIVIEC II	Biotechnology for Society	17U3BTN04					

	BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN						
KL CPD DESCRIPTION							
K1	Remember	Retrieving, recognizing and recalling knowledge from long-term memory					
K2	Understand	Constructing meaning from oral, written and graphic messages through interpreting					
К3	Apply	Carrying out or using a procedure through executing or implementing					
K4	Analyse	Breaking material into constituent parts, determining how the parts relate to one another and to an overall structure or purpose through differentiating, organizing and attributing					
К5	Evaluate	Making judgments based on criteria and standards through checking and critiquing					
K6	Create	Putting elements to form a coherent or functional hole, reorganizing elements into a new pattern or structure through generating, planning or producing					
Note: I	KL: Knowledg	e Level; CPD: Cognitive Process Dimension					

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR MODEL AND SEMESTER EXAMINATION

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A: 20 X 1	K1 & K2	20	Multiple choice questions	
B: 1 out of 2 (5 X 5) Either or choice	K2, K3, K5 & K6	25	Short notes	75
C: 3 out of 5 X 10	K3, K4, K6	30	Essay type descriptive	

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR CIA I & II EXAMINATIONS

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A: 10 X 1	K1 & K2	10	Multiple choice questions	
B: 1 out of 2 (1 X 5)	K2, K3, K5 & K6	5	Short notes	25
C: 1 out of 2 (1 X 10)	K3, K4, K6	10	Essay type descriptive	

SEMESTER I

CELL BIOLOGY & GENETICS

Paper	: CORE I	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 19U1BTC01	External	: 75

PREAMBLE

To make the students to understand the basics concepts living cellular organization and cellular function and to impart knowledge of classical genetics

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquire the conceptual knowledge of fundamentals of Cellular Architecture	K1
CO2	Understand the functions of cellular organelles of cell, nucleus and familiarize with cellular physiology	K1 & K2
CO3	Have a comprehensive knowledge on cellular energetics and basics of Genetics	K2 & K4
CO4	Gain expertise in gene interaction mechanisms and ploidy levels	K3 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	L	М	М	М	L
CO2	М	S	S	S	М
CO3	S	S	S	S	S
CO4	S	S	М	S	S

UNIT	CONTENT	HOURS		
Ι	History of cell biology and cellular architecture: Cell theory.	15		
	Classification of cell types (prokaryotic & eukaryotic).Organization of			
	plant and animal cell. Cell wall and cell membrane. Cytoskeletal structures			
	- (Micro tubules, Micro filaments and intermediary filaments).			
	Cytoskeleton movements (Sliding & Contraction). Nutrient transport			
	(Active, passive & facilitated diffusion).			

II	Subcellular organelles and Chromosomal organization: Structure and	15
	functions of Endoplasmic reticulum, Golgi apparatus, Chloroplast,	
	Ribosomes, Mitochondria, Vacuoles, Lysosomes, Glyoxysomes,	
	Peroxysomes, Nucleus. Chromosome: Morphology, Structure. Specialized chromosomes (Lambrush & Polytene).	
III	Cell cycle, Cell communication and cell death; Cell cycle - Mitosis and	15
	Meiosis, Regulation of cell cycle. Cell signalling – types of cell signalling -	
	G protein mediated (GPCR), Tyrosine kinase (TK) mediated signalling.	
	Cell death - types. Necrosis - causes and mechanism. Apoptosis:	
	morphology, mitochondrial and death receptor pathways. Differences	
	between apoptosis and necrosis.	
IV	Cellular energetics & History of genetics: Membrane potential, Chemi-	15
	osmotic hypothesis, Redox potential of the cell membrane, ATP formation.	
	Mendelian Principles, Segregation, Independent Assortment, Dominance	
	relations, Multiple alleles, Incomplete dominance, Over dominance.	
V	Gene interaction and Chromosome variation: Gene interaction,	15
	Epistasis, Lethality and lethal genes. Sex determination and sex linkage in	
	diploids, Linkage and crossing over. Chromosomal theory of inheritance,	
	maternal effects. Chromosomal variation in number (Ploidy) and changes	
	in chromosomal structure (addition, deletion, duplication, translocation &	
	inversion).	

SUGGESTED READINGS:

- 1. Alberts et al., 1994. Molecular Cell Biology of Cell Bruce, Galand publications NY.
- 2. Jack D. Bruke Cell Biology The William Company
- 3. Lodish et al., (2008). Molecular Cell Biology, 6th ed. Wilson J and Hunt T (2002). Molecular Biology of the Cell: A Problems approach, 4th ed.
- 4. EJ Gardner, MJ. Simmons and DP Snustad, 2006. Principles of Genetics 8th edition, John Wiley & Sons Publications.
- 5. Karp G. 2008. Cell and Molecular Biology, 5th edition. John Wiley and Sons Inc. Hardcover. ISBN: 978-0-470-04217-5.
- 6. PS. Verma and VS Agarwal. 1986. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S Chand and Company, New Delhi.
- 7. Lodish et al Molecular Cell biology 8th ed. Freeman, 2016.
- 8. Abouelmagd and Ageeley. Basic Genetics. 2 nd ed. Univ Publ. 2013.
- 9. Twyman. Advanced Molecular Biology. BIOS Sci Publ. 2000.
- 10. Karp. Cell & Molecular Biology 8 thed 2016. Wiley.
- 11. Elrod S. Schaum"s Outline of Genetics. 5 th ed. McGraw Hill. 2010.
- 12. Fletcher et al. Instant Notes in Genetics. 4th ed. Garland Science. 2012.
- 13. Watson. Molecular Biology of the Gene. 7th ed. Pearson Edu, 2013.

MODEL QUESTION PAPER (CELL BIOLOGY AND GENETICS)

NAME OF THE COURSE: CELL BIOLOGY AND GENETICS	COURSE CODE: 19U1BTC01	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. The cell was first discovered by					
a. Schwann	b. Robert Hooke		c. Debar	У	d. Tatum
2. Cell theo	ory was proposed by -				
a. Schleiden and Schwan			c. Leeuwen H		d. Beetle and Tatum
3. Microfila	aments are composed	ma	ainly of a prote	eins cal	
a. Actin	b. Tubulin		c. Myosin		d. chitin
4. The subu	inits of prokaryotic ri	bos	some are		
a. $60s + 40s$	b. 70s + 30s		c. $60s + 2$	30s	d. 50s + 80s
5. The plan	t cell wall mainly cor	mpo	osed of		
a. Cellulose	b. Starch		c. Protein		d. Lipid
6. Smooth of	endoplasmic reticului	m is	s the site of		
a. Protein	b. Carbohydrate		c. Amino		d. Lipid
synthesis	synthesis		synthe	esis	synthesis
	theory not applicable				1
a. Bacteria	b. Algae		c. Viruse	es	d. Fungi
8. Which of	ne the power house o	of th	e cell?		
a. Cell wall	b. Mitochondria	ı	c. Nuclei	us	d. Ribosome
9. Apoptos	is cannot kill the follo	owi	ng cells		
a. Cell infected with virus	b. Cell with DNA damage	ł	c. Cancer cel	lls	d. Immune cell
	enzymes are released	l du	ring necrosis f	from	
	b. Vacuoles c.				Golgi bodies
11. Chromosomes are duplicated during the cell cycle in					
a. B phase	b. G phase		c. S phas		d. P phase
12. Spindle	fiber is formed durin	g			1
a. Anaphase	b. Telophase		c. Prophase		d. Pro metaphase
13. Which of the following is the end product of respiration process?					

a.	Release of oxygen	b. Release of CC	D ₂ c. Anabolism	d. Transfer of CO ₂		
	14. Who is regarded as the father of genetics?					
	a. Bateson	b. Morgan	c. Mendel	d. Watson		
	15. Mendel ex	perimental material w	vas <u>?</u> ?			
а.	Pisum sativum	b. Lathyrus odaratus	c. Oryza a sativa	l. Mirabilis jalappa		
	16. What was organisms	-	used "energy curre	ncy" of cells for all		
	a. ATP	b. ADP c.	Inorganic phosphate	e d. DNA		
	17. What does	t-RNA bind with	?			
	a. DNA	b. mRNA	c. Northing	d. rRNA		
	18. Lethal gen	es were first discover	ed by?	_		
a.	William Ernest Castle	b. Lucien Cuenot	c. Clarence Cook	d. Gluecksohn- Waelsch		
	19. Repetition	of a chromosomal se	gment means	?		
a.	Deletion b.	Duplication c.	Inversion	d. Translocation		
	20. Walter Sutton and Theodore Boveri formally proposed that chromosomes contain the genes in the year of					
	a. 1903	b. 1901	c. 1920	d. 1930		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QU	ESTIONS
21. A) Write the classification of cell types?	(OR)
B) Write a short note on Cytoskeleton?	
22. A) Explain structure and functions of nucleus?	(OR)
B) Structure and morphology of chromosomes?	
23. A) Differences between apoptosis and necrosis?	(OR)
B) Explain the types of cell signaling?	
24. A) Write a short note on ATP formation?	(OR)
B) Redox potential of the cell membrane?	
25. A) What is gene and how to interact?	(OR)
B) Chromosomal theory of inheritance?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Write the essay on cell types and cytoskeletal structures and movements

27. Explain the structure and functions of any five subcellular organelles

28. Write the essay on mitosis and meiosis and G-protein coupled receptor

29. Write an essay on mendlian principles

30. Explain the variation in chromosome structure and function

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN CELL BIOLOGY& GENETICS

Paper	: CORE PRACTICAL I	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U1BTCP01	External	: 60

PREAMBLE

To make the students to understand the basics microscopy, cell division, histology, subcellular organelle isolation and mendelian principles

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquiring hands on skills on microscopy and visualization of prokaryotic and eukaryotic cells	K1 & K2
CO2	Exposure towards various stages of cell division	K1 & K2
CO3	Gain knowledge on basics concepts organelle isolation and estimation	K4
CO4	Performing and validating mono and dihybrid crosses experiments and result interpretation	K3 & K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	М	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	М	S
CO4	S	S	S	М	М

Exp. No	Title	Hours
1	The Microscope: the bright field microscope, use of oil immersion (100x),	8
	Measurements: ocular and stage micrometers, measuring depth, measuring	
	area and measuring volume.	
2	Enumeration of cells (cell counting by Neubauer chamber).	4
3	Preparation of mitotic cells stages from onion root tip squash	4
4	Preparation of meiosis cell stages from Grass hopper testis cells.	8
5	Isolation of chloroplast from spinach leaves	4
6	Observation of specialized cells (Nerve cell, sperm cell, Muscle cell and	8
	Cardiac cell).	
7	Staining of macro molecules (Carbohydrate, Lipid and Protein)	4
8	Histochemistry: preparation of permanent slides, Periodic acid Schiff	8
	(PAS) reaction	
9	Mono & Dihybrid cross	4
10	Buccal smear preparation (Bar body preparation)	4

MODEL QUESTION PAPER (LAB IN CELL BIOLOGY & GENETICS)

NAME OF THE COURSE: LAB IN CELL BIOLOGY & GENETICS	COURSE CODE: 19U1BTCP01	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS	
1. (i) Explore any	one of the stages of mite	osis from the onion root	tip squash (A) sample.	
Display the res	ults for observation		(OR)	
(ii) Isolate the r	mitochondria from the g	iven plant sample (A). D	Display the results for	
observation			(OR)	
(iii) Perform to	tal blood cell count (cel	l counting by Neubauer	chamber) from the	
given blood san	mple (A). Display the re	sults for observation		
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform carb	ohydrate staining from	the given leaf sample (B). Display the results	
for observation			(OR)	
(ii) Isolate chlo	roplast from the given l	eaf sample (B). Display	the results for	
observation			(OR)	
		l from given buccal epitl	nelial cell sample (B)	
	method. Display the res			
SPOTTERS		(5 2	X 4 = 20 MARKS)	
3. Identify the given spotters C, D, E, F & G and comment on them				
RECORD $(1 \times 5 = 5 \text{ MARKS})$				
VIVA-VOCE 5 MARKS				
TOTAL	TOTAL 60 MARKS			

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

BIOCHEMISTRY I

Paper	: ALLIED I	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U1BCA01	External	: 75

PREAMBLE

To make the students to understand the basics biological molecules existing the living cell systems. Students also acquire knowledge on their biological functions and their importance in cell growth and development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquiring knowledge on carbohydrate and its types in biological systems.	K1 & K2
CO2	Understanding the basic concepts on proteins and amino acids and their properties	K1 & K2
CO3	Under the role of biological catalysts (Enzymes) and lipids, their role in basic biochemical reactions	K2, K3 & K4
CO4	To gain over all information on vitamins, their physiological functions and deficiency symptoms and consequent diseases	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	М
CO2	S	S	S	S	М
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	Carbohydrates –Carbohydrate – classification, monosaccharide"s (glucose, fructose, galactose & xylose)- physical and chemical properties, disaccharides (sucrose, lactose), polysaccharides (glycogen, starch, pectin, keratin sulphate & chondroitin sulphate).	12
Π	Amino acids and proteins: Classification, Structure, Essential and Non- essential amino acids. Definition, Classification, Functions and Properties of protein. Proteins structure -primary, secondary, tertiary and quaternary structures.	12
III	Enzymes: Definition, holo enzyme, apo enzyme, active site, Enzyme units,	12

	classification, Lock and Key model and Induced fit hypothesis. Enzyme			
	kinetics (MM & LB plot), factors affecting enzyme activity.			
IV	Lipids: Classification, structure, function and properties of simple, compound, Derived, Essential fatty acids and Non-essential fatty acids, cholesterol.	12		
V	Vitamins: Classification, occurrence, deficiency symptoms and biochemical functions of vitamins (Fat soluble and water soluble vitamins).	12		

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper"s Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G.Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY I)

NAME OF THE COURSE: BIOCHEMISTRY I	COURSE CODE: 18U1BCA01	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. The general formula of monosaccharide is						
a. CnH ₂ nOn	b. Cn ₂ H ₂ On		c. CnH ₂ O ₂ n		d. CnH ₂ nO ₂ n	
2. The aldose sugar is	S	•		·		
a. Glycerose	b. Ribulose	c. Ei	rythrulose	d. D	Dihydoxyacetone	
3. Polysaccharides ar						
a. Polymers	b. Acids		c. Proteins		d. Oils	
4. The most importar	t epimer of glucose is					
a. Galactose	b. Fructose		c. Arabinose		d. Xylose	
5. A heteropolysacch	raide among the followi	ng is	;			
a. Inulin	b. Cellulose		c. Heparin		d. Dextrin	
6. An example of a sa	aturated fatty acid is		-			
a. Palmitic acid	b. Oleic acid	(c. Linoleic acid		d. Erucic acid	
7. Molecular formula	of cholesterol is					
a. C27H45OH	b. C29H47OH		c. C29H47OH	Η	d. C23H41OH	
8. Sphingomyelins an	е					
a. Phospholipids	b. Nitrolipids		c. Glycolig	oids	d. Alcohol	
9. The end product of	f saponification is					
a. Glycerol	b. Acid	c. S	Soap		d. Both (A) and (C)	
10. All proteins conta						
amino acids	amino acids oc	curri	nino acids ing in nature		d. Only a few amino acids	
11. Sulphur containin	g amino acid is					
a. Methionine	b. Leucine		c. Valine		d. Asparagine	
12. An essential amin	12. An essential amino acid in man is					
a. Aspartate	a. Aspartate b. Tyrosine c. Methionine d. Serine					
13. Which of the follo	wing is a dipeptide?		1			
a. Anserine	b. Glutathione	c. (Glucagon	d	β –Lipoprotein	
		- I				

	14. Vitamins a	re							
	a. Accessory food factor	S	Generally synthesized in body	the	(roduced in endocrine glands			Proteins in nature
	15. One manif	estation of vi	tamin A defici	ency is	is				
	a. Painful join	nts b	o. Night blindr	ness	c	. Loss of	hair		Thickening of long bones
	16. Vitamin K	is found in -							
	a. Green leaf	y plants	b.	Meat		c. Fis	sh	d	. Milk
	17. In human body highest concentration of as			of ascor	bic ac	id is found	l in		
	a. Liver	b. Ad	renal cortex	c	. Adr	enal medu	lla	d	. Spleen
	18. A nucleosi	de consists o	f						
	a. Nitrogenou base		midine base +			pyrimidin hosphorou		Purine - b; se + s pl ospho	•
	19. RNA does							1 1	
a.	Uracil	b. Ad	enine	c	. Thy	mine		d. R	ibose
20. The major catabolic product of pyrimidines in				idines in	huma	ın is			
	a. Alanine	b. Ure	a	c.	Uric a	acid	d	G anine	9

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL TH	E QUESTIONS
21. A) Explain Polysaccharides	(OR)
B) Write the structure and importance of maltose.	
22. A) Classify the fatty acids with examples.	(OR)
B) Write the structure of cholesterol.	
23. A) Explain the reactions of amino acid with ninhydrin	(OR)
B) Describe the primary structure of protein	
24. A) Write about energy rich bond	(OR)
B) Explain oxidative phosphorylation	
25. A) Write about Vitamin E	(OR)
B) Explain the structure & sources of Vitamin C	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Classify the carbohydrate with examples

27. Classify the lipids with examples

28. Write the structural organisation of protein

29. Explain the double helical structure of DNA

30. Write the structure, physiological function & deficiency symptoms of Vitamin A

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN BIOCHEMISTRY I

Paper	: ALLIED PRACTICAL I	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 03
Credit	: 3	Internal	: 40
Paper Code	: 18U1BCAP01	External	: 60

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquiring knowledge on qualitative analysis of carbohydrates.	K3, K4 & K5
CO2	Acquiring knowledge on qualitative analysis of aminoacids.	K3, K4 & K5
CO3	Under the role of thin layer chromatography in the separation of amino acids	K3, K4 & K5
CO4	Under the role of thin layer chromatography in the separation of lipids	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	М
CO2	S	S	S	S	М
CO3	М	S	М	S	М
CO4	М	S	М	S	М

Ex. No	CONTENT	HOURS
1	PREPARATION OF SOLUTION Normal, Molar, Percentage solution and calculation	3
2	Analysis of sugars a) Monosaccharides - Glucose, Fructose.	6
3	Analysis of sugars a) Monosaccharides - Galactose, Pentose.	6
4	Analysis of sugars b) Disaccharides - Sucrose, Maltose and Lactose.	6
5	Analysis of sugars c) Polysaccharide – Starch	3

	Analysis of amino acids	
6	a) Histidine b) Tyrosine	0
7	Analysis of amino acids	6
	c) Tryptophan d) Methionine	U
0	Analysis of amino acids	2
8	e) Cysteine f) Arginine	5
9	Separation of amino acids by paper chromatography	3
10	Separation of lipids by thin layer chromatography	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY I)

NAME OF THE COURSE: LAB IN BIOCHEMISTRY I	COURSE CODE: 18U1BCAP01	DURATION: 3 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT
Total 25 MARKS
1. (i) Systematically analyze the give carbohydrate sample (A) and display the results for
observation (OR)
(ii) Separate the given lipid sample (A) by thin layer chromatography.
MINOR EXPERIMENT
Total: 25 MARKS
2. (i) Separate the given amino acid sample (B) by paper chromatography and display
the results for observation (OR)
(ii) Systematically analyze the give amino acid sample (B) and display the results for
observation.
RECORD $(1 \times 10 = 10 \text{ MARKS})$
TOTAL 60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SEMESTER II

MICROBIOLOGY

Paper	: Core II	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 19U2BTC02	External	: 75

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

	SE OUTCOMES	
(On successful completion of the course, students will be able to,	
COs	Outcome	CPD
CO1	To understand historical prospective on the evolution of microbiology and gaining the concepts microscopic techniques	K1 &K2
CO2	To acquire knowledge on the basic concepts on prokaryotic cellular structure	K1 &K2
CO3	To acquaintance of basic nutritional requirements of microorganism and their growth pattern and media requirements	K2, K3 & K4
CO4	To know about the anti-microbial therapy and their mode of action on controlling the growth of microorganisms	K2, K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	М	М
CO2	S	S	М	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	DEFINITION AND SCOPE OF MICROBIOLOGY: History and	15
	recent Developments: Contributions of Leevenhoek, Louis Pasteur,	
	Robert Koch, Elie Metchnikoff, Edward Jenner, Alexnder fleming,	
	Spontaneous generation, Biogenesis of Microbiology.	
II	MICROSCOPY: Simple and Compounds microcopes. Dark field	15
	contrast, Fluorescence microscopes. Electron microscopes (TEM &	
	SEM). Stain and staining techniques - Simple, differential and	
	special staining (Endospore and Capsular).	

III	CELLULAR STRUCTURES OF PROKARYOTES: Ultra structure and functions of bacterial cell wall, Plasma membrane, Flagella, Pili and capsule. Ultra structure of fungi, Viruses and cyanobacteria	15
IV	STERILIZATION AND CULTURE TECHNIQUES: Physical and chemical methods. Growth of bacteria – multiplication – nutritional requirements. Factors affecting growth. Growth curve, Determination of growth. Media and its types, Culture techniques (pure culture, anaerobic culture). Preservation of cultures.	15
V	ANTIMICROBIAL CHEMOTHERAPY: Definition and types of antibiotics. Mode of action of broad and narrow spectrum antibiotics.Anti-microbial resistance. Mechanisms of resistance. Test for evaluating anti-microbial effect.	15

SUGGESTED READINGS:

- 1. Microbiology concepts and application by Paul A. Ketchum, Wiley Publications 2010.
- 2. Fundaments of Microbiology- Frobisher, Sauders & Toppan publications 1975.
- 3. Microbiology Ronald M. Atlas 1993.
- 4. Introductory Biotechnology R.B. Singh C.B.D. India (1990)
- 5. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 6. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 7. Fundamentals of Bacteriology Salley 1996.
- 8. Microbiology Pelczar, Chan, Krieg, Tata McGraw Hill Publications 2005.
- 9. Frontiers in Microbial technology P.S. Bisen, CBS Publishers 1994.
- Biotechnology: International Trends of perspectives A.T.Bull, G. Holl, M.D.Lilly, Oxford & TBH publishers 1987.
- 11. General Microbiology-C.B.Powar, H.F. Daginawala, Himalayan Publishing House 2011.

MODEL QUESTION PAPER (MICROBIOLOGY)

NAME OF THE COURSE: MICROBIOLOGY	COURSE CODE: 19U2BTC02	DURATION: 3 Hrs
MAX MARKS: 75		

				KS) ANSWER AL		
	gdom,		gested by	E.H. Haeckel inc	ludes	
a. bacteria		b. algae		c. fungi		d. all the above
2. Who discover	ed the	bacteria that ca	use chol	era?		
a. Pierre Berthelot	t	o. Robert Koch		c. Louis Pasteur	d	. Rudolf Virchow
3. Which were	the inv	vestigators lived	d at the s	ame time?		
a. Darwin and Woese	e t	o. Koch and Pa	steur	c.Van Leeuenhoek Ricketts	and	d. Berg and Hooke
4. Which of the	follow	ing is not found	l in the k	tingdom Monera?		
a. Organelles	b. Or	rganized cell str	ructure	c. Ability to repr	roduce	d. Ability to use energy
5. Resolving pov	wer of	a microscope is	s a functi	on of		
a. Wavelength of ligh used	t b	o. Numerical ap of lens syste		c. Refractive ind	ex d.	Wavelength of light used and numerical aperture of lens system
6. In fluorescence except the blue			of the fo	llowing performs	the funct	ion of removing all light
a. Exciter filter		b. Barrier f	filter	c. Dichroic mirror d. Mercur		d. Mercury arc lamp
7. In Phase contr	rast mi	croscopy, the ra	ate at wh	ich light enters the	rough ob	jects is
a. Constant b.		rsely proportion refractive indic		c. Directly proporto to their refraction indices		d. Exponentially related to their refractive indices
8. Which among	the fo	ollowing helps u	is in gett	ing a three-dimens	sional pic	cture of the specimen?
a. Transmission Electron Microsco	ope	o. Scanning Elec Microscope		c. Compound Microscope	d.	Phase Contrast Microscope
9. Which of the	follow		ble for pr			
a. Hydra		b. Euglena		c. Chlamydor		d. mycoplasma
10. The unifying	featur	e of the archaea	that dis	tinguishes them from	om the b	acteria is
a. Habitats which are extreme environments with regard to acidity		b. Absence of a nuclear men temperature		c. Presence of a c wall containin characteristic membrane	ng a	 Cytoplasmic ribosomes that are 70S
11. Aspergillus n	-				1	tests and the set of t
a. cheese	b.	citric acid	c. g	luconic acid	d. c	itric acid and gluconic acid

12. Fungi are sensitive to which of the following antibiotics							
a. Penicillin	b. Tetracyclin		c. Chloramphenicol	d.	Griseofulvin		
13. SDA that suppor	13. SDA that supports the growth of fungi is composed of						
a.Glucose and ammonia	a.Glucose and ammonia b. Maltose and peptone c. Sucrose and peptone d. Peptone						
14. The portion of th	e growth curve wher	e a rap	oid growth of bacteria is	s observed	is known as		
a. Lag phase	b. Log phase		c. Stationary pha	se d.	Decline phase		
15. The generation ti	me for <i>E.coli</i> is			1			
a. 20 min	b. 35 min		c. 39 min	d.	13 min		
16. What is the color	of colonies of Staph	ylocod	ccus aureus upon its gro	owth in nu	trient agar ?		
a. Pink	b. Red		c. Violet	d.	Yellow		
17. Which bacteria h	ave an unusual capsu	le am	ong the following?	I			
a. H. influenzae	b. K. pneumo	nia	c. S. pneumoniae	<i>d</i> .	B. anthracis		
18. What is the chem	ical nature of endoto	xins?					
a. Protein b	Polysaccharide	c.	Lipo polysaccharide	d.	lipid		
19. Nystatin is effect	19. Nystatin is effective in curing?						
a. Deep mycoses b.	a. Deep mycoses b. Dermatophytosis c. Systemic mycoses d. Candidiasis						
20. Which drug is used for treatment of leishmaniasis?							
a.Chloroquine phosphate b. Metronidazole c. Sodium stibogluconate d. Suramin							

21. A) Explain the contributions of Louis Pasteur	(OR)
B) Explain about Biogenesis and Abiogenesis with examples	
22. A) Describe the working mechanism of phase contrast microscope B) Explain about SEM	(OR)
23. A) Write a short note on ultra-structure of bacterial cellB) Explain the structure of Fungi	(OR)
24. A) Explain the process of reproduction in bacteriaB) Brief various media involved in growth of microbes	(OR)
25. A) Elaborate the antimicrobial resistanceB) Explain the types of antibiotics	(OR)
SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUES	STIONS
26. Give detailed account on History of microbiology	
27. Give detailed account on TEM and specimen preparation	
28. Differentiate the Gram positive and negative organisms with examples	8
29. Write a detailed account on various sterilization techniques	
30. Explain different types of antibiotics and antimicrobial resistance	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN MICROBIOLOGY

Paper	: Core practical II	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U2BTCP02	External	: 60

PREAMBLE

To make students on understanding basic microbiological techniques, aseptic practices in laboratory. The candidate also shall know how to maintain and culture the microorganisms in laboratory and their biochemical identification mechanisms.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand and implement the principles of aseptic practices in laboratory	K1, K2 & K3
CO2	To gain knowledge on the media preparation and culturing the microorganism	K2, K3 & K4
CO3	To identify the microorganisms by staining techniques and biochemical tests	K3, K4 & K5
CO4	To check the growth pattern of microorganisms towards various classes antibiotics	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	М	М	S	М
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	General Laboratory rules to be followed in microbiological	3
	laboratory	
2	Sterilization techniques (Dry heat, Moist heat, Filtration - membrane	4
	and HEPA filters)	
3	Preparation of nutrient media (Solid, semi - solid and liquid)	5
4	Isolation of pure culture (Streaking methods - simple, continuous,	2
	quadrant and "T" streaking)	

5	Simple and negative staining	3
6	Differential staining (Gram"s staining, Capsule staining, Spore	10
7	Fungal staining (LCB)	5
8	Determination of bacterial motility (Hanging drop method)	5
9	Biochemical characterization of microorganisms (IMViC), TSI test, Carbohydrate fermentation test, Urease test, Catalase test	12
10	Antibiotic sensitivity test (Kirby-Bauer method)	10

MODEL QUESTION PAPER (LAB IN MICROBIOLOGY)

NAME OF THE COURSE: LAB IN MICOROBIOLOGY	COURSE CODE: 19U2BTCP02	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS		
1. (i) Perform Gr	1. (i) Perform Gram"s staining for the given sample (A). Display the results for observation. (OR)				
(ii) Perform L	CB staining for the giv	ven fungal (A) and displ	ay the results for observation. (OR)		
(iii) Identify t	he motility of the giver	n bacterial strain (A) and	d display the results for		
observation					
MINOR EXPE	RIMENT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Determine antibiotics	2. (i) Determine the sensitivity pattern of the given bacterial culture (B) against the given antibiotics (OR)				
(ii) Perform q observation	uadrant streaking from	the bacterial sample (B	B) and display the results for (OR)		
(iii) Perform catalase test for the given bacterial culture (B) for hydrogen peroxide production and display the results for observation					
SPOTTERS			(5 X 4 = 20 MARKS)		
3. Identify th	ne given spotters A, D,	H, F & G and comment	t on them		
RECORD					
VIVA-VOCE 5 MARKS					
TOTAL 60 MARKS					

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

BIOCHEMISTRY II

Paper	: ALLIED II	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U2BCA02	External	: 75

PREAMBLE

To make students on understanding basic biochemical reaction mechanisms of various biomolecules. The students also acquire knowledge on their regulation and also about the concepts of various endocrine systems and their deficiency consequences in human being.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of thermodynamics and energy production in living systems	K1 & K2
CO2	To understand the basic concepts of carbohydrate metabolism and their energy yield	K1, K2 & K4
CO3	To understand the basic concepts of protein & lipid metabolism and their energy yield	K1, K2 & K4
CO4	To understand the basic concepts of human endocrine system	K1, K2 & K4

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	М	М	S	М
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	Bio energetics – Laws of thermo dynamics, Concepts of free energy and standard free energy, Exergonic and Endergonic reactions. Electron transport chain. Inhibitors of ETC. Oxidative phosphorylation, High energy compounds.	12
II	Carbohydrate metabolism: Glycolysis, Citric acid cycle with Energetics, glycogenesis, Glycogenolysis, HMP shunt.	12
III	Protein metabolism: Transamination, oxidative and non-oxidative deamination, decarboxylation- urea cycle. Interrelationship of carbohydrates, proteins and fat metabolism.	12
IV	Lipid metabolism: Basic principles of lipid metabolism. Oxidation of	12

	saturated (α , β and ω) and unsaturated fatty acids. Oxidation of odd chain				
	fatty acids, Cholesterol biosynthesis and its importance.				
V	Endocrinology – Definition, Classification of Hormones, secondary				
	messenger(cAMP) Biological function and disorders of Pancreatic	12			
	Hormones (Insulin and Glucagon), Thyroid hormone (thyroxin).				

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper's Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G.Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY II)

NAME OF THE COURSE: BIOCHEMISTRY II	COURSE CODE: 18U2BCA02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS							
1. In exergonic reacti	on heat is						
a. Consumed b	b. Liberated c. No change in heat d. Enthalphy in more transfer than 1						
2. Hydrogen is transferred through a series of enzyme systems to form							
a. Oxygen	a. Oxygen b. Water c. Carbohydrate d. ATP						
3. One molecule of A	3. One molecule of ATP is equal to molecules of NADP						
a. 1	b. 2	c.3		d. 4			
4. Oxidative phospho	orylation occurs in						
a. Chloroplast	b. Mitochondria	с.	Endoplasmic re	eticulum	d. Tonoplast		
5. In which of the fol	lowing phase in glycoly	sis does th	e ATP is consul	med?			
a. Payoff phase	b. Interphase	c. Prepa	aratory phase	d. G	ap phase		
6. The term glycogen	olysis defines	·					
a. Break down of	b. Breakdown of	c. S	ynthesis of	d.	Synthesis of		
glucose	glycogen		glucose		glycogen		
7. HMP stands for							
a. Hexo kinase b	. Hexose mono nitrate	c. He	xose mono	d. He	xose mono		
shunt	shunt	pł	nosphate shunt	bı	utyrate shunt		
8. Which of the follo	wing enzyme mainly inv	volved in t	he process of gl	ycogenesis	s?		
a. Glucagon lyase	b. Glycogen lyase	c. Glyc	ogen synthase	d. Gluca	agon synthase		
9. Transamination of	amino acids is chiefly c	atalyzed b	у				
a. Deaminase	b. Transaminase	c. Trans	sketolase	d. Trans d	ecarboxylase		
10. Which of the follo	wing aminoacid involve	ed in Urea	cycle?				
a. Serine	b. Typtophan	c. Aspa	ragine	d. Citru	ılline		
11. SGOT is an enzyr	ne that catalyzes	reaction		1			
a. Deamination	b. Trans deamination	c. '	Transamination	d.	Decarboxylation		
12. Non-oxidative dea	amination reactions is ac	complishe	ed by				
a. The conversion of	b. Conversion	of	c. Removal	l of	d. None of the		
alpha amino group	-	oup to	amino g		above		
to ammonia			as nitro	gen			
13. Lipid metabolism	I	I					
a. Synthesis of	b. Oxidation of fatty		ction of fatty		Conversion of fatty		
fatty acids	acids	acid	8		acids in to glycerol		
		36					

14. Fatty acid synthas	14. Fatty acid synthase is a multi-enzyme complex composed ofsub units				
a. 1	b. 2	c. 3	d. 4		
15. Phenanthrene nuc	eus is found in				
a. Stigmesterol	b. Ergosterol	c. Cholesterol	d. Levosterol		
16. The precursor for	the cholesterol biosynthe	esis is			
a. Acyl Co-A	b. Acetyl Co-A	c. Aceto acetyl Co-A	d. Keto acyl Co-A		
17. Ductless glands se	cretes				
a. Serum	b. Hormone	c. Plasma	d. CSF		
18. Hyper insulinism	leads to				
a. Decreased level of glycogen	b. Increased level of glucose	c. Increased level of glucagon	d. Increased rate of muscle		
			phosphorylation		
19. Which of the follo	wing is an example for s	secondary messenger?			
a. cGMP b.	cTMP c	. cUMP	d. cAMP		
20. Thyroid hormone	20. Thyroid hormone is highly concentrated on				
a. Baso lateral	b. Baso lateral	c. Baso lateral	d. Baso lateral		
plasma membrane	plasma membrane plasma membrane		plasma		
of active	of active	membrane of	membrane of		
histiocytes	hepatocytes	active thyocytes	active		
			thrombocytes		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS		
21. A) Write short notes on standard free energy	(OR)	
B) Write about the inhibitors of ETC		
22. A) Explain the energetics of glycolysis	(OR)	
B) Write shortly on the process of glycogenesis		
23. A) Write short notes on transamination reactions	(OR)	
B) Write short notes on oxidative deamination reactions		
24. A) Explain the energetics of beta oxidation of fatty acids	(OR)	
B) Explain the oxidation of odd chain fatty acids		
25. A) Explain the clinical manifestations of hypo parathyroidism	(OR)	
B) Explain the complications faced by a victim having hyperglycemia		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give a detailed account on electron transport chain

27. Give a detailed account on TCA cycle

28. Elaborately discuss on Urea cycle with neat chemical reactions

29. Write an essay on cholesterol biosynthesis with neat chemical reactions

30. Explain the biological function thyroid hormone. Add a note on hypo and hyper thyroidism

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ALLIED – LAB IN BIOCHEMISTRY II

Paper	: ALLIED PACTICAL II	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U2BCAP02	External	: 75

PREAMBLE

To make students on understanding basic biochemical calculations and preparing reagents and solutions. The students also gain knowledge on estimating quantitatively the biomolecules substances.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Become familiar in preparing different strengths of solutions for the basic requirement of executing biochemical experiments	K1, K2, K4 & K5
CO2	To know about the quantitative determination on the strength of various specific biomolecules	K1, K2, K4 & K5
CO3	Gaining knowledge on using basic instruments such as colorimeter and UV spectrophotometer for measuring the colour intensity developed in the reaction mixture	K1, K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	М
CO2	S	S	S	S	М
CO3	S	S	S	S	М

Ex. No	CONTENT	HOURS
1	Estimation of glucose by ortho toluidine method	3
2	Estimation of glycine by formal titration method	3
3	Estimation of ascorbic acid by 2,4 dichloro phenol indo phenol method	3
4	Estimation of urea by diacetyl monoxime method	3
5	Estimation of DNA by diphenylamine method	3
6	Estimation of RNA by orcinol method	3
7	Estimation of protein by lowry"s method	3
8	Estimation of cholesterol by zak"s method	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY II)

NAME OF THE COURSE: LAB IN BIOCHEMISTRY II	COURSE CODE: 18U2BCAP02	DURATION: 3 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT	
	Total 25 MARKS
1. (i) Estimate the amount of glycine present in the given sample (A)	(OR)
(ii) Estimate the amount of ascorbic acid present in the given samp	ole (A)
MINOR EXPERIMENT	
	Total: 25 MARKS
2. (i) Estimate the amount of protein present in the given sample (B)	(OR)
(ii) Estimate the amount of RNA present in the given sample (B)	
RECORD (1 x 10) = 10 MARKS)
TOTAL	60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SEMESTER III

MOLECULAR BIOLOGY

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 19U3BTC03	External	: 75

PREAMBLE

To make students on understanding basic structure of genetic materials (DNA & RNA) and molecular concepts of a gene expression and its regulatory mechanisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of DNA/RNA structure and	K1, K2
	experimental evidences as genetic material	
CO2	To under the mechanisms of replication of DNA and it regulation	K1, K2, K4
CO3	To know about the transcription process and its modifications	K1, K2, K4
	into functional mRNA and translation into proteins	
CO4	To under the concepts of gene regulation and know about the	K2, K3, K4 & K5
	mechanisms of transposition	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	М	М
CO2	S	S	М	М	S
CO3	S	S	М	М	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
	Genetic material: Evidences showing DNA and RNA as genetic material;	12
Ι	DNA- Chemical composition & molecular structure, Watson and Crick"s	
	model - its biological significance; Forms of DNA (A, B, C, D & Z).	
	DNA replication: Origin & Models of - Meselson and Stahl"s experiment -	16
	types of replication - Mechanism of DNA replication in prokaryotes and	
II	eukaryotes - Enzymology of replication. DNA repair- causes of DNA	
	damage & biochemical mechanism of DNA repair. Homologous	
	recombination- Holliday model	
	Transcription: RNA types and functions; RNA polymerase; Transcription	16
III	in prokaryotes and eukaryotes; Post transcriptional modification -	

	Transcription and processing of RNA in prokaryotes; RNA editing.	
IV	Translation & Protein synthesis: Central dogma of life: Genetic code: Properties of genetic code; codon- anticodon interaction- Wobble hypothesis and elucidation of genetic code; Translation in prokaryotes and eukaryotes; Post translational modification of proteins & molecular chaperonins .	16
V	Regulation of gene expression : Gene expression in transcriptional level (lac and trp operon); gene expression in bacteriophages. Transposons – types and mechanism of transposition.	15

SUGGESTED READINGS:

- 1. David Freifelder . 1990. Molecular Biology, 2nd Edition. Narosa Publishing house
- 2. George M. Malacinski. 2008. Essentials of Molecular Biology, 4th Edition. Narosa Publishing house
- 3. Veer Bala Rastogi. 2010. Fundamentals of Molecular Biology. Ane Books India
- 4. James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine and Richard Losile. 2008. Molecular Biology of the gene, 5th Edition. Pearson Education.
- Lodhish, Berk, Matsun dairg, Kaiser, Krieger, Scott, Zipursky and Darnell. 2004. Molecular Cell Biology, 5th Edition. W. H. Freeman and Company
- 6. Robert F. Weaver. 1999. Molecular Biology. WCB Mc Graw Hill
- E. D. P. De Robertis & E. M. F De Robertis, Jr. 2001. Cell and Molecular Biology, 8th Edition. Lipin cott William and Wilkins
- 8. Lehninger. 2005. Principles of Biochemistry. Nelson Cox, CBS Publishers
- 9. Alexander Mc Lenna, Andy Bates, Puil Turner & Mike White. 2015. Molecular Biology, 4th Edition. GS Garlan Sciences, Taylor and Francis Group
- George M. Malacinski & David Freifelder. 1998. Essentials of Molecular Biology, 3rd Edition. Jones and Bartcett Publishers
- 11. Richard R. Sinden. 1994. DNA Structure and function. Academic press
- 12. R.C. Rastogi. 2010. Cell and Molecular Biology. New Age International Publishers
- 13. Pragya Khana. 2008. Cell and Molecular Biology. IK International Publishing House
- 14. William D. Stanfield, Jaine S. Colome and Raul J. Cano. 2008. Shaum"s Outline- Molecular Cell Biology. Tata Mc Graw Hill
- 15. H.S. Bhamrah & Kavita Juneja. 2002. Molecular Cell Biology. Anmol Publications
- 16. G. P. Jeyanthi. 2009. Molecular Biology. MJP Publishers
- 17. N. Vidhyarasthi & D. M. Chelan. 2007. Molecular Biology. IK International Publishing House
- P.S. Verma & V. K. Agarwal. 1998. Concepts of Molecular Biology. S. Chand and Company Ltd
- 19. Phil Turner, Alexander Mc Lennan, Andy Bates & Mike White. 2001. Molecular Biology, 3rd Edition. Bios Instant Notes
- 20. H. D. Kumar.2000. Molecular Biology, 2nd Edition. Vikas Publishing House
- 21. AVSS Sambamurhty. 2008. Molecular Biology. Narosa Publishing House

MODEL QUESTION PAPER (MOLECULAR BIOLOGY)

NAME OF THE COURSE: MOLECULAR BIOLOGY	COURSE CODE: 19U3BTC03	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. Number of hydrog	en bonds between adeni	ne and th	nymine is			
a. 1	a. 1 b. 2		c. 3			d. 4
2. Difference between	2. Difference between RNA and DNA lies on					
a. Sugar b.	Phosphate group	c. Niti	rogenous bas	e	d.	None of the above
3. The distance betw	een two adjacent nitroge	enous ba	se pair is			
a. 2.4	b. 3.4	c.4.4		(d. 5.	4
4. DNA in chromoso	me is tightly packed with	h				
a. Histones	b. Glycoproteins	c.]	Lipoproteins		d. C	Blycoproteins
5. Which of the follow	wing mode of replication	n is obse	rved in a livi	ng cell?)	
a. Conservative b	. Dispersive	c. Sen	ni-Conservati	ve	d.	None of the above
6. Which of the follow	wing protein relaxes the	frictiona	al pressure fo	ound on	the r	eplication fork?
a. Helicase	b. Gyrase	c.	Topoisome	rase	(d. SSB
7. Which of the follow	wing maintains the singl	e strand	ed nature of]	DNA?		
a. Helicase b. Gyrase c. Topoisomerase d. SSB		d. SSB				
8. Photo reactivation	of DNA is catalyzed by		-	I		
a. Gyrase	b. Topoisomerase	c. UV	r B	d	l. Ph	otolyase
9. The regulatory elements of the second sec	ments in a DNA is contr	olled by				
a. Cis elements	b. Trans elements	c. St	ructural elem	nents	d.	Control elements
10. Introns in mRNA	is removed by					
a. Editing b	. Splicing	c. Capp	ing	d. Po	oly ac	lenylation
	n holo and core enzyme	1				
a. Alpha subunit	b. Beta subunit	с.	Epsilon sub	unit		d. Zigma subunit
12. Formation of laria	t is commonly found du	ring				
a. Transcription b. Post transcriptional c. Translation d. Post translational modifications						
13. Each codon is cha	racterized by					
a. Singlet b. nucleotide	. Doublet nucleotide	c. Trij	plet nucleotic	le	d	I. None of the above

	14. The starting codon AUG codes for which of the following amino acid?					
	a. Cysteine	b. Methionine		c. Serine	d. Threonine	
15. Glycosylation of proteins describes the addition ofto the growing poly pepti					ing poly peptide chain	
	a. Glucose	b. Gelatin	c.	Chalmoogric acid	d. Vitamin A	
	16. Which of the foll	owing machinery invol	ved i	n post translational modifi	cations of proteins?	
	a. Molecular	b. Molecular	(c. Molecular channels	d. Molecular	
	motors	chaperons			locomotors	
	17. The function of trans acetylase is to					
a.	Transfer of	b. Transfer of CH	₃ C-	c. Transfer of CH ₂ C=O	d. Transfer of	
	CH ₃ C=O group	OH group		group	CH ₃ COOH group	
	18. Ty element is fou	Ind in			-	
	a. Bacteria	b. Fungi		c. Protozoa	d. Yeast	
	19. Retroposons is commonly found in					
	a. Retroviridae b. Rhinov			c. Adenoviridae	d. Poxviridae	
	20. Catabolic repress	ion refers to				
	a. Regulon	b. Operon		c. Citron	d. Recon	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS				
21. A) Explain the experiments that proves DNA as genetic material	(OR)			
B) Explain the structure of tRNA and mRNA with neat sketch				
22. A) Explain the Meselson"s & Stahl experiment	(OR)			
B) Write shot notes on prokaryotic DNA polymerase				
23. A) Explain RNA splicing	(OR)			
B) Explain the process of transcription termination				
24. A) Explain Wooble hypothesis	(OR)			
B) Explain the properties of genetic code				
25. A) Explain the mechanism of transposition	(OR)			
B) Explain the structure of lactose operon				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

- 26. Explain the chemical and physical structure of DNA
- 27. Give a detailed account on DNA replication in prokaryotes
- 28. Give a detailed account on Eukaryotic transcription
- 29. Explain the process of translation in prokaryotes
- 30. Explain the lac operon. Add a note on its regulation

LAB IN MOLECULAR BIOLOGY

Paper	: Core practical III	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BTCP03	External	: 60

PREAMBLE

To make students on understanding basic procedure in isolation separating purifying proteins. The students gain knowledge in DNA quantification and gene transfer methods

COURS	E OUTCOMES	
C	In successful completion of the course, students will be able to,	
COs	Outcome	CPD
CO1	To know about the isolation, purification and quantification of protein	K1, K2, K3, K4 & K5
CO2	To know about the separation and quantification of DNA	K1, K2, K3, K4 & K5
CO3	To know about the various types of gene transfer techniques	K1, K2, K3, K4 & K5 K1, K2, K3, K4 & K5
CO4	To identify and isolate the mutated bacterial by special techniques	K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	М
CO3	S	S	S	S	М
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of protein	4
2	Estimation of protein by Lowry"s method	4
3	Purification of protein by dialysis	4
4	Separation of proteins by native – PAGE	4
5	Separation of DNA by agarose gel electrophoresis	4
6	Quantification of DNA by UV-visible spectrophotometer	4
7	Induction of mutation in bacterial cells UV light	4
8	Bacterial DNA transformation by CaCl method	4
9	Bacterial conjugation	4
10	Isolation of auxotrophic mutants by replica plating technique	4

MODEL QUESTION PAPER (LAB IN MOLECULAR BIOLOGY)

NAME OF THE COURSE: LAB IN MOLECULAR BIOLOGY	COURSE CODE: 19U3BTCP03	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS		
1. (i) Isolate protein	1. (i) Isolate protein from the given sample (A). Display the results for observation. (OR)				
	protein from the g	given sample (A) by SDS	-PAGE. Display the results for		
observation.			(OR)		
			cell by appropriate method.		
Display the resu	lts for observation				
MINOR EXPERI	MENT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Purify the give	en protein sample	(B) by dialysis. Display	the results for observation (OR)		
(ii) Separate the	given DNA sampl	le (B) electrophoresis and	d display the results for observation		
	(OR)				
) for hydrogen peroxide production		
and display the r	results for observat	tion			
SPOTTERS			(5 X 4 = 20 MARKS)		
3. Identify the given spotters A, D, H, F & G and comment on them					
RECORD	RECORD $(1 \times 5 = 5 \text{ MARKS})$				
VIVA-VOCE	/IVA-VOCE 5 MARKS				
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

PLANT SCIENCE I

Paper	: ALLIED III	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BOA01	External	: 60

PREAMBLE

To make students on understanding basic concepts of fungi algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

С	In successful completion of the course, students will be able to,	
COs	Outcome	

COs	Outcome	CPD
CO1	To gain knowledge on basics of fungi and algae	K1 & K2
CO2	To gain knowledge on basics of bryophytes	K1 & K2
CO3	To gain knowledge on basics of lichens	K1 & K2
CO4	To gain knowledge on basic concepts of plant physiology	K1, K2 & K4

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	М	S	S	S
CO3	S	М	S	S	S
CO4	М	S	S	М	М

UNIT	CONTENT	HOURS
I	ALGAE: General characteristics of algae. Study on thallus structure, reproduction and life cycle of <i>Gellidium</i> , <i>Gracillaria</i> and <i>Polysiphonia</i> . Economic importance of algae in industries.	12
II	FUNGI: General characteristics of fungi. Study on thallus structure, reproduction and life cycle of <i>Agaricus, Penicillium</i> and <i>Saccharomyces cerevisieae</i> . Economic importance of fungi.	12
III	LICHENS: General characteristics of fungi. Study on thallus structure, reproduction of foliose, Crustose, Fruticose and Squamulose groups of lichens	12
IV	BRYOPHYTES, PTERIDOPHYTES AND GYMNOSPERMS: General characteristics. Study on the structure, reproduction and life cycle of bryophytes (<i>Marchantia</i>), Pteridophytes (<i>Lycopodium</i>), Gymnosperms (Cycus) and their economic importance.	12
V	PLANT PHYSIOLOGY: Absorption of water (Active and passive). Photosynthesis (Light and Dark reactions). Cyclic and non-cyclic photophosphorylation. Transpiration and its types (Stomatal transpiration).	12

SUGGESTED READINGS:

- Vashishta BR, AK. Sinha. (2010). Botany for Degree student Fungi. S. Chand & Co. New Delhi.
- 2. Pandey SN, Mishra SP and Trivedi PS. (2009). A text book of
- 3. Botany, Vol II, Vikas Publishing House Pvt. Ltd., Delhi.
- 4. Rao, KN, Krishnamoorthy KV and Rao GS. (1979). Ancillary Botany S. Viswanathan Pvt., Madras.
- 5. Text Book of Algae. (2018). KS. Bilgrami and LC Saha, 1st edition, CBS Publishers.
- 6. Algae. (2011). OP. Sharma, Tata Mc Graw Hill Education.
- 7. Advances in Mycology. (2012). Sohan Sharma, random Publications Publishers and Distributors, New Delhi.
- 8. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited.
- 9. BP Pandey. (1986). Text Book of Botany, Vol I & II Chand. S & Co. New Delhi.
- 10. Fuller. HJ and Tippo O. (1949). College Botany, Henry Holt & Company.
- 11. Ganguly AK. (1975). General Botany Vol I. (1971) and Vol II. The new Book stall, Calcutta.

LAB IN PLANT SCIENCE I

Paper	: ALLIED PRACTICAL III	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BOAP01	External	: 60

PREAMBLE

To make students on understanding basic concepts of fungi algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

C	On successful completion of the course, students will be able to,				
COs	Outcome	CPD			
CO1	To gain knowledge on the identification of fungi and algae	K4, K5 & K6			
CO2	To gain knowledge on the identification basics of bryophytes	K4, K5 & K6			
CO3	To gain knowledge on the economic importance of major plant kingdoms	K4, K5 & K6			
CO4	To gain experimental knowledge on plant physiology	K4, K5 & K6			

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	
CO1	М	М	М	S	М	
CO2	S	S	S	S	М	
CO3	S	S	М	S	S	
CO4	S	S	S	S	S	

1.	Sectioning of given specimens	$(3 \times 8 = 24 \text{ marks})$
	a. Algae (or) Fungi	8 marks
	b. Bryophyte (or) Pteridophyte	8 marks
	c. Gymnosperms	8 marks
2.	Identification of spotters (Permanent slides)	(4 x 3 = 12 marks)
	d. Algae (or) Fungi	4 marks
	e. Bryophyte (or) Pteridophyte	4 marks
	f. Gymnosperms (or) Lichens	4 marks
3.	Identification of spotters (Morphology)	$(3 \times 3 = 9 \text{ marks})$
	g. Algae	3 marks
	h. Fungi	3 marks
	i. Bryophyte/Pteridophyte/Gymnosperm	3 marks
4.	Identification of the given setup (Physiology)	(3 x 1 = 3 marks)
	j. Ganong"s photometer (or) Wilmutt"s bubbler	
5.	Identification of spotter (Economic importance)	(1 x 2 = 2 marks)
	k. Gellidium (or) Penicillium (or) Yeast	
6.	Record	10 marks

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC I LAB IN IN FOOD PROCESSING AND TECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 40
Paper Code	: 18U3BTS01	External	: 60

PREAMBLE

To make students on understanding basic concepts of food quality management and deals with various food processing concepts and technologies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge on the identification of fungi and algae	K4, K5 & K6
CO2	To gain knowledge on the identification basics of bryophytes	K4, K5 & K6
CO3	To gain knowledge on the economic importance of major plant kingdoms	K4, K5 & K6
CO4	To gain experimental knowledge on plant physiology	K4, K5 & K6

MAPPI	MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5	
CO1	М	М	М	S	М	
CO2	S	S	S	S	М	
CO3	S	S	М	S	S	
CO4	S	S	S	S	S	

UNIT	CONTENT	HOURS
1	To study different types of blanching of fruits and vegetables	4
2	Preservation of food by canning	4
3	To perform cut out analysis of caned product	4
4	Preservation of food by high concentration of sugar i.e. jam	4
5	Preservation of food by high concentration of salt/acid i.e. pickle	4
6	Preservation of food by addition of chemicals i.e. tomato ketchup	4
7	Preservation of milk by pasteurization and sterilization	4
8	Determination of total fat, protein in milk and milk products	4
9	Estimation of synthetic Food colour in sweets, confectioneries and	4
	beverages	
10	Detection of adulterants in edible oil and ghee	4

MODEL QUESTION PAPER (LAB IN FOOD POCESSING AND TECHNOLOGY)

NAME OF THE COURSE: LAB IN FOOD PROCESSING AND TECHNOLOGY	COURSE CODE: 18U3BTS01	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIME	INT		
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS
1. (i) Perform cutout a	nalysis of the given can	ned food sample (A). Di	splay the results for
observation.			(OR)
(ii) Preserve the give	en food sample (A) by s	sugar/salt/acid	(OR)
(iii) Estimate the am	nount of total fat from th	e given milk sample (A)	
MINOR EXPERIME	NT		
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS
2. (i) Perform food pre	servation by chemical a	dditives for the given for	od sample (B) (OR)
(ii) Perform pasteur	ization of milk from the	given milk sample (B)	(OR)
(iii) Estimate the am sample (B)	nount of synthetic Food	colour in the given swee	t/confectionary/beverage
SPOTTERS		(5 2	$\mathbf{X} \ 4 = 20 \ \mathbf{MARKS})$
3. Identify the given sp	potters A, D, H, F & G	and comment on them	
RECORD		(1 x	$\mathbf{x} \ 5 = 5 \ \mathbf{MARKS})$
VIVA-VOCE			5 MARKS
TOTAL			60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC I DEVELOPMENTAL BIOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U3BTS02	External	: 75

PREAMBLE

To make students on understanding basic concepts of mammalian developmental systems and also to deals with the developmental system plants

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the concepts of animal system development	K1, K2 & K3
CO2	To understand the concepts of vertebrate system development	K1, K2 & K3
CO3	To understand the concepts of plantsystem development	K1, K2 & K3
CO4	To understand the concepts of invertebrate system development	K1, K2 & K3

MAPPI	MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5	
CO1	S	S	S	М	М	
CO2	S	S	S	М	М	
CO3	S	S	S	М	М	
CO4	S	S	S	М	М	

UNIT	CONTENT	HOURS
Ι	Basic concepts of development in animal system-I Stages of development- zygote, blastula, gastrula, neurula, cell fate & commitment – potency- concept of embryonic stem cells, lineages of three germ layers.	8
II	Basic concepts of development in animal system-II Mechanisms of differentiation- cytoplasmic determinants, embryonic induction, concept of morphogen, mosaic and regulative development, model organisms in Developmental biology.	8
ш	Early Development in invertebrate / vertebrate models Drosophila, <i>C.elegans</i> , Xenopus, Mouse/ human, Cleavage, gastrulation, Axis specification (Dorsoventral, anterior posterior), and body plan patterning.	8

IV	Late Development in invertebrate /vertebrate modelsOrganogenesis-developmentofcentralnervoussysteminvertebrates, vulval formation in C.elegans	8
V	Basic concepts of development in Plant system Organization of the plant cell, plant meristems and cell fate; root and shoot development; secondary growth; vascular development; Sexual reproduction; flower development; mechanisms of gametogenesis and fertilization.	8

MODEL QUESTION PAPER (DEVELOPMENTAL BIOLOGY)

NAME OF THE COURSE: DEVELOPMENTAL BIOLOGY	COURSE CODE: 18U3BTS02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS							
1. How many cleavages are completed in 16 cell stages of frog's egg?							
a. 3	b. 8		c. 4 d. 12				
2. The expulsion of	oulsion of completely developed foetus from the uterus is known as						
a. Ovulation	b. placentation	n	c. gestation		d. parturition		
3. For fertilization	of frog"s egg						
a. Sperms of same species are essential	b. Sperms do not need penetratio		Sperms of any animal can fer		d. Only presence of male is sufficient		
4. Grey crescent is	present in						
a. Zygote of frog	b. Brain of rabbi	t c.	Eye of frog	(d. Retina of cockroach		
5. Which of the fol	lowing does not sho	w metam	orphosis?				
a. Frog	b. Housefly		c. Hydra		d. Mosquito		
6. The first phase in	n the sexual reprodu-	ction of o	organisms is				
a. Spermatogenesis	b. Oogenesis	c	Spermiogenesi	S	d. Gametogenesis		
7. The formation, d	evelopment and ma	turation of	of the female g	amete	is called		
a. Ovulation	b. Oogenesis	с.	Vitellogenesis		d. Folliculogenesis		
8. During fertilization	on the spermatozoa	penetrate	through the eg	gg men	nbranes with the help		
a. Flagellum b	-	rm lysins osome	released from th	ne d. N	Mitochondira located at the middle piece		
9. During normal d	evelopment the activ	vation of	the egg is achi	ieved b	у		
a. Vitellogenesis	b. Oogenesis	c	Spermatogenes	sis	d. Fertilization		
10. When the eggs a	are released from the	e ovary o	f frogs they are	e at the			
a. primary oocyte stage	b. secondary ooc	yte stage	c. ootid stag	ge	d. matured ova stage		
11. The formation of	f the neural tube is l	known as					
a. Neurulation	b. Tubulation	с.	Craniation	d.	None of the above		
12. During metamor	rphosis, the disappea	arance of	larval organs	is calle	d		
a. Histogenesis	s b. Paedogenesis c. Histolysis d. Paedomorphosis						
13. Cleidoic eggs an					1		
a. Birds	b. mammals	c. insects d. molluscs					
14. Metamorphosis is a characteristic feature of							

	Direct ontogenic development	b. Indirect ontogenic development	c. (Chordates	d.	Embryogenesis in mammals
15. The sexual embryo of the male and female frogs is called						
a.	Copulation	b. Amphimixis	c. \$	Syngamy		d. Amplexus
	16. Human egg is					
	a. Centrolecithal	b. Microlecithal	c. 1	Mesolecitha	1	d. Telolecithal
	17. Which of the fol	lowing develops from ec	ctoderm?			
	Spinal cord and brain	b. Liver and heart	c. Eye a	und skin		d. Notochord and vertebral column
		ne structurally and funct ss of differentiation calle	•	-	an, e	each spermatid has to
a.	Spermiation	b. Spermiogenesis	c. Spe	rmatogenes	is	d. Androgenesis
	19. In the human fer	nale, the primary oocyte	s remain s	small witho	ut ar	y growth for
a.	4-5 years	b. 6-8 years	c. 8	8 - 10 years		d. 12 -14 years
20. The sperm produces substances of enzymatic nature of sperm lysin. In mammals, it is called						
a.	Hyaluronidase	b. Hyaluronic acid	c. And	lrogamone		d. Cryanogamone

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUES	STIONS
21. A) What is differentiation? How it differs from redifferentiation?	(OR)
B) What is meant by embryonic period of development?	
22. A) State the functions of cytoplasmic determinants.	(OR)
B) Define inductive signals with an example.	
23. A) Define cleavage and mention its importance.	(OR)
B) What is gastrulation? State its significance.	
24. A) How the nervous system develops in human?	(OR)
B) What make up the central nervous system of vertebrates?	
25. A) Define plant meristem. State its types.	(OR)
B) Draw the structure of a flower and label its parts.	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. What are the stages of a developing embryo? Give illustrations.

27. Why Drosophila melanogaster is used as model organisms? Comment on it.

28. Justify the statement - *Caenorhabditis elegans* as an emerging model for studying the basic biology.

29. Describe germ layers and organs produced by them in detail.

30. Draw the structure of plant cell and elaborate its cell inclusions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC I FOOD BIOTECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 40
Paper Code	: 18U3BTS03	External	: 60

PREAMBLE

To make students on understanding basic concepts of food preservation methods by applying technological basics. The paper also deals with the food spoilage, food adulteration and development of value added products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the concepts of basic food preservation methods	K1 & K2
CO2	To understand the role of water in food spoilage and preservation	K1 & K2
CO3	To explore the physical factors involving in food processing	K1 & K2
CO4	To make familiar with food sanitation and its importance	K2, K2 & K3

MAPPING WITH PROGRAMME OUTCOMES						
COs	PO1	PO2	PO3	PO4	PO5	
CO1	S	S	S	S	S	
CO2	S	S	S	S	S	
CO3	S	S	S	S	S	
CO4	S	S	М	М	М	

UNIT	CONTENT	HOURS
Ι	Food Preservation by application of Heat: Principles of Heat Transfer, Blanching, Pasteurization, Heat Sterilization.	8
II	Food Preservation through Water Removal: Forms of Water in Foods, Sorption of Water in Foods, Water Activity, Drying Technology, Evaporation Technology.	8
III	Food Preservation through Temperature Reduction: Chilling, Freezing, Food Preservation by Radiation, Ionizing Radiation, Microwave.	8
IV	Food Preservation by use of: Salt, Smoke, Sugar, Other Chemical Additives, Food Packaging, Food Plant Sanitation, Environmental Aspects of Food Processing.	8
V	Roles and Scientific Use of Water in Food Processing, Food Processing Waste Management, Process Operations, Principles, Good Manufacturing Practices, Food Laws and Regulations.	8

MODEL QUESTION PAPER (FOOD BIOTECHNOLOGY)

NAME OF THE COURSE: FOOD BIOTECHNOLOGY	COURSE CODE: 18U3BTS03	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	N - A (1 X 20 = 20 MARKS)	ANSWER ALL THE (QUESTIONS					
1. Pasteurization is th	ne process of heating milk							
a. Above 121°C	b. Above boiling point	bove boiling point c. Below boiling point						
2. Cold sterilisation	2. Cold sterilisation refers to the preservation of food by							
a. Refrigeration	b. Radiation c	. Dehydration	d. Lyophilisation					
3. Who is regarded a	s the father of canning?							
a. Nicolas appert	b. Louis Pasteur	c. John hall	d. Bryan dokin					
4. The reason for foc	d spoilage is							
a. Growth of microo	-	c. Rancidity	b. All the above					
5. Before drying, veg	getables should be							
a. Autocleave	b.Salted	b. Blanched	c. Sulfured					
6. A food additives t	hat prevent colour and flavou	r loss						
a. Enzymes	b. Yeast c. Fruit buffer d. Ascorbic acid							
7. Preventing the gro	wth of pathogens in food							
a. Danger zone b.	Contamination c. Food p	reservation d. Cro	oss contamination					
8. Jam and jellies and	d preserves can be preserved	by adding sugar at conc	entration of					
a. 65%	b. 75%	c. 40%	d. 30%					
9. A fungus that caus	ses fermentation							
a. Bacteria	b. Mold	c. Yeast	d. Virus					
10. A type of food pr containers	eservation technique that inv	olves sealing food in st	erilized air light					
a. Irradiating	b. Canning	c. Freezing	d. Drying					
11. Iodized salt conta	ins iodine in the form of	I 						
a. NaCl b. KIO3 c. Kl d. Na			d. Na					
12. The first synthetic	c sweetening agent used as	?						
a. Cyclamates	a. Cyclamates b. Aspartame c. Sucralose d. Sacchavrin							
13. Agar-agar is used	-	e. Sucharose	a. Succhavini					

Antibiotic	b. S	Stabilizer and thickness	c.	Nutrient supplement	d. Colouring agent		
14. Frozen storage is generally operated at temperature of							
a0°C b18°C c50°C d. 60°C							
15. What is the b	est n	nethod in storing nuts?			1		
Vacuum packing	5	b. Smoking		c. Drying	d. Freezing		
16	_Sta	ndard help ensure food qualit	y?		1		
a. National		Packing		b. Legal	c. All of these		
17. The freezing point for pure water is							
a. 10		b. 28		c. 15	d. 32		
18. Corn syrup is	s a m	ixture of			1		
a. dextrose and		b. Dextrose and		c. Galactose and	d. Glucose and		
maltose		Galactose		Maltose	Galactose		
19	is	essential for forming haemo	gloł	oin in the blood	1		
Calcium		b. Iron		c. Phosphorn	d. Magnesium		
20. Fat is completely digested in the							
a. Stomach		b. Mouth		c. Small intestine	d. Mouth		
05.07			1.101				
			NS	WER ALL THE QUES	(OP)		
	 14. Frozen storag a0°C 15. What is the b Vacuum packing 16	14. Frozen storage is a0°C 15. What is the best n Vacuum packing 16Star a. National 17. The freezing point a. 10 18. Corn syrup is a m a. dextrose and maltose 19is Calcium 20. Fat is completely a. Stomach	14. Frozen storage is generally operated at temperated	14. Frozen storage is generally operated at temperaturea. $-0^{\circ}C$ b. $-18^{\circ}C$ 15. What is the best method in storing nuts?Vacuum packingb. Smoking16Standard help ensure food quality?a. NationalPacking17. The freezing point for pure water isa. 10b. 2818. Corn syrup is a mixture ofa. dextrose and maltoseb. Dextrose and Galactose19is essential for forming haemoglobCalciumb. Iron20. Fat is completely digested in thea. Stomachb. Mouth	1114. Frozen storage is generally operated at temperature ofa. -0° Cb. -18° Cc. -50° C15. What is the best method in storing nuts?Vacuum packingb. Smokingc. Drying16Standard help ensure food quality?a. NationalPackingb. Legal17. The freezing point for pure water isa. 10b. 28c. 1518. Corn syrup is a mixture ofa. dextrose and maltoseb. Dextrose and GalactoseC. Galactose and Maltose19is essential for forming haemoglobin in the bloodCalciumb. Ironc. Phosphorn20. Fat is completely digested in thea. Stomachb. Mouthc. Small intestineSECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUES		

21. A) Write short notes on pasteurization	(OR)
B) Write a short notes on principles of food preservation	
22. A) Explain drying	(OR)
B) Define contamination? What is the role of water in contamination?	
23. A) Notes short notes on freezing?	(OR)
B) Explain the role of radiation in food preservation	
24. A) Write short notes on chemical additives?	(OR)
B) Describe the role of salt and sugar in food preservation?	
25. A) What is food processing? Explain?	(OR)
B) Food laws and regulations?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Write the essay on food preservation principles and application?

27. Explain the evaporation methodology?

28. Write an essay on the physical, chemical methods of food preservation?

29. Write an essay on the environmental aspects of food processing?

30. Roles and scientific uses of water in food processing industries?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SEMESTER IV

GENETIC ENGINEERING

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 19U4BTC04	External	: 75

PREAMBLE

To make students on understanding basic principles of gene manipulation and its application in the development of novel pharmaceutical and drug products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To know about DNA manipulating enzymes and its role in rDNA technology	K1 & K2
CO2	To gain knowledge on different types plasmid vectors and their usage	K1 & K2
CO3	To acquire knowledge on basic gene cloning strategies	K2, K3 & K4
CO4	To evaluate the usage and applications of gene cloning for the development value added products	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	М	S	S	S	S
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	SCOPE AND MILESTONES OF GENETIC ENGINEERING: Biomolecular tools and their applications in genetic engineering: Restriction endonucleases and its types, DNA polymerases, DNA Ligase, Methylase, Taq polymerase, Reverse transcriptase. DNA modifying enzymes (Alkaline phosphatase, Polynucleotide kinase, Terminal deoxy nucleotidyl transferase). S1nuclease, RNAse H and DNAse I.	15
II	GENE CLONING VECTORS: Plasmids (PBR322, PUC and BAC), Lambda vectors, Phagemids, Cosmids, M13 vectors, Shuttle vectors and artificial chromosomes (YAC and BAC). DNA sequencing (Maxam-Gilbert and Dideoxy) methods. DNA amplification: PCR (Principles & types - RT PCR, Real time PCR and Nested PCR). cDNA synthesis and cloning:	15

Ī		mRNA enrichment, reverse transcription.	
	III	CLONING STRATEGIES: Cloning of interacting genes - Yeast two hybrid systems. Cloning of differentially expressed genes - Nucleic acid micro arrays and Site directed mutagenesis. Methods to study gene regulation: DNA transfection, Primer extension, S1 mapping, RNase protection assay.	15
	IV	INTRODUCTION TO CLONING: Detection & Screening of clones. Expression strategies for heterologous genes. Vector engineering and codon optimization. <i>In-vitro</i> transcription, expression of cloned genes in prokaryotes (bacteria – Glucose promoter) and eukaryotes (Yeast – Alcohol promoter).	15
	V	APPLICATIONS OF rDNA TECHNOLOGY: Processing of recombinant proteins, Purification and refolding, characterization of recombinant proteins, stabilization of proteins. T-DNA tagging and transposon tagging: Role of gene tagging in gene analysis, Transgenic and gene knock out technologies: Targeted gene replacement and chromosome engineering.	15

SUGGESTED READINGS:

- 1. Molecular cloning: a laboratory manual. J. Sambrook, EF. Frisch and T. Maniatis, Cold Spring Harbor Laboratory Press, New York.2000.
- 2. DNA cloning: a practical approach, DM. Glover and BD Hames, IRL Press, Oxford, 1995.
- 3. Molecular and Cellular Methods in Biology and Medicine, PB. Kaufman, W.Wu. D, Kim and L.J Cseke, CRC Press, Florida, 1995.
- 4. Methods of Enzymology vol. 152, Guide to molecular cloning techniques, SL. Berger and AR. Kimmel Academic Press, Inc. An Diego, 1998.
- 5. Methods in Enzymology. Vol 185, gene expression technology, DV. Goeddel Academic Press, inc. San Deigo, 1990.
- 6. DNA science. A first Course in Recombinant Technology. DA. Mickloss and GA.Freyer; CokJ Spring Harbor Laboratory Press, New York, 1990.
- 7. Molecular Biotechnology. SB. Primrose, Blackwell Scientific Publishers, Oxford, 1994.
- 8. Milestones in Biotechnology. Classic papers on genetic Engineering. JA. Davis and WS. Reznikoff, Butterworth-Heinemann, Boston, 1992.
- 9. Route maps in Gene technology, MR. Walker and R. Rapley, BlackwelScience Ltd., Oxford, 1997.
- 10. Genetic Engineering. An Introduction to gene analysis and exploitation in eukaryotes, SM. Kingsman and AJ. Kingsman, Blackwell Scientific Publications, Oxford, 1998.
- 11. Molecular Biotechnology Glick and Pasternak.
- 12. Principles of gene manipulations Old & Primrose.

MODEL QUESTION PAPER (GENETIC ENGINEERING)

NAME OF THE COURSE: GENETIC ENGINERING	COURSE CODE: 19U4BTC04	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (20 X $1 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. <i>Taq</i> polymerase is isolated from						
a. E.coli	aquati	b. Thermus c. Thermus d. Bacillus stereothermophilus aquaticus marinus				
2. Which of t	he following s	equence is	recognized	d by Hind III?		
a. AA GCTT	b.	A AGCTT		c. GTCGA	С	d. GT CGAC
3. RNase H	cleaves	hybrid				
a. DNA-RNA	b.	DNA-DNA	A	c. RNA-RN	A	d. RNA-Protein
4. Which of t	he following e	enzyme is u	sed to crea	ate the sticky end	s on DNA?	
a. Acid phosphata	se	cleotidyl ki		. Terminal deoxy nucleotidyl tran	ferase	Alkaline phosphatase
5. Which of t	he following v	ectors cont	ains Ori "(C" sites from two	different s	pecies?
a. Cosmids	b. M1	3 vectors		c. Shuttle vecto	rs	d. Phagemids
6. The insert	ional vector λ	gt10 can ab	le to carry	up toof	f foreign D	NA
a. 4 kb		5 kb		c. 7 kb		d. 8 kb
	YRp7 is					
a. 5.8 kb		6.8 kb		c. 5.7 kb		d. 6.7 kb
8. Which of t	he following c	ontains cov	alently clo	osed single strand	led circular	DNA molecules?
a. Phagemids	b.	M13 vecto	rs	c. Shuttle ve	ectors	d. Cosmids
9. Which of t	he following I	ONA is used	d as templ	ate in chain termi	nation met	hod DNA sequencing?
a. Plasmid D	NA b. C	Genomic D	NA	c. Viral DN	A	d. λ DNA
10. Denaturat	ion of DNA du	uring PCR i	is usually o	carried out at	°C	
a. 94	84			b. 64		c. 74
-	11. The processed RNA is partially degraded by exonucleases to produce functional trancriptome. This method is called as					
a. cDNA libra	iry b	. mRNA ei	nrichment	c. DNA		d. DNA
constructi	on			sequer	ncing	amplification
12. In yeast two hybrid analysis, the target gene is fused with the gene for one of the pair if transcription factors and the vector construct is ligated in to avector						
a. YAC					d. Lambda	
13. The gluco	amylase (GOX	K) promoter	found in .	Aspergillus nidul	ans is indu	ced byand
repressed	repressed by					
			f	56		

	a. Starch, Glucose	b. Starch, Fructose	c. Starch, Galactose	d. Starch, Xylose	
	14. The chemical me kb	thod of DNA sequencing	can be used to rapidly sequend	ce DNA that are	
	a. < 0.5	b. > 0.5	c. < 1.0	d. >1.0	
	15. The DNA – phos	phate containing mixture i	s incubated with the recipient	cells for	
a.	24 hrs	b. 48 hrs c	c. 72 hrs	d. 98 hrs	
	16. Short pulses are g	generated in electroporatio	n in higher voltage at the rate	of	
	a. 1100 V	b. 1200 V	c. 1300 V	d. 1400 V	
	17. Which of the following protein is first manipulated for enhancing its enzymatic activity through protein engineering?				
	a. Amylase	b. Subtilisin	c. Anti-trypsin	d. Chymotrypsin	
			nonitoring for the purification of polymers like DNA, RNA,	•	
	a. Enrichment	b. Manipulating	c. Incorporation	d. Sequence specific	
	assay	assay	assay	targeting assay	
	19. Which of the following method comes under gene tagging technology?				
a.	Selection based gene tagging	b. rDNA tagging	c. Marker assisted tagging	d. Epitope tagging	
	20. The given chrome	osome can be engineered	by the principle of		
	a. Addition	b. Point mutation	c. Inversion	d. None of the above	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER AI	LL THE QUESTIONS
21. A) Write short notes on DNA modifying enzymes	(OR)
B) Write short notes on type III restriction endonuclea	ses
22. A) Write about PBR 322 with neat illustrations	(OR)
B) Explain about the principle of mRNA enrichment	
23. A) Explain the process of site directed mutagenesis	(OR)
B) Explain the principle of S1 mapping with neat illus	trations
24. A) Give a brief account on codon optimization	(OR)
B) Explain the expression of cloned in eukaryotes with	n suitable example
25. A) Write short notes on transposon tagging	(OR)
B) Write shortly about gene knock technology	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give detailed account on restriction endonucleases

27. Give detailed account on M13 vectors

28. Give detailed account on cloning differentially expressed genes

29. Give detailed account on expression of heterologous genes

30. Give detailed account on processing, purification, refolding and characterization of recombinant proteins

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN GENETIC ENGINEERING

Paper	: Core Practical IV	Total Hours	: 75
Hours/Week	: 4	Exam Hours	:06
Credit	: 3	Internal	: 25
Paper Code	: 19U4BTCP04	External	: 75

PREAMBLE

To make students on understanding basic principles on the usage of genomic and plasmid DNA in the development of microbial recombinant clones by selection strategies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To isolate genomic and plasmid DNA, and to digest them restriction	K2, K3 & K4
	enzyme	
CO2	Shall acquire practical knowledge on ligating vector and target DNA	K2, K3, & k4
CO3	Shall know about the amplification strategies of cloned vector	K3, K4 & K5
CO4	To demonstrate the selection of recombinant clones by using selectable markers	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Genomic DNA from <i>E.coli</i>	10
2	Isolation of Plasmid DNA mini prep and maxi prep from <i>E.coli</i>	10
3	Construction of restriction map of a plasmid by Hind III and BamHI	10
4	Ligation of DNA and plasmid by T4 DNA ligase	5
5	Purification of DNA fragment from gel by electro-elution	5
6	Amplification of ligated plasmid by PCR	10
7	Transformation of recombinant DNA in Host E.coli by CaCl method	10
8	Selection of recombinant clones by (IPTG-X-gal: Blue white selection)	15

MODEL QUESTION PAPER (LAB IN GENETIC ENGINEEING)

NAME OF THE COURSE: LAB IN GENETIC ENGINEERING	COURSE CODE: 19U4BTCP04	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS		
4. (i) Isolate genor	mic DNA from the	given bacterial sample	e (A). Display the results for		
observation			(OR)		
(ii) Isolate plas	mid DNA from the	e given bacterial sampl	e (A). Display the results for		
observation			(OR)		
	0	6	pple (A) using the given		
enzyme/s. Display the		tion			
MINOR EXPERIME					
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
	Ū.	ONA sample (B) using	DNA ligase. Display the		
	results for observation (OR)				
	NA transformation	in the given host cell s	sample (B) using calcium		
chloride			(OR)		
· · ·	given DNA sample	e (B) by electro elution	n. Display the results for		
observation					
SPOTTERS			(5 X 4 = 20 MARKS)		
6. Identify the given spotters C, D, E, F & G and comment on them					
RECORD $(1 \times 5 = 5 \text{ MARKS})$					
VIVA-VOCE 5 MARKS					
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

PLANT SCIENCE II

Paper	: ALLIED IV	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BOA01	External	: 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospectives.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic concepts of phyllotaxy	K1 & K2
CO2	To make clear cut understanding of Bentham"s and Hooker"s classification	K1 & K2
CO3	To understand the concepts of plant anatomy and ecology	K4 & K5
CO4	To understand the concepts of plant embryology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	М	S	S	М
CO2	М	S	S	S	S
CO3	S	М	S	М	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	EXTERNAL MORPHOLOGY: Phyllotaxy. Types of leaf – simple and	
	compound. Inflorescence - Rocemose, Cymose and special types (Head &	12
	Cyathium). Terminology with reference to flower description.	
II	TAXONOMY: Bentham & Hooker"s system of classification. Study of	
	major plant families and their economic importance (Annonaceae,	12
	Rubiaceae, Cucurbitaceae, Asteraceae and Poaceae).	
III	ANATOMY: Simple & Permanent tissues: Parenchyma, Collenchyma &	
	Sclerenchyma. Complex permanent tissues: Xylem & Phloem. Primary	12
	structure of dicot root and stem; monocot root and stem.	
IV	PLANT ECOLOGY: Climatic factors, morphological and anatomical	12
	adaptations in hydrophytes and xerophytes.	12

12

SUGGESTED READINGS:

- 1. Bhijwani SS and Bhatnagar SP. (2009). The embryology of angiosperms. Vikas Publishing House Private Limited, New Delhi.
- 2. Davis PH and Heywood VM. (1965). Principles of Angiosperm Taxonomy. Oliver and Boyd, Edinburgh.
- 3. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited, New Delhi.
- 4. Pandey BP. (2001). Plant Anatomy. S.Chand and Company Private limited, New Delhi.

LAB IN PLANT SCIENCE II

Paper	: ALLIED PRACTICAL IV	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U4BOAP02	External	: 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospective.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the practical concepts of general plant families	K1 & K2
CO2	To understand the microscopic observations of anatomy	K1 & K2
CO3	To acquire practical exposure in sectioning of plant tissues	K1, K2 & K4
CO4	To acquire basic experimental approach on mounting and preparation of permanent slides	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	М	М
CO2	S	S	S	М	S
CO3	М	S	S	S	М
CO4	S	S	М	S	S

S: Strong; M: Medium; L: Low

1.	Identification of plant families (Any two out of five)	(2 x 5 = 10 marks)
	a. Annonaceae, Rubiaceae and Cucurbitaceaei	5 marks
	b. Asteraceae and Poaceae	5 marks
2.	Identification of spotters (Economic importance)	(5 x 3 = 15 marks)
	c. Annonaceae	3 marks
	d. <i>Rubiaceae</i>	3 marks
	e. Cucurbitaceae	3 marks
	f. Asteraceae	3 marks
	g. Poaceae	3 marks
3.	Sectioning of given plant part (Morphology)	(2 x 5 = 10 marks)
	h. i) Monocot stem or monocot root	

ii) Dicot stem or Dicot root

i. i) Hydrophyte

ii) Zerophyte

- 4. Dissect and mount anyone stage of the given plant embryo (j) $(1 \times 6 = 6 \text{ marks})$
- 5. Identification of spotters (Permanent slides) (3 x 3 = 9 marks)
 - k. Anatomy (Simple and complex tissue) 3 marks
 - 1. Embryology (Transverse section of anthers and types of ovules) 3 marks
 - m. Ecology (Zerophyte *Nerium* and Hydrophyte *Hydrilla*) 3 marks
- 6. Record

10 marks

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – II</u>

LAB IN POULTRY SCIENCE

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U4BTS04	External	: 75

PREAMBLE

To make students on gaining practical exposure on poultry science and technology and its economic management and quality analysis of poultry products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Evaluate quality control parameters of poultry for disease diagnosis	K4, K5 & K6
CO2	To evaluate the microbial contamination of poultry products for quality enhancement	K4, K5 & K6
CO3	To evaluate poultry micro flora	K4, K5 & K6
CO4	To validate the preservation of poultry products and evaluation of its nutritive quality	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	S	S	М	S	S
CO3	М	S	S	S	S
CO4	М	S	S	S	S

Ex.no	CONTENT	HOURS
1.	Post-mortem examination of chickens and laboratory diagnosis of diseases	4
2.	Sero monitoring of viral infections in poultry	4
3.	Surveillance of common diseases prevailing in commercial poultry farms	5
4.	Screening of Salmonella of zoonotic importance in poultry and related Products	4
5.	Monitoring the health management in commercial poultry farms	5
6.	Isolation and prevalence of Microbes in poultry products	5
7.	Egg preservation by various methods	4
8.	Egg quality analysis	4
9.	Protein and Lipid estimation from egg samples	5

MODEL QUESTION PAPER (LAB IN POULTRY SCIENCE)

NAME OF THE COURSE: LAB IN POULTRY SCIENCE	COURSE CODE: 17U4BTS04	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
1. (i) Perform the e	enumeration of microbes	from the given poultry	sample (A) (OR)	
(ii) Perform pre	eservation of the given eg	gg sample (A) by salt me	ethod (OR)	
(iii) Estimate th	e protein level in the giv	en poultry sample (A) by	y Lowry"s method	
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform lipid	d estimation from the giv	ven poultry sample (B)	(OR)	
(ii) Perform pre	eservation of given egg s	ample (B) by freezing	(OR)	
(iii) Find out th	e thickness of given egg	shell sample (B) by Gau	ige meter	
SPOTTERS	SPOTTERS (5 X 4 = 20 MARKS)			
3. Identify the give	3. Identify the given spotters C, D, E, F & G and comment on them			
RECORD $(1 \times 5 = 5 \text{ MARKS})$				
VIVA-VOCE 5 MARKS			5 MARKS	
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – II</u> MARINE BIOTECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U4BTS05	External	: 75

PREAMBLE

To make students on understanding the significance and importance of marine micro biota and its rational applicability in the development of industrially important products. The students also gain knowledge on the environmentally hazardous management marine ecosystem.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basics of marine ecosystem and its pollution issues	K1 & K2
CO2	To understand basic biodegradation and bioremediation marine ecosystem pollutants	K2 & K4
CO3	To understand the principles of bio fouling	K2 & K4
CO4	To acquire knowledge of wastewater treatment in marine ecosystem	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	М	М	М
CO2	М	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Marine organisms and environment interaction: Types of marine environment - Physical, Chemical and Biological aspects and their interaction with marine life; Air – Sea interaction; Green - house gases (CO2 and Methane)	8
II	Pollution: Marine pollution-major pollutants (heavy metal, pesticide, oil, thermal, radioactive, plastics, litter and microbial); Biological indicators (Marine microbes, algae and crustaceans) and accumulators: Application of Protein biomarkers; Biosensors and biochips.	
III	Biomaterial interaction: Biodegradation and Bioremediation; Biodegradation of natural and synthetic waste materials; Bioremediation;	8

	Separation, purification and bio removal of pollutants.	
IV	Fouling and corrosion: Biofouling; Biofilm formation; Marine fouling and boring organisms - their biology, adaptation; Factors influencing the settlement of macrofoulers; Antifouling and Anti boring treatments; Corrosion Process and control of marine structures.	8
V	Wastewater bio treatment: BOD, COD; Biosensors; Biomolecules; membrane and transducer; Bioaugmentation-estimation of microbial load; Methods of Inorganic and Organic waste removal.	8

SUGGESTED READINGS:

- 1. Recent Advances in Marine Biotechnology Volume 3 Milton fingerman et al., 1999.
- 2. Cynobacterial and Algal Metabolisms and Environment Biotechnology Tasneem Fatma, 1999.
- 3. Environmental Biotechnology and cleaner Bioprocess Olguni, E.J. et al., 2000.
- 4. Environmental Biotechnology Theory and applications Evans et al., 2000.
- 5. Environmental Biotechnology Gareth M.Evams et al., 2003
- 6. Biotechnology, Recombinant DNA Technology, Environmental Biotechnology S.Mahesh et al., 2003

MODEL QUESTION PAPER (MARINE BIOTECHNOLOGY)

NAME OF THE COURSE: MARINE BIOTECHNOLOGY	COURSE CODE: 18U4BTS05	DURATION: 3 Hrs
MAX MARKS: 75		

	SECTION -	-A(1 X 20 = 20 MA)	RKS)	ANSWER AL	L THE Q	UESTIONS
	1. Which of the following the	lowing is/are examp	le(s) of	f conventional	source of	energy?
	a. Fossil fuels	b. Solar energy	/	c. Tidal ener	rgy	d. all of the above
	2. Global warming	is caused due to				
	a. Decrease in CO ₂ conc.	b. Decrease in conc.	CO ₂	c. Decreas SO ₂ c		d. increase in NO ₂ conc.
	3. Which is the mo	st primitive group of	algae	?		
	a. Blue green algae	e b. Red algae	9	c. Brow	n algae	d. Green algae
	4. Ability to fix at	nospheric nitrogen is	found	l in		
	a. Leaves of some crop plants	b. Chlorella		c. Some n Red al	lgae	d. Some Blue green algae
	5. Which of the following the	lowing bacterium is	called	as the superbug	g that cou	ld clean up oil spills?
	a. Bacillus subtilis	b. Pseudomot putida	nas	c. Pseudo denitr	monas ificans	d. Bacillus denitrificans
	6. Which of the following the	lowing is a major car	use of		0	, v
	a. Plants	b. Bacterial spore		c. Fungi	d. H	lydrocarbon gas
	7. Minamata disea	se is caused by pollut	ion of	water by		
	a. Mercury	b. Lead		c. Tin	d	. Methyl iso cyanide
	8. To reduce the w be the best choi		of the	following gene	tically mo	odified organism will
	a. Plant	b. Animal	c.	Bacteria		d. None of the above
	9. Purification stra	tegies in municipal w	vater si	upplies involve	s	-
	a. Sedimentation	b. Filtration		c. Disinfe	ection	d. All the above
	10. Sedimentation	of large particulate m	atter is	s enhanced by -		
a.	Aluminium b. Potassium c. Potassium		d. Chlorine			
	11. Septic tank is					
a.	An aerobic condition with growth treatment system	b. An aerobic condition with suspended growth biologica treatment system	1	An anaerobic co with growth bio treatment system	ological	d. An anaerobic condition with suspended growth treatment system

12. The process of converting environmental pollutants into harmless products by naturally occurring microbes is called				
a. Ex situ bioremediation	b. Intrinsic bioremediation	c. Extrinsic bioremediatio	d. None of these	
13. Dry corrosion is	also called as			
a. Chemical corrosion	b. Electrochemical corrosion	c. Wet corrosion	d. Oxidation corrosion	
14. Which of the fol	lowing comes under the	wet corrosion?		
a. Concentration cell corrosion	b. Oxidation corrosion	c. Liquid metal corrosion	d. Corrosion by other gases	
15. Initial attachmen	nt of microorganisms ofte	en involves		
a. Flagella and is reversible	b. Flagella and is irreversible	c. Exopolymers and is reversible	d. Exopolymers and is irreversible	
16. What is the valu	e of fouling factor for sea	a water?		
a. 0.0001-0.0002 m ² K/W	b. 0.0002-0.0003 m ² K/W	c. 0.0003-0.0004 m ² K/W	d. 0.0004-0.0005 m ² K/W	
_	ch the biological process is called	es are used to purify wa	ter in a wastewater	
a. secondary sewage treatmen	b. primary sewa treatment	ge c. wastewate reduction		
18. Aggregates of m	icrobes as tiny masses in	activated sludge proces	s is called	
a. Activated sludge	e b. Masses	c. Colloidal masses	d. Floccules	
19. High BOD indicates				
a. Less polluted water	b. Less number of organisms	c. More polluted water	d. None of the above	
20. BOD/COD ratio	will always be			
a. = 1	b. >1	c. <1	d. None of the above	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTI	ONS
21. A) Describe the food and feeding habits of marine organisms	(OR)
B) Briefly describe the pigments present in marine organisms	
22. A) Discuss the role of microbes in the sea	(OR)
B) Discuss the sources of pollution in marine environment	
23. A) Discuss the current status of seaweed farming in India.	(OR)
B) Give an account on the NMR characterization of biomolecules.	
24. A) Discuss the role of biotechnology in fouling and corrosion	(OR)
B) Give an account of bio-deterioration in marine environment	
25. A) Describe the composition, fate and effects of sewage pollution in sea	(OR)
B) Give account of the sources and treatment of oil pollution in sea.	

- SECTION C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
- 26. Discuss "Sea is a Biological Environment".
- 27. Discuss the sources of pollution and treatment methods in marine environment.
- 28. Give a detailed account on Biodegradation and Bioremediation
- 29. Describe the Corrosion process and control measures
- 30. Give detailed account on various techniques involved in waste water treatment using microbes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – II</u>

FORENSIC SCIENCE AND TECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U4BTS06	External	: 75

PREAMBLE

To make students on understanding the importance of forensic principles and technology and its practical applicability in identifying the candidate who convicted the crime scenery. The students also gain added skills in terms tracing the victim death by means of adapting the measurable molecular approaches.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gain knowledge on forensic science laboratories across India	K1, K2 & K3
CO2	Acquires knowledge on fingerprint identification system	K3, K4, & K5
CO3	Know whereabouts on the FAI and the concepts of fatality forensics	K3, K4, & K5
CO4	Understand the concepts of DNA finger printing technology	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Introduction, definition, Scope and branches of forensic science. Central F.S.L. and State F.S.L. Biological Evidence: Nature, collection, identification, evaluation of hair and fibres.	6
II	Definition and Classification of fingerprints (Henry system). Taking fingerprints from living and dead persons. Automatic fingerprint identification system (AFIS).	7
III	Forensic Art Illustration: Introduction, Finding and identifying human face image. Post mortem drawing, methods of superimposition.	5
IV	Fatality Forensics: Introduction, cause, manner and characteristics of death, Road traffic fatality (RTF) investigation. General classification of RTFs.	5
V	DNA Fingerprinting (DFP) technology: An overview, Applications of DFP in forensic investigations, paternity disputes. DNA Profiling practice in India with reference to criminal cases.	7

SUGGESTED READINGS:

- 1. Richard Saferstein, 2001, Criminalistic: An Introduction to Forensic Science. 7th edition Prentice-Hall, New Jersey.
- 2. Chowdhri, S., Forensic Biology B.P.R. &D, Govt. of India.
- 3. Cammins, H. and Middle C., 1961. Fingerprints Palms and Soles. Dover Publications.
- 4. Furley, M.A. and Hamington, J.J. Forensic DNA Technology.
- 5. Kirby, DNA Fingerprinting Technology.
- 6. Epplen, J.T. and Eabjulm, T., 1999. DNA Profiling and DNA Fingerprinting Bukhaagar Verlag, Switzerland.
- 7. Taylor, 2000. Forensic Art and Illustration, CRC Press.

MODEL QUESTION PAPER (FORENSIC SCIENCE AND TECHNOLOGY)

NAME OF THE COURSE: FORENSIC SCIENCE AND TECHNOLOGY	COURSE CODE: 18U4BTS06	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. The dark portion	1. The dark portion of the fingerprint is called				
a. Core	b. Valley	c. Delta	d. Ridge		
2. The most commo	n type of fingerprint p	attern is			
a. Whorl	b. Accidental	c. Loop	d. Arch		
3. Fingerprints disso	olved in this only grow	back with scars on the	m making them more unique		
a. Base	b. Water	c. Acid	d. Neutral		
4. Most common fin same side they e		s ridges that enter from	the right and exit from the		
a. Arch	b. Whorl	c. Wheel	d. Loop		
5. The region in ski	in found in between th	e epidermis and dermis	is thelayer		
a. Top	b. Subcutaneous		d. Basal		
6. The study of fing	erprint is called				
a. Dactylography	b. Printology	c. Anthropometry	d. None of the above		
	aper can be sprayed w purple print appear	ith this chemical that re	eacts with amino acids in		
a. Ninhydrin	b. Iodine	c. Cyanocrylate	d. Silver nitrate		
8. What is the basis	for the determination	of the primary classific	ation of fingerprints?		
a. The presence or absence of arch patterns	b. The presence or absence of whorl patterns	c. The presence or absence of loop patterns	d. The presence or absence of minutiae		
9. For most fingerpr	rint examiners, the che	mical of choice for visu	alizing latent prints is		
a. Ninhydrin	b. Iodine	c. Chlorate	d. Silver nitrate		
		sualize latent prints is -			
a. Laser illumination	b. Iodine fuming	c. Cyanocrylate est fuming	er d. Silver nitrate reagent		
11. Identical twins h	ave identical				
a. Genetic makeup	b. Eyes	c. Fingerprints	d. None of the above		
12. Fingerprints formation is					
a. An on-going	b. Complete by the	c. Occurring at	d. Occurring during fetal		
lifetime process	age	birth	development		
13. The only way to permanently change your fingerprint is to					

a. Damag papilla	· · · · · · · · · · · · · · · · · · ·	Wash with acid	1	c. Sand the ridges	d.	Burn the skin
14. The me	14. The most common ridge pattern is					
a. Arch	b.	Whorl		c. Wheel	d.	Loop
15. Finger	prints are					
a. Valuat eviden		Individual evidence	c.	Class evidence	d. Alv	ways good
16. DNA f	inger printing was	s developed by		,	I	
a. Francis	s Crick b.	Khorana		c. Alec Jeffrey	d.	James Watson
17. The tec	chnique to disting	uish the individua	als bas	ed on their DNA	print patte	rns is
a. DNA fingerp		o. DNA profiling	g	c. Molecular fingerprintin		ll the above
18. The DI	NA fingerprint pat	tern of a child is				
	both of the	b. 100% similar to the father"s DNA print	c.	100% similar to the mother"s DNA print	d.	50% bands similar to father and rest similar to mother
19. Each in	ndividual has a un	ique DNA finger	print a	s individuals diffe	er in	
a. Number minisa on chrome	tellites	Location of minisatellites on chromosome		Size of minisatellites on chromosome	d.	All the above
-	• •			nilarity between di sequences is calle	-	-
a. Phyto	blot b.	Garden blot	c.	Plant profiling	d. Al	l the above

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUEST	ΓIONS
21. A) Write short notes Organizational set up of Forensic Science Labora	atories (OR)
B) Write short notes on Scope and branches of forensic science	
22. A) Write about Classification of fingerprints	(OR)
B) How will you take fingerprints from living and dead persons?	
23. A) How will you find and identify human face image?	(OR)
B) How will you perform post mortem drawing?	
24. A) Write about Road traffic fatality (RTF) investigation	(OR)
B) Explain the basic injury mechanisms	
25. A) Explain the applications of DNA fingerprinting technology	(OR)
B) Write short notes on statutory considerations	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give a detailed account on Organizational set up of Forensic Science Laboratories

27. Write an essay on digital comparison of finger prints

28. Write elaborately on Forensic artist in court

29. Give a detailed fatality forensic science

30. Write an essay on quality assurance measures of DNA fingerprinting

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SEMESTER V

IMMUNOLOGY

Paper	: Core V	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 19U5BTC05	External	: 75

PREAMBLE

To make students on exposing themselves to know in underlying concepts of biology of the immune system and how immunity being developed in human beings. In addition the students also know whereabouts on the mechanisms on the host pathogen interaction, principle defence mechanisms against infectious diseases and basic immune diagnostic techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquire knowledge on history on immunology development, and cells and their role in developing overall host immune system	K1 & K2
CO2	Knowing about the functions and properties of immunoglobulin and its expression in genetic level	K1 & K2
CO3	Acquire knowledge on antigen recognition and its processing principles by host immune system	K1, K2 & K4
CO4	Acquire basic concepts of immune regulatory molecules and their role in defence and concepts of autoimmunity	K1, K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	М	S
CO2	М	S	S	S	S
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	HISTORY AND SCOPE OF IMMUNOLOGY: Types of Immunity. Cells of Immune system. Organs of Immune response and their functions. Haematopoiesis. Antigen- properties, classes, epitopes, haptens and adjuvants. Factors influencing antigenicity. Immunoglobulin- Structure, types, properties and functions.	

п	IMMUNOGLOBULINSANDITSEXPRESSION:Immunoglobulin-Structure, types, properties and functions.Immunoglobulin gene re-arrangements.Generation antibodydiversity.Somatic hyper mutation.Ig gene expression and itsregulation.Immunoglobulin	15
ш	ANTIGEN PROCESSING AND PRESENTATION: MHC – types and importance- distribution and function. Antigen processing and presentation to T- lymphocytes. Major classes of MHC genes and its regulation.	17
IV	CYTOKINES, IMMUNE CELL ACTIVATION AND ALLERGIC REACTIONS: Definition of cytokines, classification and types of cytokine, Biological functions of cytokines. Cytokine receptors. T-cell and B-cell activation and differentiation. Hypersensitivity reactions and its types.	15
V	AUTOIMMUNITY: Definition, types of autoimmune disorders. Mechanism of autoimmunity. Vaccines and its types. Immune response to bacterial, protozoal, parasitic diseases. Immuno deficiency diseases (HIV). Transplantation immunology – types of grafts. Mechanism of graft rejection. Immune suppression.	15

SUGGESTED READINGS:

- 1. Ivan Riot Blackwell, 1988. Essentials of Immunology (6th Edition): Scientific Publications, Oxford,
- 2. Paul W.E (Eds) Ravan prss 1988. Fundamentals of Immunology:, New York,
- 3. Harlow and David Lane, 1988. Antibodies A laboratory Manual: cold spring harbor laboratory.
- 4. Janis Kuby Immunology, 1997. WH Freeman & Company, New York.
- 5. Tizard,1995.Immunology IV Ed Saunders college publishers, New York.
- 6. Robert M.Coleman., 1992. Fundamental Immunology. 2 nd edition., Wim. C.Brown Publishers.
- 7. Eli Benjamini et al., 1991. Immunology A short course –Wiley Publishers, NY.

MODEL QUESTION PAPER (IMMUNOLOGY)

NAME OF THE COURSE: IMMUNOLOGY	COURSE CODE: 19U5BTC05	DURATION: 3 Hrs
MAX MARKS: 75		

	organism to resist infections by		
a. Infection	b. Hypersensitivity	c. Immunity	d. Allergy
2. Which of the fol	lowing is NOT a poly morpho r	nuclear leukocyte?	
a. Eosinophil	b. Mast cell	c. Macrophage	d. Basophil
3. Name the first ce	ell which recruited at the place	of infection.	
a. Nk cell	b. Basophil	c. Neutrophil	d. Macrophage
4. Which of the fol	lowing cell is a multipotent cell	1?	
a. T-cell	b. B-cell	c. HSC	d. Monocytes
5. Which of the fol	lowing antibody gives a primar	y immune reaction?	
a. IgG	b. IgM	c. IgA	d. IgE
6. What is the origi	n of B-cell?		
a. Pancreas	b. Liver	c. Thymus	d. Bone marrow
7. Who discovered	l the structure of immunoglobul	lin by treating it with beta	-mercaptoethanol?
a. Nisonoff	b. Edelman	c. Porter	d. Whittekar
8. Name the heavy	chain of IgG.		
a. M	b. E	c. α	d. γ
	lowing is NOT the characteristi		
Large in size b.	Foreignness c. Highly com	plex d. Reproduce on	ly by binary fission
10. Name the molec	cule which constitutively expres	ssed on the dendritic cell?	
a. Class I MHC	b. Class II MHC	c. APC	d. Antigen
11. Which of the fo	llowing polypeptide is importar	nt for the expression of M	HC I on the cell membra
a. Interferon	b. β ₂ -microglobin	c. Lymphokine	d. Interleukin
12. Name the part o	f processed antigen that binds t	o the MHC molecule and	recognized by T-cells?
a. Immunoglobulin	b. Paratope	c. Epitope	d. Chaperone
13. Name the cytok	ines which released in response	to virus infection?	
a. Monokines	b. Interferons	c. Lymphokines	d. Interleukins

a. Bradykinins	b. Prostaglandin	c. Histamines	d. Kinins			
15. Name the class of immunoglobulin which takes part in hypersensitivity reaction?						
a. IgG	b. IgM	b. IgM c. IgA d. IgE				
16. Out of these, which tra	anscription factor does not	take part in B-cell activ	vation?			
a. Abl	b. NF- kB	c. Jun	d. Fos			
17. Which among the follo	owing is not an autoimmu	ne disease?				
a. Myasthenia gravis b.	a. Myasthenia gravis b. Systemic lupus erythematosus c.Grave"s disease d. Sickle cell disease					
18. Vaccination was inver	nted by?					
a. Jenner	b. Pasteur c. Koch d. Salk					
19. Heat killed vaccines an	19. Heat killed vaccines are					
a. Dead cells of bacteria b. Dead cells of virus c. Dead cells of fungi d. A & B						
20. The major molecule re	20. The major molecule responsible for graft rejection is					
a. B-cells	b. T-cells c. MHC d. antibodies					

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS				
21. A) Explain the organs involved in immune system	(OR)			
B) Write a short note on factors influencing antigenicity				
22. A) Give a short note on antibody production	(OR)			
B) Explain the IgA and IgM				
23. A) Explain the process of MHC regulation	(OR)			
B) Describe Apoptosis				
24. A) Explain Type II hypersensitivity	(OR)			
B) Brief about the classification of Cytokines				
25. A) Explain Autoimmunity	(OR)			
B) Describe AIDS and HIV types.				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give an detailed account on cells involved in Immune system

27. Explain Immunoglobulin"s types, structure and functions

28. Give a detailed account on Antigen processing and presentation

29. Describe the types of hypersensitivity

30. Give detailed account on various types of vaccines and explain with suitable example

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

PLANT BIOTECHNOLOGY

Paper	: Core VI	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 19U5BTC06	External	: 75

PREAMBLE

To make students on exposing plants technically, so as manipulate them for the production of disease free, nutritive elite plant varieties. In addition candidates are exposed to the use of vector based engineering of plant genome for the generation of genetically modified plants and food products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about the historical development of plant tissue culture and basic tissue culture techniques and their principles	K1 & K2
CO2	Gaining knowledge on plant secondary metabolites and their role in defence mechanisms	K1 & K2
CO3	To acquire knowledge on the generation novel plant varieties by genetic manipulation strategies	K3, K4 & K5
CO4	Exposing towards the application of secondary metabolites in drug development and value added products	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	INTRODUCTION: Plant tissue culture history, Laboratory organization sterilization methods, media preparation, plant growth regulators. Applications of crop improvement in agriculture, horticulture and forestry.	12
Π	PLANT TISSUE CULTURE TECHNIQUES : Micropropagation, Callus induction. Cell culture techniques, Protoplast culture and fusion. Organogenesis and somatic embryogenesis. Haploid production of plants (Anther, Pollen and embryo cultures).	12
III	PLANT SECONDARY METABOLITES: Basic biosynthesis pathway of auxins and cytokinins. Role of secondary metabolites in plant defence. Plant genome organization (Chloroplast and mitochondria), Agrobacterium mediated gene transfer (Ti plasmid and Ri plasmids) methods in plants.	18
IV	GENETIC ENGINEERING IN PLANTS: Selectable markers, Reporter genes and promoters used in plant vectors. Development of Insect resistant, Herbicide resistant and virus resistant plant varieties. Production of antibodies and viral antigens in plants. Biodegradable	18
V	APPLICATIONS OF PLANT SECONDARY METABOLITES: isolation and characterization - drug development. Production of Biopesticides and Biofertilizers. Development of value added plant products (Saline tolerance & Delayed fruit ripening). Cytoplasmic Male sterility (CMS).	15

SUGGESTED READINGS:

- 1. Plant Biotechnology: An introduction to genetic engineering by Adrian Slater, Nigel W. Scott, Mark R. Fowler. Oxford University, Press, 2008.
- 2. Biochemistry and Molecular Biology of Plants. Bod Buchananm Wilhelm Gruissem, Russell Jones. John Wiley & Sons, 2002.
- 3. Molecular Biotechnology by Glick, B.R. and J.J. Pasternak. Scond Edition, ASM press, Washington, 1998.
- 4. Plant propagation by tissue culture: volume 1 & 2. E.F George. Exegetics Limited, 1999.
- 5. Natural products: A laboratory Guide by Raphael Ikan, Academic press, 1991.
- 6. Chemistry of Natural products by sujatha V. Bhat, Bhimsen A. Nagasampagi, meenakshi Sivakumar. Birkhausr, 2005.
- 7. An introduction to plant tissue culture by MK Razdan. M.K. 2003. Oxford & IBH Publishing Co, New Delhi, 2003.
- 8. Plant tissue culture by Bhojwani, S.S and Razdan, M.K. 2004.
- 9. Phytochemical Methods: A guide to Modern Techniques of Plant Analysis by J.B. Harborne. Springer, 1998.
- Plant cell culture, A practical approach, 2nd Edition, Edited by R.A. Dixon and R.A. Gonzales.

MODEL QUESTION PAPER (PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: PLANT	COURSE CODE:	D
BIOTECHNOLOGY	19U5BTC06	
MAX MARKS: 75		

SECTION	I - A (1 X 20 = 20)	0 MARKS) A	ANSWE	R ALL THE	QUEST	TIONS	
1. Who is the father of tis	sue culture?						
a. Bonner b.H	laberlandt	c La	aibach		b. (Gautheret	
2. The growth of plant tissues in artificial media is called							
a. Gene expression	b. Transg			ant tissue cul		d. Cell hybridization	
	cised piece of lea		ue used	in microprop	agation.		
a.Microshoot	b.Medium	1		c.Explant		d.Scion	
4.Cellular totipotency is t	he property of						
a. Plant	b. Animal		c. Bac	eteria		d. All of these	
5. In plant tissue culture,	what is the term	ORGANOGE	ENESIS	means?	·		
a. Formation of callus cultureb. Formation of root & shoot from callus culturec. Genesis of organ aboved. None of the above							
6. In a cell, protoplast con	nsists the following	ng EXCEPT					
a. Cell wall	b.	Cell membra	ne	c. Nucleu	S	d. Cytoplasm	
7.In a callus culture							
callus induces shoot forma	a. Increasing level of cytokinin to a callus induces shoot formation and increasing level of auxinb. Increasing level of auxin to a callus induces shootc. Auxins and cytokinins are not requiredd. Only auxin is required for roo and shoot formation				d. Only auxin is required for root and shoot formation		
8.The phenomenon of the callus is known as		ture cells to the	he meris	stematic state	leading	to the formation of	
a. Redifferentiation	b. Dediffe	rentiation	c.	either (a) or	(b)	d. none of these	
9. T-DNA transfer and pr	ocessing into pla	nt genome re	quires p	roducts of w	hich of t	he following genes?	
a. vir A,B	b. <i>vir</i> G,C	b. <i>vir</i> G,C c. <i>vir</i> D,E d. All of these			All of these		
10. Which of the following	ng are used as sel	ection marker	r for the	cells transfor	rmed wi	th Agrobacterium?	
a. Neomycin phosphotransferase	b. Streptomycin	reptomycin phosphotransferase		c. Hygromycin phosphotransferase		d. Any of the above	
11. Which technique is u	sed to introduce g	genes into dic	ots?	1		1	

a. Electroporation	b. Particle acceleratio	n c. Mi	croinjection	d. Tip	plasmid infection		
12. Genome is							
a. Genes on nuclear DNA	b. Nuclear DNA + mitocho DNA						
13. The process of expres	ssion of foreign genes in a	plant is call	ed				
a. Gene expression	b. Transgenesis	c. Genetic t	transformation	d. Ce	ll hybridization		
14. Which of the following	ng is considered as a visua	al marker?					
a. Antibiotic marker	b. Resistance marker	c. Sele	ctable marker	d. Sc	reenable marker		
15. Name the first transg	enic virus resistant plant?			I			
a. Rice	b. Cotton	c. Tob	acco	d. 7	Comato		
16. Which of the following	ng is supplemented with vi	itamin A in o	order to improv	e its nutr	itional quality?		
a. Cotton	b. Potato		c. Toma	to	d. rice		
17. Which of the following	ng is NOT the class of second	ondary meta	bolite?				
a. Amino acid	b. Terpenes		c. Pheno	lics	d. alkaloids		
18. Name the class of se group with an aromatic r	condary metabolites which ng?	n is characte	rized by the pre	esence of	the hydroxyl		
a. Glycosides	b. Phenolics	c. Alkaloids d. Terpenes		erpenes			
19. Azolla is used as biof				1			
a. Rhizobium	b. Cyanobacteria	eteria c. Mycorrhiza d. Large quantity of humus					
20. Which sterility is exp	loited in hybrid seed produ	uction?					
a.Male genetic sterility							

SECTION – B (5 X 5 = 25 MARKS) ANSWER	SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS				
21. A) List out the types of media.	(OR)				
B) Mention about auxin.					
22. A) Write note on callus induction.	(OR)				
B) Explain embryo culture.					
23. A) Briefly discuss particle bombardment.	(OR)				
B) Biosynthesis pathway of cytokine-explain.					
24. A) What is called selectable marker? Explain with two exam	nples. (OR)				
B) Write note on virus resistance.					
25. A) Explain about saline tolerance.	(OR)				
B) Briefly explain Cytoplasmic male sterility.					

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Illustrate on the application of crop improvement in agriculture, horticulture and forestry.

27. Explain protoplast isolation, culturing and fusion.

28. Draw and explain agrobacterium mediated gene transfer.

29. Write note on genetic engineering in plants.

30. Describe about isolation and characterization of secondary metabolites.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN IMMUNOLOGY

Paper	: Core Practical V	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 3	Internal	: 40
Paper Code	: 19U5BTCP05	External	: 60

PREAMBLE

To make students on practical exposure towards immunological techniques in-terms of handling of laboratory animals, qualitative and quantitative estimation of antigen - antibody specificity.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gaining knowledge on handling of laboratory animals	K1 & K2
CO2	Knowing about the methods of immunization of bleeding and separation serum and plasma from blood	K2, K3 & K4
CO3	Analysis of qualitative and quantitative estimation of antigen and antibody interaction	K4, K5 & K6
CO4	To know about the basic principles of blotting techniques in terms of practical approach	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	М	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Handling of laboratory animals	5
2	Methods of bleeding and routes of immunization	10
3	Preparation of Serum and plasma	5
4	ABO Blood grouping (Rh typing) (Agglutination)	5
5	WIDAL test (Agglutination)	5
6	ASO test (Agglutination)	5
7	Pregnancy test (Agglutination inhibition)	5
8	Radial immune diffusion test (Precipitation test)	5
9	Rocket Immuno electrophoresis test (Precipitation)	5

10	Ouchterlony	double	immunodiffusion	technique	(ODD)	5	7
	(Precipitation)					0	
11	Counter curren	t immunoe	lectrophoresis (CIE) (Precipitation)		5]
12	DOT ELISA te	est				5	
13	Western Blotti	ng- Demon	stration			10	

MODEL QUESTION PAPER (LAB IN IMMUNOLOGY)

NAME OF THE COURSE: LAB IN IMMUNOLOGY	COURSE CODE: 19U5BTCP05	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMEN	T			
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS	
1. (i) Identify the Blood group for the given sample (A) and display the results for observation				
			(OR)	
(ii) Perform Radial	immune electr	ophoresis for the given serum	and anti-serum sample (A)	
			(OR)	
(iii) Perform WIDA	L test for the g	given plant sample (A)		
MINOR EXPERIMEN	T			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Prepare Serum	/Plasma from	the given blood sample (B). Di	isplay the results for	
observation			(OR)	
(ii) Perform DOT	Γ ELISA for th	e given serum sample (B)). D	isplay the results for	
observation			(OR)	
(iii) Perform AS	O test from the	given blood sample (B)). Dis	play the results for	
Observation				
SPOTTERS		(5	$5 \times 4 = 20 \text{ MARKS}$)	
3. Identify the given spotters C, D, E, F & G and comment on them				
RECORD		(1	x 5 = 5 MARKS)	
VIVA-VOCE	/IVA-VOCE 5 MARKS			
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN PLANT BIOTECHNOLOGY

Paper	: Core Practical VI	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 3	Internal	: 40
Paper Code	: 19U5BTCP06	External	: 60

PREAMBLE

To make students familiar on basic plant tissue culture techniques and isolating plant pigment by chromatographic technique

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
C01	Know about basic aseptic conditions to be followed in plant tissue culture laboratory and preparing various tissue culture media	K1, K2 & K3
CO2	Micropropagation of explant for shooting and rooting and to isolate protoplast from plant cells	K4, K5, & K6
CO3	Extraction of plant pigments by column chromatography	K4 & K5
CO4	Exposing them in preparing synthetic seeds and its preservation	K4 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Plant genomic DNA	5
2	Sterilization of performance of aseptic condition in plant tissue culture lab	5
3	Preparation of MS media	10
4	Establishment of seed germination from carrot seeds	5
5	Establishment of shoot tip culture using MS media	10

	6	Establishment and maintenance of callus culture	10
	7	Micro propagation of callus culture (Shoot & Root systems)	10
	8	Isolation of protoplast (Enzymatic method)	5
-	9	Extraction & separation of Plant pigments (Chlorophyll A & B) Column chromatography	10
	10	Preparation of synthetic seeds	5

MODEL QUESTION PAPER (LAB IN PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN PLANT BIOTECHNOLOGY	COURSE CODE: 19U5BTCP06	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS		
1. (i) Isolate plant genomic DNA from the given plant sample (A) (OR)					
(ii) Perform shoot ti	p culture from the given	explant sample (A)	(OR)		
(iii) Perform callus	induction from the giver	n explant (A)			
MINOR EXPERIMEN	Т				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Isolate protoplast from the given plant mesophyll tissue sample (B) (OR)			e (B) (OR)		
(ii) Prepare synthetic seeds from the given plant seed sample (B) (OR)			(OR)		
(iii) Separate chlorophyll pigments from the plant leaf extract sample (B) by appropriate					
Method	Method				
SPOTTERS	SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$				
3. Identify the given spotters C, D, E, F & G and comment on them					
RECORD $(1 \times 5 = 5 \text{ MARKS})$			5 = 5 MARKS		
VIVA-VOCE 5 MARKS			5 MARKS		
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE - I

PHARMACEUTICAL BIOTECHNOLOGY

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U5BTE01	External	: 75

PREAMBLE

This paper encodes information on pharmacology, drug designing, sources and applications of drug discovery. Students also understand the basic and applications of pharmacology and sources of drug. Also enables them to understand the concepts of rDNA technology in drug designing.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the principles of pharmacology and its development History	K1 & K2
CON	,	VO VO 8 VA
CO2	To understand principles of action of drugs and mechanism of action to wards various diseases	K2, K3 & K4
CO3	To understand the concepts of developing therapeutic agents through genetic engineering principles	K4, K5 & K6
CO4	To explore the applications of pharmaceutical chemistry and its	K4, K5 & K6
	Development	

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	S	S	S	S	S
CO3	М	S	S	М	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction to pharmacology : History & development in pharmacology. Principles of pharmacology. – Pharmacology in the 20 th century – Drugs – Sources, dosage forms and routes of administration	15
II	Drug names & Classification systems: General Principles of Drug action	15

	Pharmacokinetics, Pharmacodynamics, measurement of drug action.	
III	Chemotherapy: Therapeutic drugs – Protein synthesis inhibitors, Antibacterial, antifungal, anti protozoal, antiviral, anti helmithic, anticancer, anti-inflammatory drugs.	15
IV	Introduction to r-DNA technology : production of biological: Human Insulin, HGH, GRF, Erythropoietins, IFN, TNF, Interleukins, Clotting factor VIII.	15
V	Production and applications: Probiotics, anticancer and anti-inflammatory agents. Biochips, biofilms and biosurfactants.	15

SUGGESTED READINGS

- 1. A Text Book of Biotechnology. R.C. Dubey. S.Chand& Co Ltd, New Delhi.
- 2. Pharmacology H.P. Rang, M.M. Pale, J.M. Moore, and Churchill Livingston.
- 3. Basic Pharmacology Foxter Cox. Butterworth's 1980
- 4. Pharmacology and Pharmacotherapeutics R.S.Satoskar, S.D. Bhandhakam and S.S. Alinapure
- 5. Pharmaceutical Biotechnology S.S. Purohit, Kaknani, Saleja
- 6. Pharmacology Mary J. Myuk, Richard A.Hoarey, Pamala Lippinwitt, Williams Edition.
- 7. Integrated pharmacology Page, Curtis, Sulter, Walker, Halfman. Mosby Publishing Co.

MODEL QUESTION PAPER (PHARMACEUTICAL BIOTECHNOLOGY)

NAME OF THE COURSE: PHARMACEUTICAL BIOTECHNOLOGY	COURSE CODE: 18U5BTE01	DURATION: 3 Hrs
MAX MARKS: 75		

SECT	ΓΙΟN – .	A (1 X 20 = 20 MARI	KS)	ANSWER ALL TH	E QUI	ESTIONS	
1. Clinical ph	armacol	ogy was established by	у	?			
a. Schwann	b. R	lobert Hooke	c.	William Withering		d. William Wroth	
2. The most w	idely use	ed drug classification	syste	ems are?			
a. ATC		b. ADP		c. AKT		d. ATP	
3. The drugs the	nat are ta	aken though nasal rout	e is o	called		·	
a. Subcutaneous		b. Ear drops		c. Inhaler		d. Intraosseous	
4. Parenteral a	dminist	ration can be performe	ed by	y?			
a. Injection		b. Oral		c. Tablet		d. Powder	
5. The action of	of drugs	on the human body is	calle	ed as?			
a. Pharmacodynam	ics	b. Pharmacokinetics		c. Drug action		d. Transporter protein	
6. What the be	ody does	s with the drug is calle	d as	?		1	
a. Drug action b. Pharmacodynamics c. Pharmacokinetics d. Transporter protein					ransporter protein		
7. Initial conse	quence	of drug-receptor com	binat	tion is called			
a. Pharmacody	namics	b. Drug action		c. Drug Effect d	l. Phar	macokinetics	
8. Biochemica	l and ph	ysiological changes th	at o	ccur as a consequen	ce of c	lrug action called	
a. Drug action		b. Drug Effect		c. Pharmacodynam	ics	d. Pharmacokinetics	
9. A group of	material	s that fight against pat	hoge	enic bacteria?		1	
a. Antibacterial ag		b. Antiviral agents		c. Antifungal agen	its	d. Anticancer agents	
10. Anti-inflam	matory	drugs make up about l	half	of?			
a. Analgesics		b. Prostaglandins		c. Paracetamol		d. Aspirin	
11. Abnormal o	cell grov	vth called as	_?				
a. Cancer	a. Cancer b. Viral			c. Cell growth		d. Tissues	
12. Fungal cell	wall syn	nthesis inhibition as		?		1	
a. Nystatin		b. Caspofungin		c. Azoles		d. Naftifine	
13. Insulin horn	none pr	oduced by?	I				
a. Pancreas		b. Liver		c. Mitochondr	ia	d. Kidney	

14. Erythropoietin is a	hormone produced primari	ly by?				
a. Liver	b. Kidney	c. Pancreas	d. Mitochondria			
15. Factor VIII is an essential blood-clotting protein, also known as?						
a. Anti-hemophilic factor	b. Coagulation	c. Glycoprotein	d. Embolism			
16. Erythropoietin also	known as	_	I			
a. Hematopoietin	b. Glycoprotein cytokine	c. Erythropoiesis	d. Hypoxia			
17. Probiotics are ofter	a called as ?					
a. Helpful" Bacteria	b. Helpless" Bacteria	c. Helpful Virus	d. Helpless Virus			
18						
a. Anti-cancer	b. Anti-inflammatory	c. Inflammatory	d. Cancer			
19are a collective of one or more types of microorganisms that can grow on many different surfaces?						
a. Biofilms b.	Anti-inflammatory	c. Biochips	d. Anti-cancer			
20. Bio surfactants are also called as						
a. Microbial surfactants	b. Bacterial surfactants	c. Viral surfactants	s d. Biochips			

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUI	ESTIONS
21. A) Explain the history and development of pharmacology.	(OR)
B) Explain the various routes of administration of drug.	
22. A) Explain about pharmaco kinetics	(OR)
B) Write brief notes on the measurement of drug action	
23. A) Write shortly about Anticancer drugs	(OR)
B) Write short notes on antibacterial drugs	
24. A) Write short notes on Erythropoietins	(OR)
B) Write short notes on Interleukins?	
25. A) What is probiotics? Explain in brief	(OR)
B) Write short notes on Biochips	

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. Write the essay on pharmacology?
27. Explain in detail on the general principle of drug action?
28. Write an essay on therapeutic drugs?

29. Write an essay on r-DNA technology?

30. Explain in detail about the production and application of drugs?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE I

ENZYMOLOGY AND ENZYME TECHNOLOGY

: Elective I	Total Hours	: 75
: 4	Exam Hours	: 03
: 3	Internal	: 25
: 18U5BTE02	External	: 75
	: 4 : 3	: 4 Exam Hours : 3 Internal

PREAMBLE

This paper concisely presenting the fundamentals of enzymes, enzyme kinetics and industrial applications of enzymes

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To familiarize the basics of enzyme classification, its unit measurement and extraction	K1 & K2
CO2	To explore to the usage of enzymes at molecular level such as active site, isoenzymes and their biochemical fundamentals	K3 & K4
CO3	To explore the enzyme kinetics and its mechanism of inhibitions	K4
CO4	To explore the industrial and clinical applications of commercial enzymes	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
C01	М	М	М	S	S
CO2	М	S	S	S	S
CO3	S	S	S	S	М
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Enzymes : Introduction, Definition, History, Classification and Nomenclature of enzymes. Intracellular localization of enzymes, Extraction and purification of enzymes. Enzyme units. Substrate specificity.	
II	Active site: Salient features, Theories of ES complex formation – Lock and Key, Induced fit and Substrate strain theory. Structure and functions of coenzymes, Isoenzymes and their separation rates. Collision and transition state theories. Factors affecting enzyme activity	15

ш	Enzyme kinetics : Order of reaction, Activation energy, Kinetics of enzyme catalyzed reactions – Steady state kinetics – Michaelis Menten equation, and its transformation. Bi – substrate reaction – random, ordered and ping pong mechanisms.	15
IV	Enzyme inhibition : Reversible and irreversible inhibitors. Mechanism of catalysis – acid base, electrostatic, covalent, metal ion and enzyme catalysis, electrostatic proximity and orientation effects. Mechanism and action of chymotrypsin, lysozyme and carboxy peptidase.	15
V	Immobilization of enzymes : Methods and application. Clinical and Industrial application of enzymes, Enzyme engineering – site directed mutagenesis.	15

SUGGESTED READINGS

- 1. Enzymes: Biochemistry, Biotechnology, Clinical chemistry Trevor Palmer, East West Press Edition, New Delhi, 2004.
- 2. Fundamentals of Enzymology Nicholas C. Price Lewis Stevens, 2nd edition, Oxford University Press, Newyork, 1998.
- 3. Biochemistry U.Satyanarayana & U.Chakrapani, Books and Allied (P) Ltd, Kolkata, 2008.
- 4. Lehninger Principles of Biochemistry David L. Nelson and Michael M.Cox, W.H Freeman and Company, New York, 2007.
- 5. Biochemistry Lubert Stryer, Jeremy M. Berg, John L.Tymoczko, V edition, W.H.Freeman & Company, Newyork, 2001.
- 6. Enzyme Technology Ashok Pandey, Colin Webb, Calos Ricardo Soccl, Christian Larroche, Asiatech publishers Inc, New Delhi, 2005.

MODEL QUESTION PAPER (ENZYMOLOGY AND ENZYME TECHNOLOGY)

NAME OF THE COURSE: ENZYMOLOGY AND ENZYME TECHNOLOGY	COURSE CODE: 18U5BTE02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTIO	DN – .	A (1 X 20 = 20 MAR)	KS) ANSWER ALL T	HE QUE	STIONS
1. Enzymes are bro	oadly	classified into	types		
a. 4	b. 5		c. 6		d. 7
2. The function of i	some	cases is			l
a. Geometrical changes	b.	Isomeric changes	c. Steric changes	d. Sup	er numeric changes
3. Enzyme activity	deper	ds on			
a. Substrate conc.		b. Substrate availability	c. Substrate binding site		d. All the above
4. Which of the fol	lowing	g method is used in se	parating specific enzyr	nes from	its crude sample?
a. Dialysis	b.	Native PAGE	c. 2D PAGE		d. Isoelectric focusing
5. Which of the foll active site of en			ribes the conformationa	al change	s occurring at the
a. Lock & Key model				oncept	d. None of the above
6. Michealis – Men	ton ec	uation describes			
a. Rate of enzyme activ	ity	b. Rate of substrate	activity c. ES form	nation	d. All the above
7. Bi substrate reac	tions	indirectly describes th	e concept of		
a. Lock & Key concept	b.	Induced fit hypothesi	s c. Substrate binding	g theory	d. None of the above
8. Which of the following the	lowing	g physical factor affec	ets the enzyme activity?	?	
a. Enzyme conc.		b. Substrate Conc.	c. Binding site		d. pH
9. Which of the fol	lowin	g is an example for iso	penzyme?		
a. ACTH		b. GH	c. LDH		d. FSH
10. Activation energy	gy is t	he energy required for	ſ	I	
a. Activating enzyme	a. Activating enzyme b. Activating substrate c. Activating co factors d. Activating physical factors				
11. The kinetics of e substrate concer	-	•	ns can be analysed in te	rms of st	eady state models if the
a. More than an order		ess than an order of	c. More than the rate	d. I	Less than the rate of
of magnitude		nagnitude lower than	of magnitude		magnitude lower than
higher than the enzyme level	t	he enzyme level	higher than the enzyme level		the enzyme level
	ween	ADP and phosphocre	atine works under the j	orinciple	of
					~-
			110		

a.Random mechanism b. D	ouble displacement me	echanism	c. Ping pong	g mechanism	d. B & C
13. Which of the following type of enzyme inhibition shows an increase in KM value with constant					
Vmax?					
a. Competitive b. No	on – Competitive	c. OII = COII	iipeutive	u. None	of the above
14. Allosteric enzymes di Menton enzymes	splays a sigmoidal cu	rve in contras	t to the	displayed b	by Michealis –
a. Hyperbolic curve b. Pa	rabolic curve c. Q	uadratic curve	e d. T	ranscendental	curve
15. Chymotrypsin is an					
a. Cysteine protease	b. Serine protease	c. Pr	oline protease	e d. Leu	cine protease
16. Carboxypeptidase A3	(CPA3) involved in t	he protein dig	estion by		
a. Pancreatic cells	b. Liver cells	c. Mas	st cells	d. Tumo	our cells
17. Which of the followin	ng method is common	ly used in mai	ntaining enzy	me activity	
a. Entrapment method	b. Encapsulation	n c. I	mmobilizatio	n d. Al	ll the above
18. Which of the followin	ng enzyme is used in l	eather industri	ies?		
a. Amylase	b. Lipase	c. Prot	ease	d. DNAs	se
19. Which of the following technology is followed for enriching the enzyme activity?					
a.Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above					
20. Which of following e	nzyme is used as dew	orming agent?	?		
a. Tryspin	b. Papain	c. Amy	ylase	d. Protea	ise

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS			
21. A) Explain about enzyme units	(OR)		
B) Explain about substrate specifity			
22. A) Explain about isoenzymes	(OR)		
B) Explain the factors affecting the enzyme activity			
23. A) Explain the steady state kinetics of enzymes	(OR)		
B) Write short notes on the order of the enzyme reaction			
24. A) Explain the mechanism of action of chymotrypsin	(OR)		
B) Write short notes on mechanism of enzyme catalysis			
25. A) Explain the process of site directed mutagenesis	(OR)		
B) Explain about enzyme engineering			

26. Give detailed account on the classification of enzymes

27. Give detailed account on iso-enzymes

28. Give detailed account on MM and LB plot

29. Give detailed account on enzyme inhibition and its types

30. Give detailed account on industrial applications of enzymes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE I

TISSUE ENGINEERING

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U5BTE03	External	: 75

PREAMBLE

This paper deals with the use of combination of cells, engineering and materials methods, and suitable biochemical and physicochemical factors to improve or replace biological tissues. Tissue engineering involves the use of tissue scaffold for the formation of new viable tissue for a medical purpose.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the key topics in tissue engineering	K1, K2 & K3
CO2	To understand the stem cells and animal cells, processes, and strategies to regenerate or repair damaged tissues	K3 & K4
CO3	To develop students ability to identify, formulate and adapt engineering solutions to unmet biological needs	K4 & K5
CO4	To give students a knowledge of how the biomedical industry is regulated and the route to market of for tissue engineered products	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS	
_	Introduction to tissue engineering: Basic definition; current scope of development; use in therapeutics, cells as therapeutic agents. Measurement of tissue characteristics, appearance, cellular component, ECM component, and physical properties.		
	Tissue types and Tissue components, Tissue repair, Engineering wound healing and sequence of events. Basic wound healing Applications of growth factors: VEGF/angiogenesis, Basic properties, Cell-Matrix & Cell-Cell Interactions, telomeres and Self renewal, Control of cell migration in tissue		

	engineering.	
Ш	Biomaterials: Properties of biomaterials, Surface, bulk, mechanical and biological properties. Scaffolds & tissue engineering, Types of biomaterials, biological and synthetic materials, Biopolymers, Applications of biomaterials, Modifications of Biomaterials, Role of Nanotechnology.	15
IV	Stem Cells : Introduction, hematopoietic differentiation pathway Potency and plasticity of stem cells, sources, embryonic stem cells, hematopoietic and mesenchymal stem cells, Stem Cell markers. Stem cell systems - Liver neuronal stem cells with characteristics: embryonic, adult, haematopoietic fetal, cord blood, placenta, bone marrow, primordial germ cells, cancer stem cells and induced pluripotent stem cells.	15
V	Stem cell therapy, Molecular therapy, <i>in-vitro</i> organogenesis Neurodegenerative diseases, spinal cord injury, heart disease and muscular dystrophy. Stem cells and Gene therapy: Physiological models, tissue engineered therapies, product characterization. Preservation of stem cells freezing and drying. Patent protection and regulation of tissue engineered products and ethical issues.	15

SUGGESTED READINGS

- 1. Bernhard O.Palsson, Sangeeta N.Bhatia,"Tissue Engineering", Pearson Publishers 2009.
- 2. Raphael Gorodetsky, Richard Schäfer. "Stem cell based tissue repair", Cambridge: RSC Publishing, c2011.
- 3. John P. Fischer, Antonios G. Mikos, Joseph D. Bronzino. "Tissue Engineering", CRC Press, 2012.
- 4. Larry L. Hench, Julian R. Jones. "Biomaterials, Artificial Organs and Tissue Engineering", CRC Press, 2005.
- 5. C. S. Potten, "Stem Cells", Academic Press, 1997.

MODEL QUESTION PAPER (TISSUE ENGINEERING)

NAME OF THE COURSE: TISSUE ENGINEEING	COURSE 18U5BTE03	CODE:	DURATION: 3 Hrs
MAX MARKS: 75			

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. The formation of blood vessel from the pre-existing blood vessel is known as						
a. Angiogenesis b. Vascularization c. Osteogenesis d. Phagocytosis						
2. The Major Histocompatibility Complexes (MHCs) are						
a. Signaling molecules b.	a. Signaling molecules b. Growth factors c. Cell surface markers d. Cell adhesion molecules					
3. Bone Morphogenic Pr	rotein (BMP) is a -					
a. Cell surface marker	b. Growth fac			e	d	l. Neurotransmitter
4. Polyglycolic Acid (P			_			
a. Biotolerant b	. Bioactive		c. Bioinert		(d. Biodegradable
5. In tissue engineering,	harvested cells are	froze	en away and stored	in		
	Liquid nitrogen		c. Liquid helium		0	l. Autoclave
6. Cell signaling compo	unds cytokines are a	a gro	up of			
a. Proteins and peptides t	b. Fats and triglycer	rides	c. Carbohydrate	es	d. H	ormones and steroids
7. c-AMP and c-GMP fu	inctions as					
a. Hormone b.	Receptor		c. Second messen	ger		d. Ligand
8. The signals which aff	ect only cells of the	sam	e cell type as the en	nitting	g cell	are
a. Endocrine	b. Autocrine		c. Paracrine			d. none of these
9. Carbon nanotubes are	used for tissue eng	ineer	ing scaffolds as the	y are		
a. Biocompatible b. Biodegradable c. Biopolymers d. none of these						
10. PLA degrades within	the body to form					
a. Amino acid b.	Glycolic acid	c.]	Lactic acid	0	l. Pho	osphoric acid.
11. An example of CAM	is					
a. Cadherin b. H	Protease		c. Growth hormon	e	d. \$	Serine
12. For skin grafting the	scaffold used should	d be				
a. Biodegradable b.	Bioactive	c.	Biocompatible		0	l. Both (a) and (c)
13. Endocrine signaling i	is performed by		-			
a. Enzymes b. He	ormones	c.	Cytokines		l	d. Carbohydrates
14. Programmed Cell death is also known as						
a. Apoptois b. Lysis c. Degeneration d. Deformation						
15. The protein of cell that binds to a specific molecules is known as						
a. Ligand	a. Ligand b. Receptor c. Hormone d. Cytokine				d. Cytokine	
16. Notch is a cell surfac	e protein that functi	ons	as a			
115						

a. Receptor	b. Hormone	c. Protein-A		d. Cytokine.	
17. Solid Free Forming is	a fabrication techniq	ue for			
a. 2D scaffold b.	3D scaffold	c. Micro scaffold	d. Na	ano-patterned scaffold	
18. Hydrogels can also be	18. Hydrogels can also be used as scaffolds for				
a. Cell growth b. Cell	delivery c.	ry c. Cell growth and cell delivery d. None of th		d. None of these	
19. GABA is a	19. GABA is a				
a. Neurotransmitter	b. Neuro inhibitor	ro inhibitor c.Contact inhibitor d. Contact exc		d. Contact excitator	
20. The family of receptors that play an important role in cell adhesion is					
a. Somatostatin	b. Interleukins	terleukins c. Integrins d. Interferons		d. Interferons	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS	
21. A) What are the different types of tissues in the mammalian body?	(OR)
B) Classify tissue based on their structure and function	
22. A) Briefly explain the different types of stem cells	(OR)
B) Briefly explain the process of cell placement on scaffold	
23. A) Describe different kinds of matrix materials used in tissue engineering	(OR)
B) Mention the importance of growth factors in the field of tissue engineering	
24. A) With the help of sketch, explain the process of differentiation of stem cells into cell lines	(OR)
B) What are the different risk factors involved with skin grafting?	
25. A) Mention the basic clinical goals and fundamental challenges of tissue engineering	(OR)
B) What are the basic criteria of a scaffold used for tissue reconstruction?	

26. With the help of a flow-chart, explain the different processes involved in wound healing

27. Describe the signalling pathway for cell's response to the ligand

28. Describe the engineering materials used in scaffold fabrication. Mention the parameters for scaffold selection.

29. With the neat sketch, explain the mechanism of adhesion between leukocytes and endothelial cells

30. Demonstrate bioreactor for achieving nutrient transport in an engineered tissue construct

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – III</u>

LAB IN BIOINFORMATICS

Paper	: SBEC III	Total Hours	: 30
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U5BTS07	External	: 75

PREAMBLE

To make students on understanding basic principles of biological soft wares and their usage for generating molecular and genetic databases of living organisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the basic concepts of functional and computational genomics and proteomics	K2, K3, K5 & K6
CO2	To acquire knowledge on the usage of biological software on generating databases both online/offline	K2, K3, K5 & K6
CO3	To understand the existence of globally available online soft wares and databases for nucleic sequence retrieval	K2, K3, K5 & K6
CO4	To understand the usage and deposition of sequences in to globally available structural databases	K2, K3, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

Exp. No	TITLE	HOURS
1	Biological Databases with reference to Expasy and NCBI	2
2	Query finding based on biological databases	2
3	Sequence similarity searching using BLAST	3
4	Pairwise alignment	2
5	Multiple Sequence and Phylogenetic Analysis	3
6	Gene Prediction	3
7	Protein Structure prediction (Secondary and tertiary)	3

8	Homology Modeling Using Modeller	3
9	Protein- Ligand docking	2
1(Program to store a DNA sequence in NCBI : Bankit	3
11	Program to convert DNA to RNA/Protein	2
12	Program to find ORF	2

MODEL QUESTION PAPER (LAB IN BIOINFORMATICS)

NAME OF THE COURSE: LAB IN BIOINFOMATICS	COURSE CODE: 17U5BTS07	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 10	Obs: 5	Res: 5	Total 20 MARKS	
1. (i) Retrieve the	gene sequence from Ge	nBank (A)	(OR)	
(ii) Find out the	e given query sequence ((A) by BLAST analysis	(OR)	
(iii) Find out O	RF in the given sequenc	e sample (A)		
MINOR EXPERIME	NT			
Exp: 8	Obs: 4	Res: 3	Total: 15 MARKS	
2. (i) Retrieve the	protein structure of haer	moglobin (B)	(OR)	
(ii) Perform Phy	ylogenetic Analysis for	the given organism (A)	(OR)	
(iii) Find out th	e RNA sequence from the	he given DNA sequence	(B)	
SPOTTERS	SPOTTERS (5 X 4 = 25 MARKS)			
3. Identify the give	en spotters C, D, E, F &	G and comment on them	1	
RECORD		(1 x	5 = 5 MARKS)	
VIVA-VOCE			5 MARKS	
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – III</u>

BIOSAFTEY, BIOETHICS & IPR

Paper	: SBEC III	Total Hours	: 30
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U5BTS08	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	6
п	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	6
ш	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non-patentable.	6
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	6

	and general requirements of patent law. Patentable subjects and protection in	
	Biotechnology.	
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy. Ethical implications of GM crops, biopiracy and biowarfare.	6

SUGGESTED READINGS:

1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.

2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.

3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.

4. Sasson A, Biotechnologies and Development, UNESCO Publications.

5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY, CO	OURSE CODE:	DURATION: 3 Hrs
BIOETHICS AND IPR 18U	8U5BTS08	
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. Bio-related research activities may not involve					
a. Micro organisms b. Animal cells c. Plant cells d. All					
2. A pathogen that is unlikely to cause any disease in humans or animals					
a. Risk group I	b. Risk group II	c. Risk group III	d. Risk group IV		
3. <i>Korean hemorrhagic</i> fever is example for					
a. Risk group II	b. Risk group III	c. Risk group IV	d. Risk group I		
4. Physical contai	inment is achieved by		1		
a. One type	b. Two types	c. Three types	d. Four types		
5. Which one of the	e following is not relevan	t to sterilization techniqu	e?		
a. Ethanol	b. Incinerator	c. Microscope	d. Autoclave		
6. Cartagena Protoc from	col on Biosafety to the Co	onvention on Biological I	Diversity Effective		
a. 11 September	b. 12 September	c. 11 September	d. 12 September		
2003	2003	2004	2004		
7. Each Institutiona	ll Biosafety Committee h	as a nominee for	-		
a. DST	b. DBT	c. UGC	d. ICAR		
-	M meeting held in 2018?	[1		
a. 7	b. 8	c. 9	d. 6		
	l not include the followin				
a. DBT b.	ICMR	c. UGC	d. CSIR		
10. GEAC establish	ed under				
a. MoEF & CC	b. UGC	c. DBT	d. DST		
11. Trade name is o	therwise called as				
a. Patent	b. Model	c. Business name	d. Trademark		
12is any information of commercial value concerning production					
a. Trade name b. Trade Secret c. Patent d. Industrial Design					
13. IPR initially star	ted in North Italy during	the			
a. Renaissance	b. Renaissance	c. Renaissance	d. Renaissance		
era. In 1471	era. In 1472	era. In 1473	era. In 1474		
14. Protection of IPR not allow the following					

a. Innovator	b. Brand ov	vner	c. Teacher	•	d. Co	pyright holder
15. Intellectual property not refers to creations of the mind						
a. Hard work	b. Inventions	b. Inventions c. Literary and artistic works d. Name			d. Names	
16. Which one	is comes under type o	f intelle	ectual property (II	P)?		
a. Copyright	b. Patent		c. Tradem	ark	d.	All the above
17. Mathematic	al algorithms are				1	
a. Patentable	a. Patentable b. Non patentable c. Both d. None of the above					
18. Software is	a					
a. Patentable	b. Non patenta	able	c. Both	d. 1	None of	the above
19. Patentable l	biotechnological inver	ntions is	S			
a. Proteins	b. DNA sequences	c. Bo	oth of the (a) and	(b) d	l. None	of the above
20. Early founders of bioethics put forth four principles which form the framework for moral						
reasoning						
a. 4	b. 3		c. 2			d. 1

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS
21. A) Explain different levels of biosafety.
B) Explain different types of sterilization methods.
22. A) Explain the role of institutional committee.
B) Explain RCGM and GEAC?
23. A) explain object of Intellectual property law?
B) Explain the importance of IPR?
24. A) Write a note on benefits of patent.
B) Explain patentable and non-patentable biotechnological inventions?
25. A) Define bioethics, explain purpose and scope of bioethics?
B) Explain perspectives and methodology of bioethics?

26. Explain different types of bio-safety measures in laboratory?

27. Explain Cartagena protocol on biosafety.

28. What is IPR and explain their different types?

29. Patent - Definition, History and Law

30. Explain framework for making ethical decisions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – III</u>

CANCER BIOLOGY

Paper	: SBEC III	Total Hours	: 30
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U5BTS09	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The students also gain added knowledge on ethical, legal and social considerations on implementing/marketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts of cancer biology and types of tumour	K1 & K2
CO2	Understand the mechanisms of cancer development and chemical involved in carcinogenesis	K1 & K2
CO3	Understand molecular mechanisms and genetic principles of oncogene expression	K3, K4 & K5
CO4	Acquiring the knowledge on developing drug discovery approach in the management and detection of cancer	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Fundamentals of cancer biology: Regulation of Cell cycle, Mutations that cause changes in signal molecules, effects on receptor, signal switches, tumour suppressor genes. Development and causes of cancer, Types of cancer, Benign and malignant tumours.	6
II	Principles of carcinogenesis: Chemical Carcinogenesis, Metabolism of Carcinogenesis, Natural History of Carcinogenesis.	6
III	Principles of molecular biology of cancer: Oncogenesis: Oncogenes, identification of Oncogenes, Retroviruses and Oncogenes, detection of Oncogenes, Growth factors related to transformations.	6

	Principles of cancer metastasis: Clinical significances of invasion,	_
IV	heterogeneity of metastatic phenotype, three step theory of invasion,	6
	Proteinases and tumor cell invasion.	
	New molecules for cancer therapy: Different forms of therapy,	
V	Chemotherapy, Radiation Therapy, Detection of Cancers, Prediction of	6
	aggressiveness of Cancer, Advances in Cancer detection.	

SUGGESTED READINGS:

- 1. King R.J.B., Cancer Biology, Addision Wesley Longmann Ltd, U.K., 1996.
- 2. Maly B.W.J., Virology a practical approach, IRL press, Oxford, 1987.
- 3. Dunmock.N.J and Primrose S.B., Introduction to modern Virology, Blackwell Scientific Publications.
- 4. Ruddon.R.W., Cancer Biology, Oxford University Press, Oxford, 1995.

MODEL QUESTION PAPER (CANCER BIOLOGY)

NAME OF THE BIOLOGY	COURSE: CANCER	COURSE CODE 18U5BTS09	E: DURATION: 3 Hrs		
MAX MARKS: 75					
SECT	ION - A (1 X 20 = 20 MAR)	KS) ANSWER ALL TH	FOUESTIONS		
SLCT	$1010 - 11(1 \times 20) - 20$ With	(KS) MISWER MEETI	L QUESTIONS		
1. Cell cycle is reg	gulated by				
a. Kinase	b. CDKs	c. Cyclins	d. cAMP		
2. Which of the fo	llowing is tumour suppress	or gene?			
a. MAP	b. EGF	c. RB	d. p53		
3. Which of the fo	llowing is an example for n	nalignant tumour?			
a. Skin cancer b.	Hyperchromic macrocytic	anaemia c. Lung cano	cer d. Liver cancer		
4. Which of the fo	llowing is not a process of 1	netastasis?			
a. Attachment & Deta		c. Angiogenesis	d. Tissue degeneration		
5. Which of the fo	llowing chemical causes ce	rvical cancer?			
a. Asbestos	b. Benzapyrene	c. Ethidium bromide	d. Acrylamide		
6. Continuous exp	osure to asbestos causes				
a. Intestinal cancer	b. Lung cancer	c. Liver cancer	d. All the above		
7. Development o formation of		y the formation active tu	mour polyps is induced by the		
a. Blood vessels	b. Blood venous	c. Blood capillaries	d. None of the above		
8. Metastatic mod	le cancer spreading is mainl	y achieved by s	ystem		
a. Respiratory	b. Nervous	c. Circulatory	d. Excretory		
9. Development of	f blood cancer is induced by	which of the following	factor?		
a. Epithelial	b. Endothelial	c. Christmas	d. Vascular growth		
growth factor	growth factor	factor	factor		
_	expressed from		d Droto anagaras		
a. RB gene	2	c. Tumor supressor genes	6		
11. Which of the fo	11. Which of the following gene is responsible for cancer development by retroviruses?				
a. RTase	b. DNase	c. Retro transposons	d. None of the above		
12. Eye cancer is caused due to the mutation in gene					
a. CAT		c. Rho	d. CRISPER		
13. Cancer cells of epithelial origin can even shed their typical qualities and characteristics and adopt a like phenotype					

a. Parenchyma b.	. Cholenchyma	c. Mesenchyma	d. All the above		
	14. Interaction between the tumour cell and the surrounding stroma is extremely important in the development of tumor				
a. Vasculogenesis	b. Capillary syntl	nesis c. A & B	d. Angiogenesis		
15. The cell adhesion	n complex runs from the a	pical to the basal membrane	s and composed of		
a. Tight junctions	b. Adherent junct	tions c. Gap junction	s d. All the above		
16. Which of the foll	owing factor is responsibl	e for the development of liv	er cancer?		
a. EGF	b. VGF	c. HGF	d. EnGF		
17. Treatment of can	cer cells by targeting then	with cytokines is mode of			
a. Chemotherapy	b. Radiation therapy	c. Immunotherapy	d. Hormone therapy		
18. The early stage o	f colon cancer is detected	due to the expression of	gene		
a. dMMR	b. MACC 1	c. MACC 2	d. dMMR 2		
19. Prostate cancer a	19. Prostate cancer aggressiveness can be conveniently detected by				
a. MALDI	b. ESR	c.pCaP	d. NMR		
20. Mammary gland	20. Mammary gland tumour is detected accurately by				
a. Fluorescence ima technique	ging b. Electrical impedance scanning	c. Digital mammograph Computer a detection system	y & d. Nanotechnology ided based detection		

HE QUESTIONS
(OR)
(OR)
(OR)
ation of normal cell in to cancer
(OR)
(OR)

26. Give a detailed account on tumour suppressor gene

27. Give a detailed account on metabolism of carcinogenesis

28. Write an essay on retroviral oncogenes

29. Explain the basic principles of cancer metastasis

30. Write elaborately on the detection and prediction of cancer

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SEMESTER VI

BIOPROCESS TECHNOLOGY

Paper	: Core VII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 19U6BTC07	External	: 75

PREAMBLE

To make students on understanding basic principles of fermentation techniques and applying them in the production value added products such as antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of fermentation principles and its scope in downstream processing	K1 & K2
CO2	Understand the concepts of designing fermentor both in laboratory and pilot scale and its mode of operation	K1, K2 & K3
CO3	Gaining added information on the production of value added products from microorganisms	K4, K5 & K6
CO4	Propagate mass production of agriculturally important value added products	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	S	S	S	М	S
CO3	S	S	S	М	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	BASICS OF BIOPROCESS TECHNOLOGY: Introduction, Definition, Scope and applications of Bioprocess. Introduction to fermentation and downstream processing technology. Isolation and screening of industrially important microorganism. Strain improvement, preservation of microorganisms.	15

Π	DESIGN OF FERMENTOR: Fermentation types. Design of fermentor – parts and its functions. Types of Bioreactors (Air lift, cyclone, column, packed tower) Mixed bioreactor systems. Monitoring and controlling Bioreactors (pH, temperature and dissolved oxygen), Instrumentation for process control - Heat and mass transfer, oxygen transfer mechanism.	13
ш	DOWN STREAM PROCESSING: Basic principles of Down- stream processing – microbial cell disruption methods (Centrifugation, filtration fermentation broths). Cell separation techniques (Ultra filtration, Liquid-Liquid extraction) Chromatographic techniques: (Column & Ion exchange), Physical methods (Distillation, Fluid extraction and Electro dialysis).	15
IV	INDUSTRIAL BIOTECHNOLOGY: Microbial synthesis and applications – organic acids (Citric acid & acetic acid), Enzymes (Amylase), Antibiotics (Penicillin & Streptomycin), Vitamins (ascorbic acid & B12) an amino acids (Lysine & Aspartic acid).	17
V	PRODUCTION OF AGRICULTURAL PRODUCTS: Importance of micro algae and its cultivation (<i>Spirullina & Chlorella</i>). Mass production of Biofertilizer (<i>Rhizobium & Azolla</i>). Mushroom cultivation (Milk and button mushroom). Production and applications of Biopesticide (<i>Bacillus thuringiensis</i>).	

SUGGESTED READINGS:

- Peppler H.J. and Perlman D. 2006. Microbial Technology: Microbial Processes, 2nd Edition, Vol I, Academic Press
- 2. Stanbury F, Whittaker A and Hall J.S. 1997. Principles of Fermentation Technology, Adithya Books, New Delhi.
- 3. Jogdand S.N. 2000. Medical Biotechnology, Himalayan Publishing House.
- 4. Jayanto A. 2006. Fermentation Biotechnology, Dominant Publishers and Distributors, New Delhi.
- 5. Cassida J.R. 2005. Industrial Biotechnology, New Age International (P) Ltd, New Delhi.
- 6. Juan A and Senjo A. 2007. Separation Process Biotechnology, Taylor & Francis group.
- 7. Patel A.H. 1997. Industrial Microbiology, Macmillan India limited.
- 8. Glazer A.N. and Nikaido, H. 2007. Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd Edition, Cambridge University Press.
- 9. Prescott C and Dunn G. 2006. Industrial Microbiology, Agrobios (India).
- 10. Purohit S.S. Saluja A.K. and Kakrani H.N. 2004. Pharmaceutical Biotechnology. 1st Edition, Agrobios (India).

MODEL QUESTION PAPER (BIOPROCESS TECHNOLOGY)

NAME OF THE COURSE: BIOPROCESS TECHNOLOGY	COURSE CODE: 19U6BTC07	DURATION: 3 Hrs
MAX MARKS: 75		

SECTIC	N - A (1 X 20 = 20)	MARKS	S) ANSWER ALI	THE Q	UES'	TIONS
1. Fed batch prod	cess belong to					
a. Closed system	b. Continuo	ous	c. Intermediat	. Intermediate fed		d. Discontinuous
	system		batch syst	em		system
2. Soyameal, per	otone and tryptone an	re used a	s the source of			
a. Carbon	b. Carbon & ni	trogen	c. Miner	al	0	d. Nitrogen
3. Batch steriliza	tion cycle time cons	ists of				
a. Two phases	b. Three phas	es	c. Four phases		d. Fi	ive phases
4. Protected ferm	nentation uses which	of the g	iven below			
a. Sterilized media	b. Pasteurized media	с.	Pasteurized media with low pH	a	d. U	nsterilized media
5. A spray dryer	works on the princip	ple of				
a. Contact drying	b. Sublimatio	n	c. Lyophilisati	on	d.	Adiabatic drying
6. Which is not a	fruit or a vegetable	based fe	rmented product?			
a. Wine	b. Beer		c. Vinegar			d. Sauerkraut
7. Which of the f	following is an upstr	eam proc	cess?			
a. Product recovery	b. Product purifica		c. Media formulat	ion		d. Cell lysis
8. Pyrogen free v	vater is related to		•			
a. Endotoxin	b. O-polysacc	haride	c. Peptidog	lycan		e. Teichoic acid
9. Which one is a	down steaming proce	ess?			I	
a. Product recovery	b. Screening	c. N	Iedia formulation	d.	Ster	ilization of media
10. Which is the	following is not a ph	ysical m	ethod for the cells	rupturii	ng?	
a. Milling b.	Homogenization	c. Ult	ra sonication	d.	Enz	ymatic digestion
11. Ethanol ferme	entation is carried by	/	-			
a. Lactobacillus	b. <i>E.coli</i>	c	c. Saccharomyces cerevisiae d. Bacillus sp			d. Bacillus sp.
12. What is the p	ercentage range of va	ariation i	in recovery costs?			1
a. 50-55%	b. 0-20%		c. 5-7%			d. 15-75%
13. Cell lysis bec	omes an important o	peration	if the product is -			
L						

	a. Extra cellular	b. Heat labil	e	c. Toxic		d. Intra cellular		
	14 Bacillus thurin	giensis is used as						
	a. Insecticide	b. Fungicide	c.	Microbicidal agent d. Rodentic		d. Rodenticide		
	15. Yeast cells are good sources of							
a.	Vitamin A&B	b. Vitamin A	&D	c. Vitamin B&D)	d. All the above		
	16. The sugar concentration of molasses used in fermentation ranges between							
	a. 10-18%	b. 20-30%		c. 4-5%		d. 30-38%		
	17. The protein four	nd in milk is	-					
	a. Rennin	b. Pepsin	Pepsin c. Casein			d. Trypsin		
	18. Spirullina is a							
	a. Edible fungus	b. Bio fertilize	er	c. Biopesticidal	d	. Single cell protein		
	19. What is the scientific name of mushroom?							
a.	<i>Funaria</i> sp.	b. Dryopteris s	p.	c. Agaricus campes	stris	d. Fergus sp.		
	20. Agar-Agar is ob	tained from	_			•		
	a. Diatoms	b. Gracilario	a	c. Fomes		d. Laminaria		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUE	STIONS
21. A) State the scope and application of bioprocess technology	(OR)
B) Write notes on strain improvements	
22. A) Explain about airlift bioreactors	(OR)
B) Illustrate the packed tower bioreactor with its uses.	
23. A) Briefly mention the principles and uses of centrifugation	(OR)
B) Elaborate on cell separation techniques	
24. A) List out the application of amylases	(OR)
B) Explicate the production and applications of lysine	
25. A) Highlight the importance of bio fertilizers	(OR)
B) What are mushrooms? Explain its cultivation methods	

26. How will you develop an improved strain through recombination technique?

27. Illustrate the criteria for design of fermenters and specify its functions.

28. Explain basic principles of down streaming process

29. Explain the large scale production of penicillin and state its uses.

30. Describe the production and application of *Bacillus thuringiensis*.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ANIMAL BIOTECHNOLOGY

Paper	: Core VIII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 19U6BTC08	External	: 75

PREAMBLE

To make students on understanding the concepts of biotechnological approaches in animals so as to produce therapeutically products from animal systems.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome		
CO1	Understanding the development of animal cell culture techniques and basic concepts of cell lines	K1 & K2	
CO2	Gain knowledge on cell culture, animal cell growth dynamics	K1 & K2	
CO3	Manipulating animal cell for genetic improvement by modern recombinant techniques	K3 & K4	
CO4	Knowing about the principles of ethical, legal and public issues on using genetically animals in producing value added products	K5 & K6	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction and history of animal cell culture development. Types of cell culture methods (Primary & secondary). Animal Cell lines (Primary & Continuous cell lines). Suspension culture and organ culture. Culturing of lymphocytes, epithelial cells & stem cells.	15
II	Basics of cell culture: Different types of animal cell culture media, growth supplements serum free media, Balanced salt solutions. Behaviour of cells in culture cell division, Cell growth kinetics, Metabolism and estimation of cell number.	15

III	Gene transfer methods in animals: Microinjection, Embryonic stem cell gene transfer, Retroviral gene transfer. Transgenic animals (Production of transgenic Mice, Cow and Sheep). Animal viral vectors (SV40 virus and Retro virus). Baculo virus expression system. Improvement of silk production and quality.	15
IV	Animal Propagation and health care: Artificial insemination, Embryo transfer techniques. Gene therapy and its types. Production and development of animal vaccines for FMD, BTD, Rabbies and anthrax.	15
V	Public aspects if Animal Biotechnology: Ethical issues in Animal Biotechnology, Management aspects of Biotechnology and Genetic Engineering. Manipulation of animal growth using hormones and probiotics. Manipulating lactation and wool growth in sheep and rabbits.	15

SUGGESTED READINGS:

- 1. Portner R. Animal Cell Biotechnology: Methods and Protocols, Second Edition, Humana Press, 2007.
- 2. Babink L.A. and Philips J.P. Animal Biotechnology, Comprehensive Biotehenology First Supplement, Pregamon press, Oxford, 1989.
- 3. Rossant J. and Pederson R.A. Experimental approaches to Mammalian Embryonic Development, Cambdrige University Press, Cambridge, 1996.
- 4. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.
- 5. Lewis R. Human Genetics: Concept and applications. McGraw Hill Company, 2003.
- 6. Barrer JSF, Hammond K, McClintok AE, Eds., Future Developments in the Genetic improvements of Animals. Academic Press, 1992.
- 7. Freshney R.L. Animal Cell culture A practical approach, IRL press, 1992.
- 8. Freshney R.L. Culture of animal cells: A manual of basic technique and specialized applications. 6th Edition, Wiley and Blackwell publications, 2010.
- 9. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.

MODEL QUESTION PAPER (ANIMAL BIOTECHNOLOGY)

NAME OF THE COURSE: ANIMAL BIOTECHNOLOGY	COURSE CODE: 19U6BTC08	DURATION: 3 Hrs
MAX MARKS: 75		

1. The growth o							
a. LB medium	b.	MS medium	c. 1	NITCH"s mediur	n	d. MEM medium	
2. Who introduce	ed HAT	medium?					
a. Littlefield		b. Ham		e. Amold		d. Rous and Jones	
3. Name the type organism to c			epared by i	noculating direc	tly fro	om the tissue of an	
a. Primary cell cultur		Secondary cel	l culture	c. Cell lines		d. Transformed cell culture	
4. What is cell li	ne?						
a. Multilayer culture	b. Trans	formed cells	c. Multi cells	ple growth of	d.	Sub culturing of primary culture	
5. Which of the	following	g is NOT the pa	art of grow	wth medium for a	nima	l culture?	
a. Starch	b. Serur	n	c. Carbo	n source		d. Inorganic salts	
6. Which of the	following	g is NOT the m	ajor funct	ion of the serum	?		
a. Promotion of t and bulb form		b. Stimulate cell growth		c. Enhance cell attachment		d. Provide transport proteins	
7. For culturing,	plasma f	from the adult of	chicken is	preferred to man	ımali	an plasma because	
a. It forms a clear and solid coagulum even after dilution		b. It is too opaque		c. It doesn't produce solid clots		d. It forms a semi solid coagulum	
8. Disaggregatin	g of cells	s can be achiev	ed by				
a. Physical disruption		nzymatic digestion		tting with chelati	ng	d. All the above	
9. The technique	e of organ	n culture may b	e divided	on the basis of e	mplo	ying	
a. solid medium	b.	liquid mediun	n c.	semi-solid mediu	ım	d. both (a) and (b)	
10 11 1	main cor	stituents of cu	lture for a	nimal cell growth	n?		
10. What are the							

a. Uptake of new genetic material	b. Phenotypic modification in culture	ns of cells	c. both (a) and (b)	d. Release of genetic information
		found that		ells do not look very ctic acid in the culture
 a) Ethyl alcohol is being produced in excess 	b) The cells have much oxygen	too	c) Glycolysis is being inhibite	d) The cells do not have enoughoxygen
	es can be cultured fo -cultured indefinitely			apparently develop the e called
a) established cell lines	b) primary cel	ll lines	c) secondary cell lines	d) propagated cell lines
14. Higher dissolved o	xygen concentration	n in the cu	ture media are tox	tic and leads to
a) DNA degradation b)	lipid per oxidation		metabolism is greater	d) all of the above
15. Which of the follo	wing is the techniqu	ie used for	the embryo cultu	re?
a) Organ cultures on plasma clots	b) Organ culture agar	s on	c) Whole embryo cultures	d) All of these
16. The major problem organs is that of		e isolation	of free cells and c	cell aggregates from
a) releasing the cells from their supporting matrix	b) inhibiting the cells their supporting m		c) disintegrating the cells from their supporting matrix	
17. The technique of o	rgan culture may be	divided o	n the basis of emp	loying
a) solid medium b) lie	quid medium	c) both	(a) and (b)	d) semi-solid medium
18. An established cell				
a) 70 times at an interval of 3 days between subcultures	b) 40 times at an inter days between subc		c) 70 times at an interval of 1 day between subcultures	 d) 50 times at an interval of 3 days between subcultures
19. In animal cell cultu	re, particularly man	nmalian ce	ell culture, transfor	rmation means
a) Uptake of new genetic material20. Which of the follow	b) Phenotypic modifications of wing is not the expla	cells in	c) both (a)and (b)	d) Release of genetic information
			est tube culture	d) Adherent primary culture

21. A) Write notes about primary cell culture techniques.

(OR)

B) Explain the techniques and application in organ culture.

22. A) Write a detailed account on different types of media used in animal cell culture. (OR)

B) Explain the behaviour of cell division and cell kinetics.

23. A) Explain the principle and methodology of PCR Techniques	(OR)
B) Give detailed account of the mechanism application of Microinjection	
24. A) Explain the principle, methodology and application of embryo transfer te	chnology (OR)
B) Write detailed about production and development of animal vaccines.	
25. A) Explain various strategies of ethical issues in Animal Biotechnology.B) Discuss about a special features and applications of Stem cell culture.	(OR)

- 26. Write a detailed account on Animal cell culture Steps and maintenance?
- 27. Explained in detail about the Animal cell culture Media and Balanced salt solutions?
- 28. Describe about the Gene Transfer Techniques in Detail?
- 29. Production and development of Animal vaccines with Good examples?
- 30. Explain about cancer Gene therapy and Stem cell in detail?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY

Paper	: Core Practical VII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 40
Paper Code	: 19U6BTCP07	External	: 60

PREAMBLE

To make students on exposing to practical principles of fermentation techniques and applying them in the production value added products such antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare. To make students on exposing to practical principles of tissue culture media preparation, cell viability, subculturing and viability assay techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts on the production of alcohol, organic	K1, K2 & K3
	acid and SCP production. Prepare animal cell media and its	
	sterilization techniques.	
CO2	Understand in determining the microbial growth. To filter sterilize	K1 & K2
	the sensitive media ingredients and filtration technique.	
CO3	Estimating the production of single cell protein by biochemical	K2, K4 & K5
	method. Prepare suspension culture and cultivating viruses in	
	embryonated egg.	
CO4	Analysing milk qualitatively and separating aflatoxin fungal species	K2, K4 & K5
	by chromatographic method. Observation of different types of	
	animal cell lines.	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	М	S	S
CO3	М	S	S	S	S
CO4	М	S	М	S	S

UNIT	CONTENT	HOURS
1	Enumeration of microorganisms from bread	5
2	Production of alcohol from grapes	3
3	Production and estimation of citric acid from Aspergillus species	
4	Estimation of alcohol from grapes	10

5	Production and estimation single cell protein from <i>Azolla</i> and <i>Spirullina</i> by	
	Lowry''s method	10
6	Immobilization of amylase by entrapment method	
7	Determination of bacterial growth by growth curve method	10
8	Determination of Thermal Death point (TDP) of the bacterial sample	
9	Quality analysis of milk	
	a. MBRT test and	10
	b. Rezasurin test	10
10	Analysis of fungal aflatoxin by TLC	
11	Enumeration of microorganisms from bread	5
12	Production of alcohol from grapes	
13	Production and estimation of citric acid from <i>Aspergillus</i> species	5
14	Estimation of alcohol from grapes	5
15	Production and estimation single cell protein from <i>Azolla</i> and <i>Spirullina</i> by	
	Lowry's method	5
16	Immobilization of amylase by entrapment method	
17	Determination of bacterial growth by growth curve method	10
18	Determination of Thermal Death point (TDP) of the bacterial sample	10
19	Quality analysis of milk	
	c. MBRT test and	_
	d. Rezasurin test	5
20	Analysis of fungal aflatoxin by TLC	

MODEL QUESTION PAPER (LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY	COURSE CODE: 19U6BTCP07	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS		
1. (i) Estimate the	amount of alcohol from	the given fruit sample (A) /Isolate genimice		
DNA from the	given animal tissue san	nple (A) (Ol	R)		
		from the given batch cult			
Perform single cell sus	spension culture from th	e given animal cell samp	ole (A) (OR)		
		the given sample (A) b	y Lowry''s method/		
Perform viability test of	of the given animal cell	suspension (A) sample			
MINOR EXPERIME	ENT				
Exp: 6	Obs: 2	Res: 2	Total: 15 MARKS		
2. (i) Perform immobilization of the given enzyme sample (B)/ Inoculate the given					
infectious samp	infectious sample in the embryonated egg sample (B) (OR)				
	1 `	DP) of the bacterial sample			
		k embryo fibroblast cells			
. ,	1 5 6	milk sample (B) by MB			
	e given monolayer cultu	re (B) by appropriate me			
SPOTTERS		(52	X 4 = 20 MARKS)		
3. Identify the given spotters C, D, E, F & G and comment on them					
RECORD $(1 \times 5 = 5 \text{ MARKS})$					
VIVA-VOCE 5 MARKS					
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

GENOMICS AND PROTEOMICS

Paper	: Elective II	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 18U6BTE04	External	: 75

PREAMBLE

This paper deals with the basic principles of genome and its manipulating strategies end up with the development of novel candidate gene.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic structure of genome map in prokaryotic and eukaryotic organisms	K2 & K3
CO2	To understand the mapping of different regions of DNA and its amplification protocols	K2 & K3
CO3	To acquire knowledge on different tools used in the fields of proteomics	K2, K3 & K4
CO4	To explore with the different application of proteomics in terms of protein mapping	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT			
Ι	Genomics -Overview of Genome anatomies. Prokaryotic Genome Organization: operons. Eukaryotic Genomes, Nuclear Genomes and gene families, Organelle genomes: origin, Repetitive DNA contents, Tandem repeats, Transposons and transposable elements.	15		
п	DNA sequencing methods : Shot gun sequencing – Contig assembly. Techniques for gene location: ORF findings, Northern Hybridization, RT- PCR, RACE, S1 nuclease mapping, exon trapping. Transcriptome analysis: SAGE and Microarray technology	15		
III	Genome Mapping: Genetic Mapping: RFLP, SSLP, SNP-Physical	15		

	Mapping, Restriction site Mapping: FISH, STS mapping. Human genome organization. Gene therapy for inherited disorders and infectious diseases and ethics.	
IV	Tools of Proteomics : The proteome – the life cycle of protein-analytical techniques. Protein separation: 1D PAGE, 2D-PAGE, RPHPLC, Protein digestion techniques: peptide analysis- MALDI-TOF-ESI, Tandem Mass analyzers, Peptide Mass finger printing.	15
V	Applications of Proteomics: Protein mining, SALSA algorithm for mining specific features. Protein expression profiling. Identifying protein - protein interactions. Mapping of protein modifications.	15

SUGGESTED READINGS

- 1. Terence A Brown.(2002) Genomes, 2nd Edition, Bios Scientific Publishers.
- 2. Tom Strachan and Andrew P Read (1999) Human Molecular Genetics, 2nd edition, Bios Scientific Publishers.
- 3. Daniel C. Liebler (2002) Introduction to Proteomics, tools for the New biology- Humana press. Totowa, NJ.
- 4. Pennington.S, M. Dunn (2001) Proteomics: From Protein Sequence to Function 1 edition Bios Scientific Publishers.

MODEL QUESTION PAPER (GENOMICS AND PROTEOMICS)

NAME OF THE COURSE: GENOMICS AND PROTEOMICS	COURSE CODE: 18U6BTE04	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION -	- A (1 X 20 = 20 MARK	KS) A	ANSWER ALL THE	QU	ESTIONS	
1. The study of full complement of proteins expressed by a genome is called						
a. Proteome	b. Proteomics		c. Genomics		d. Protein formation	
2. The effects of prot	ein on an entire organisi	m is	described in			
a. Phenotypic function	b. Cellular function	c. N	Aolecular function	d. \$	Structural genomics	
3. The precise bioche	mical activity of a prote	ein is	described in			
a. Structural genomics	b. Molecular function		c. Cellular function	(d. Phenotypic function	
4. The network of int	eractions engaged in by	prot	ein at cellular level is	de	scribed in	
e. Molecular function	f. Phenotypic function	n g	. Structural genomic	S	h. Cellular function	
5. The goal of structu	ral proteomics project i	s to				
a. Crystallize and determine the structure of proteins	-	sequence of all the genes present in thegenes to beings			d. Remove disease causing genes from humans	
6. Conserved gene order can be termed as						
a. Ortholog	b. Synteny		c. Paralog		d. Microarray	
7. Sequencing of gen	omic DNA is included i	n				
a. Structural genomics	b. Molecular function	c.	. Cellular function	d.	Phenotypic function	
8. Genes of different other are	species, possessing a cl	ear so	equence and function	al r	elationship to each	
a. Ortholog	b. Synteny		c. Paralog		d. Microarray	
9. Rawolfia serpentin techniques is usef	<i>a</i> , to save this plant und ul?	er the	e threat of extinction,	wh	ich of the following	
a. Genetic engineering	b. In vitro culture c	Dì	NA fingerprinting	d. 1	Hybridoma technology	
10. Transgenic organi	sms are generally		L			
a.Extinct organisms b. Naturally occurring and c. Produced by plant d. Produced by gene endemic breeding technique transfer technology						
11. Genes of same species, similarly related to each other are						
a. Paralog	b. Ortholog		c. Microarray		d. Synteny	
12. Dolly, the first an	imal produced by clonin	ig is a	a		1	
a. Cow	b. Sheep		c. Rat		d. Dog	

13. Collection of microscopic DNA spots attached to solid surface are?						
a. Ortholog	b. Microarray	c. Synteny	d. Paralog			
14. Gene therapy is a technique preferred to cure inherited diseases by						
a.Repairing the faulty b. gene b.	Introducing the correct copy of the gene	c. Adding new cells	to the body d. PCR			
15. Which of the follow	ving is a repressible operon	?				
a. Lac	b. Trp	c. Gal	d. glu			
16. Explant can be a						
a. Cut part of the plant used in tissue culture	b. Plant extract used in tissue culture	c. Source of growth regulators added to media	d. Solidifying agent			
17. Which of the follow	ving is used to transfer gene	es in plants?				
a. Ti plasmid	b. pBR 322	c. EcoR 1	d. pUC 18			
18. Which of the follow	ving bacterium is used for g	gene transfer in plants?				
a. Agrobacterium	b. Azotobacter	c. Rhizobium	d. E.coli			
19. Which of the following is an inducible operon?						
a. Glu	b. Lac	c. Gal	d. trp			
20. Integrated state of I	20. Integrated state of DNA from other organisms in host DNA is termed as					
a. Plasmids	b. Phasmids	c. Episomes	d. cosmids			

SECTION $-$ B (5 X 5 = 25 MARKS) ANSWER ALL THE QUES	STIONS	
21. A) Elaborate on the mechanism of DNA Gyrase in nucleic acid replication (OR)		
B) What are lampbrush chromosomes? State its special features.		
22. A) How DNA sequencing is achieved by shot gun method?	(OR)	
B) Write notes on Pharmacogenomics.		
23. A) Enlist the inherited disorders and its treatment by gene therapy	(OR)	
B) Derive the protocol for human pedigree analysis.		
24. A) State the features of MALDI proteome analysis.	(OR)	
B) Briefly write about peptide mass finger printing.		
25. A) State the applications of Global Biochemical Network.	(OR)	
B) Affirm about the micro array techniques for proteins.		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Illustrate the different levels of packaging of DNA in eukaryotes.

27. State the mechanism of gene expression using RT-PCR technique.

28. Describe the implication of Human Genome Project.

29. Explain the principle, process and applications of 2-D gel electrophoresis.

30. Elucidate the principle and mechanism of mass spectroscopy in the analysis of metabolomics.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE II

BIOPHYSICS AND BIOINSTRUMENTATION

Paper	: Elective II	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 18U6BTE05	External	: 75

PREAMBLE

This paper deals with the basic instrumental principles leading to biological research outputs. It also describes the biophysical concepts of different biomolecules.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Explores student towards the biophysical properties of nucleic acids Proteins	K1 & K2
CO2	Acquiring knowledge with the basic concepts of chromatographic Techniques	K1, K2 & K3
CO3	Acquiring knowledge with the basic concepts of spectroscopic Techniques	K3, K4 & K5
CO4	Exploring towards the use of radiation principles in the field of biomedical science	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	М	М
CO3	S	S	М	S	S
CO4	S	S	S	S	М

UNIT	CONTENT	HOURS
I	Biophysics Of Nucleic Acids: Transitional angles and their ranges. The pseudo-rotation cycle, syn – anti orientation of glycosyl bond. Geometries of Watson- Crick and Hoogsteen base pairs.	12
п	Biophysics Of Proteins: Amino acids – Conformations. Phi and Psi angles. Ramachandran plot. Peptide bond isomerisation. Disulphide bonds, electrostatic forces, van der waals interaction and hydrogen bonds.	12

III	Analytical techniques: Principles and applications of Chromatography (Paper, thin-layer, column, GC-MS, GLC, Ion exchange chromatography, HPLC).	12		
IV	Analytical techniques: Principles and applications of spectroscopy. (UV- Vis, NMR, Raman spectroscopy, AAS and X-ray crystallography).			
V	Radiation Biophysics: Basic concepts of radiography. Measurement of radioactivity: GM counter, Liquid and solid scintillation counter. Advantage and disadvantage of radio active compounds.	12		

SUGGESTED READINGS

- 1. Narayanan, P (2000) Essentials of Biophysics, New Age Int. Pub. New Delhi
- 2. Roy R.N. (1999) A Text Book of Biophysics New Central Book Agency. Biophyscial chemistry principles and Techniques- Upadhyay, Upadhyay Nath.1997
- 3. Biophysical chemistry Cantor and Schinmel. 2002
- 4. Biophysical chemistry principles and Techniques- Upadhyay, Upadhyay Nath. 1997
- 5. Biophysics Arora, First edition, Himalaya Publications, New Delhi
- 6. Palanivelu, P (2001). Analytical Biochemistry, and separation techniques, Tulsi Book Centre. Madurai.

MODEL QUESTION PAPER (BIOPHYSICS AND BIOINSTRUMENTATION)

NAME OF THE COURSE: BIOPHYSICS AND BIOINSTRUMENTATION	COURSE CODE: 18U6BTE05	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. The right handed	1. The right handed double helix of DNA containsbase pairs per turn					
a. 9.5	b. 10.5	c. 11.5	d. 12.5			
2. Which of the follo to the other in the		ry is considered as a rota	ation of one base with respect			
a. Shear	b. Buckle	c. Propeller	d. Stagger			
3. The twisting degr	ee of B form of DNA i	is about				
a. 60°	b. 90°	c. 120°	d. 360°			
4. When the ends of the strands are		ded helical DNA are joi	ned so that it forms a circle			
a. Topologically	b. Geometrically	c. Physically	d. Isometrically			
5. A typical stabilit	y of a protein domain r	ange from to k	acal/mol			
a. 2, 5 b. 1	3, 6	c. 3, 7	d. 2, 6			
	copic suggest that lipic ke state in plasma	d binding by apo lipopro	teins is mediated via the			
a. NMR	b. CD	c. AAS	d. Raman			
7. The most commo	n type of protein foldir	ng is described by the pr	inciple of			
a. Tunnel landscape	b. Folding funnel	c. Realistic landscape	d. Levinthal paradox			
8. Which of the follo	owing angle of proteins	s folding is essentially fl	at and fixed to 180°?			
a. Alpha	b. Beta	c. Gamma	d. Omega			
9. Retention factor i	s related to					
a. PC	b. TLC	c. a & b	d. GC			
			so that ionic species are phic technique is employed?			
a. MS b.	GC	c. AAS	d. Ion exchange			
11. Elemental specie	11. Elemental species of the given sample is determined by					
a. TLC	b. GLC	c. GC-MS	d. AAS			
12. Cationic and anio	12. Cationic and anionic resins are used in					
a. PC	b. TLC	c. AAS	d. IEC			
13. The substances for	13. The substances found in colourless solutions can be measured by					
a. Colorimeter	b. UV-VIS	c. NMR	d. X-ray			

14. Sweep generator is used in					
a. NMR	b. X-ray c.	UV-VIS	d. Raman sp	pectroscopy	
15. Nickel oxide is u	ised as monochromator i	n			
a. X-ray crystallography	b. Raman spectroscopy		V-VIS	d. XRD	
16. Activation energy	gy of a given system can	be conveniently	determined b	у	
a. XRD	b. NMR	c. AAS		d. UV-VIS	
17. Becquerel is a un	nit of measurement of				
a. Fossil age	b. Radioactivity	c. Carbon	dating	d. None of the above	
18. Which of the fol	lowing particle has medi	um energy?	L		
a. Alpha	b. Beta	c. Gam	ma	d. Omega	
19. GM counter is used for measuring					
a. Radiation frequency	y b. Ionizing radiati	on c. Effe	ct of radiation	d. Gamma radiation	
20. The main substance used for nuclear imaging in cardiology is					
a. Thallium isotop	b. Boron isotope	c. Uraniu	im isotope	d. Tritiated water	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS			
21. A) Write shots notes on syn – anti orientation of glycosyl bond (OR)			
B) Write short notes on transition angles of nucleic acids			
22. A) Write shot notes on peptide bond isomerization	(OR)		
B) Write notes on electrostatic forces involved in protein stability			
23. A) Explain the applications of Thin layer chromatography	(OR)		
B) Explain the principle of HPLC			
24. A) Explain the instrumentation of Raman spectroscopy	(OR)		
B) List out the applications of atomic absorption of spectroscopy			
25. A) Explain the working principle of solid and liquid scintillation co	ounter (OR)		
B) Briefly explain the disadvantages of radio active compounds			

- 26. Give a detailed account on the geometrics of Watson & Crick model.
- 27. Give detailed account on Ramachandran plot
- 28. Write an essay on the working principle, instrumentation, applications, advantages and disadvantages of GC-MS
- 29. Give a detailed account on NMR. Add a note on its applications in the fields of medicine and defence
- 30. Write an essay on GM counter

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

ELECTIVE II ENVIRONMENTAL BIOTECHNOLOGY

Paper	: Elective II	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 18U6BTE06	External	: 75

PREAMBLE

This paper provides insight into environmental issues, relevant biotechnological concepts for facing environmental issues, available biotechnological applications in environmental issues, relevant policies. The course also tries to impart knowledge and skill in environmental biotechnology for sustainable development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To provide knowledge in environmental impacts in biotechnology	K1 & K2
CO2	To understand the concepts in various bioremediation techniques related environmental aspects	K2 & K3
CO3	To impart new thoughts about biotechnological applications on environmental issues	K3 & K4
CO4	To create awareness regarding the environmental policies for the improvement of environmental safety	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	М
CO2	S	S	S	S	S
CO3	S	S	S	S	М
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Biodiversity - definition, hot spots of Biodiversity, National Parks, Sanctuaries and Biosphere reserves, gene pool. Aquatic common flora and fauna in India - phytoplankton, zooplankton and macrophytes, terrestrial common flora and fauna in India - forests, endangered and threatened species.	15
II	Strategies for Biodiversity Conservation, cryopreservation, gene banks, tissue culture and artificial seed technology, new seed development policy 1988, conservation of medicinal plants. International conventions, treaties and protocols for Biodiversity Conservation.	15

ш	Bioremediation & Phytoremediation: Bio-feasibility, applications of bioremediation, Phytoremediation. Bio-absorption and Bioleaching of heavy metals: Cadmium, Lead, Mercury, Metal binding targets and organisms, Bio-absorption, metal - microbe interaction, Commercial biosorbents.	15
IV	Waste water Treatment: Biological treatment system (Oxidation ponds, aerobic and anaerobic ponds, facultative ponds, aerated ponds), Biological waste water treatment, activated sludge treatment, microbial pollution in activated sludge, percolating filters, waste water treatment by biofilms.	15
V	Solid waste pollution and its management: Current practice of solid waste management, composting systems, vermicomposting, sewage treatment.	15

SUGGESTED READINGS

- 1. Samit Ray and Arun K. Ray, Biodiversity and Biotechnology, New Central Book Agency (P) Ltd. (2007)
- 2. Pushpangadan P., Ravi K and V. Santhosh, Conservation and Economic evaluation of Biodiversity Vol.I& II (1997) Wealth of India CSIR, New Delhi.
- 3. An advanced text book of biodiversity. Principles and practice.By K. V. Krishnamurthy. Oxford and IBH company Pvt Ltd.
- 4. Biodiversity conservation: A Genetic Approach by S. Biswas. Oxford Book Company. 2007.
- 5. Alan Scragg. 1999. Environmental Biotechnology. Pearson Education Limited, England.
- 6. Jogdand, S. N. 1995. Environmental Biotechnology. Himalaya Publishing House, Bombay.
- 7. Technoglous, G., Burton, F. L. and Stensel, H. D. 2004. Wastewater Engineering-Treatment, Disposal and reuse. Metcalf and Eddy, Inc., TataMcGraw Hill, New Delhi.
- 8. De, A. k. 2004. Environmental Chemistry. Wiley Eastern Ltd. New Delhi.
- 9. Allsopp, D. and Seal, K. J. 1986. Introduction to Biodeterioration. ELBS/Edward Arnold, London.
- 10. Athie, D and Ceri, C. C. 1990. The use of Macrophytes in Water Pollution Control, Pergamon Press, Oxford.
- 11. Chin, K. K., and Kumarasivam. K. 1986. Industrial Water Technology Treatment, Reuse and Recycling. Pergamon Press, Oxford.

MODEL QUESTION PAPER (ENVIRONMENTAL BIOTECHNOLOGY)

NAME OF THE COURSE: ENVIRONMENTAL BIOTECHNOLOGY	COURSE CODE: 18U6BTE06	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. Phytoplanktons pr	ovide food to				
a. Whales	b. Shrimp	c. Snails	d. All the above		
world		refers to biologic	cally rich areas around the		
a. 15		c. 35	d. 45		
3. The upper reaches	of the Himalayas formin	ng part of the			
a. Indomalaya ecozo	ne b. Palearctic ecoz	zone c. Indo-Burma	d. Sundaland		
4. Endangered (EN)	, as categorized by				
a. LC	b. IUCN	c. VU	d. CR		
	per cent of the tot ensive in situ conservation				
a. 4.7	b. 7.7	c. 5.7	d. 6.7		
6. New policy on see	d development was form	nulated by the ministry o	f		
a. Science and techno	ology b. Agriculture	c. External affairs	d. None of the above		
7. The Convention of	biodiversity was opened	•	rth summit in		
a. 5 th June 1992	b. 5 th August 1992	c. 5 th June 1995	d. 5 th August 1995		
8. The Cartagena Pro- was adopted in	-	Convention, also know	n as the Biosafety Protocol,		
a. January 2000	b. February 2000	c. March 2000	d. June 2000		
9. Arsenic contamina	tion in soil is recovered	by			
a. Bioleaching b.	Phytoremediation c	. Bioremediation	d. Bio feasability		
10. Heavy metal toxicity increases the production ofthereby decreasing the antioxidant systems					
a. ROS b.	Hydrogen ions	c. Organic nutrients	d. Oxygen		
11is defined as the removal of metal or metalloid species, compounds and particulates from a solution by low cost biological materials					
a. Bioleaching b. Bioremediation c. Biosorption d. Phytoremediation					
12. Algae are of special interest in search for and the development of new biosorbents materials due to their and their ready availability in practically unlimited quantities in the seas and oceans					
a.High filtration	b. High reflection capacity	c. High Adsorption capacity	d. High sorption capacity		
-upuerty	-upuerty	capacity	cupucity		

	13. The bacteria present in the pond decompose the biodegradable organic matter and release			
	a. CO ₂	b. Ammonia	c. Nitrate	<i>d</i> . All the above
	14. Laggons are also cal	lled		
	<i>a.</i> Aerobic ponds b.	Oxidation ponds c. I	Facultative ponds	d. Aerated ponds
			· 1	treatment process for
	treating sewage or bacteria and	industrial wastewaters usi 	ing aeration and a biolo	gical floc composed of
	a. Viruses	b. Fungi	c. Helminthes	d. Protozoa
		at the Division of Environ ion of with efficie		
	a. Comamonas	b. Brachymonas	c. Aeromonas	d. All the above
	denitrificans	denitrificans	hydrophila	
		ing is Not common, and g tion costs, high moisture c	•	
	a. Incineration	b. Land filling c	. Source reduction	d. Composting
	18. Which of the follow	ing is NOT a component of	of bio compost?	1
	a. Carbon	b. Nitrogen	c. Oxygen	d. Hydrogen
	19. The most common e	eath worm used for vermic		·
b.	a. Eisenia foetida	Lumbricus terrestris	Lumbricus rubellus	Perionyx excavatus
v.	20. The most common worms used in composting systems, red worms feed most rapidly at temperatures of			
	a. 10–25 °C	b. 15–20 °C	c. 15−25 °C	d. 10–20 °C

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUE	STIONS
21. A) Write short notes on hot spots of Biodiversity	(OR)
B) Write short notes on endangered and threatened species	
22. A) Write short notes on cryopreservation	(OR)
B) Write short notes on Biodiversity Conservation	
23. A) Write short notes on Bioleaching of heavy metals	(OR)
B) Write short notes on Commercial biosorbents	
24. A) Write short notes on activated sludge treatment	(OR)
B) Write short notes on percolating filters	
25. A) Write short notes on composting systems	(OR)
B) Write short notes on vermicomposting	

OT OTTON		
SECTION -	C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
DECTION		

26. Give a detailed account on Aquatic common flora and fauna in India

27. Give a detailed account on tissue culture and artificial seed technology

28. Give a detailed account on Bioremediation

29. Give a detailed account on Waste water Treatment

30. Give a detailed account on sewage treatment

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – IV</u>

LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS10	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Develop the practical concepts of mushroom, spirullina, sericulture	K3, K4, K5 & K6
CO2	Develop the practical concepts of apiculture, aquaculture and vermicomposting technology	K3, K4, K5 & K6
CO3	Develop the practical concepts of wine production and sauerkraut production	K3, K4, K5 & K6
CO4	Develop the practical concepts of biogas production	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	М	S
CO2	М	S	S	М	S
CO3	М	S	S	М	S
CO4	М	S	S	М	L

Ex.no	CONTENT	
1.	1. Mushroom cultivation	
2.	2. Azolla cultivation	
3.	Spirullina cultivation	
4.	4. Sericulture	
5.	Epiculture	4
6.	Aquaculture (Fish/Prawn/Pearl)	4

7.	Vermicomposting	4	
8.	Biogas production	4	
9.	Sauerkraut production	4	
10.	Wine production	4	

MODEL QUESTION PAPER (LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY	COURSE CODE: 18U6BTS10	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
1. (i) Perform Azo	lla cultivation using the	given sample (A)	(OR)	
(ii) Perform Spi	<i>rullina</i> cultivation using	the given sample (A)	(OR)	
(iii) Peform ver	mi composting using the	e given earth worm samp	ole (A)	
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform win	e production using the g	iven fruit sample (B)	(OR)	
(ii) Perform bio	gas production using the	e given raw sample mate	rial (B) (OR)	
(iii) Perform sau	uerkraut production usin	g the given cabbage sam	ple (B)	
SPOTTERS		(5 X	$\mathbf{X} 4 = 20 \mathbf{MARKS}$	
3. Identify the give	en spotters C, D, E, F &	G and comment on them	1	
RECORD $(1 \times 5 = 5 \text{ MARKS})$			5 = 5 MARKS)	
VIVA-VOCE			5 MARKS	
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – IV</u>

NANOBIOTECHNOLOGY

: SBEC IV	Total Hours	: 40
: 2	Exam Hours	: 03
: 2	Internal	: 25
: 18U6BTS11	External	: 75
	: 2 : 2	: 2 Exam Hours : 2 Internal

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know basic concepts of nanotechnology and nano materials	K1, K2 & K3
CO2	Know the concepts of fabrication of bio molecular structures	K3 & K4
CO3	Develop miniaturized nano elements	K3 & K4
CO4	Understand various applications of nanotechnology in the field medicine, health care and drug discovery	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	М	S	S	S	S
CO3	S	S	S	S	S
CO4	М	S	S	S	S

UNIT	CONTENT	HOURS			
Ι	Nanobiotechnology: Definition, prospects and challenges; Topology of DNA, protein and lipids and self-assembly from Natural to artificial structures. Top up and bottom down approaches in nanomaterial fabrication.				
п	Nanomaterials and its properties : Carbon nanotubes and nanorods, Quantom dots, metal based nanostructures (Iron oxide nanoparticles), nanowires, polymer based nanostructures (dendrimers), Gold nanostructures (nanorods, nanocages, nanoshells), nanocomposites.				
III	Fabrication and Analysis of biomolecular nanostuructures: Atomic Force Microscopy, Scanning Probe Electron Microscopy and	8			

	Lithography. Nanoscale detection: Lab on a Chip. Fabrication of bionanochip & microarray technology.	
IV	Miniaturized devices in nanobiotechnology: Types and applications; Nanobiosensors: different classes, molecular recognition elements (MRE), transducing elements, applications of MRE in nanosensing of different analytes.	8
V	Applications of Nanobiotechnology: Nanomedicine, Diagnosis and treatment of infectious diseases, cancer research and therapy, tissue engineering and regenerative therapy; Nanostructures in drug discovery & drug delivery.	8

SUGGESTED READINGS:

- 1. Nanobiotechnoogy: concepts, applications and perspectives. Christ of M. Niemayer, chad A. Mirkin, Wiley VCH publishers 2004.
- 2. Bionanotechnology: Lessons from Nature, David. S. Goodshell, Jhonwiley 2006.
- 3. Buddy, D.R. Allan, S.H. Frederick, J.S. and Jack, E.L. Biomaterials Sciences: An Introduction to Materials in Medicine. 2nd edition.
- 4. David, L.N. and Michael, M.C. (2006). Lehninger"s principles of Biochemistry. 4th edition.
- 5. David, S. and Goodshell, J. (2006). Bionanotechnology: Lessons from Nature.
- 6. Molecular Design and Synthesis of Biomaterials. (2005). Biological Engineering Division, MIT Open Course Ware.

MODEL QUESTION PAPER (NANOBIOTECHNOLOGY)

NAME OF THE COURSE: NANO BIOTECHNOLOGY	COURSE CODE: 18U6BTS11	DURATION: 3 Hrs
MAX MARKS: 75		

1. Who first used the	term nano biotechnology	?	
a. Norio taniquchi	b. Richard Feynman	c. Eric Drexler	d. Sumio
2. 10 nm =m			
a. 10 ⁻⁸	b. 10 ⁻⁹	c. 10 ⁻⁷	d. 10 ⁻¹⁰
3. The size of the nam	o particles range from	nm	
a. 100 to 1000	b. 0.1 to 10	c. 1 to 10	d. 1 to 100
4. Nano science can b	e studied with the help of	of	
a. Quantum mechanics	b. Newtonian mechanism	c. Macro dynamics	d. Geophysics
5. The size of <i>E.coli</i> I	bacteria is	nm	
a. 2000	b. 5000	c. 50	d. 90
6. What does "F" stan	ds for in AFM?		
a. Fine	b. Force	c. Flux	d. Front
7. The two important	properties of nano substa	inces are	
a. Pressure and friction	b. Sticking and temperature	c. Sticking and friction	d. Temperature and friction
8. 1 nanometer is $=$	cm		
a. 10 ⁻⁹	b. 10 ⁻⁸	c. 10 ⁻⁷	d. 10 ⁻⁶
9. Protein-coding gen	es can be identified by		
Transposons tagging	b. ORF scanning	c. Zoo -blotting	d. Northern analysis
10. Nano particles targ	get thec	causing cells and remov	ve them from blood
a. Tumor	b. Fever	c. Infection	d. Cold
11. The	to the ceramics as	re superior coating	
a. Nano particles	b. Nano power	c. Nano crystal coding	d. Nano materia
12. Which one is used	in electron microscope?		
a. Electron beams	b. Magnetic fields	c. Light waves	d. Electron beams and magnetic fields

	scope can give a magnific	eation up to	
a. 400,000x	b. 100,000x	c. 15000x	d. 100x
14. Which of these	biosensors use the princip	ple of heat released or abso	orbed by a reaction?
a. Potentiometric biosensor	b. Optical biosensor	e. Piezo-electric biosensors	f. Calorimetric biosensors
15. Biosensor mad	e up of		
a. A probe and a surface	b. A sensing layer and a transducer	c. Transfer the prob molecule	e
		d. of	
		thes	
16. Which materia	ls are suitable for electrica	al signal transducing?	
a. PDMS	b. Sillicon	c. Glass	d. Polyethylene
17. Which one is a	anti-cancerous agent?		
a. Paclitaxol	b. Insulin c.	Polyethylene glycol	d. Poly glutamic acid
18. Which of the fo	ollowing co-solvents are u	sed to increase the solubil	ity of a drug?
a. Ethanol	b. Sorbitol	c. Glycerin	d. All of these
19.The size of the	RBCis	_nm	
a. 50	b. 90	20000	1 5000
	0. 90	- C. 20000	d. 5000
			<u>a. 5000</u>
20. The width of a	a typical DNA molecule	is <u> n</u> m	
			d. 10
20. The width of a a. 1	a typical DNA molecule i b. 2	is <u> n</u> m	d. 10
20. The width of a a. 1 SECTION 21. A) What are th	a typical DNA molecule i b. 2 I - B (5 X 5 = 25 MARKS)e challenges faced in the f	isnm c. 5 5) ANSWER ALL THE QU field of nano biotechnolog	d. 10 JESTIONS
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shore	a typical DNA molecule i b. 2 $(-B)(5 \times 5 = 25 \text{ MARKS})$ e challenges faced in the f rt note on nano material fa	isnm c. 5 b) ANSWER ALL THE QU Field of nano biotechnolog abrication	d. 10 JESTIONS
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nance	a typical DNA molecule i b. 2 I - B (5 X 5 = 25 MARKS)e challenges faced in the f	isnm c. 5 b) ANSWER ALL THE QU Field of nano biotechnolog abrication	d. 10 JESTIONS
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nanc B) Write short r 23. A) Explain ator	a typical DNA molecule i b. 2 I - B (5 X 5 = 25 MARKS) e challenges faced in the f rt note on nano material fa o materials and its properti- notes on quantum dots mic force microscope	isnm c. 5 5) ANSWER ALL THE QU Field of nano biotechnolog abrication ies	d. 10 JESTIONS
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nanc B) Write short n 23. A) Explain atom B) Explain about	a typical DNA molecule i b. 2 I - B (5 X 5 = 25 MARKS)e challenges faced in the f rt note on nano material fa o materials and its properti- notes on quantum dots mic force microscope ut scanning probe microscope	isnm c. 5 5) ANSWER ALL THE QU field of nano biotechnolog abrication ies	d. 10 JESTIONS
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nanc B) Write short n 23. A) Explain atom B) Explain about 24. A) Write short n	a typical DNA molecule i b. 2 I - B (5 X 5 = 25 MARKS) e challenges faced in the f rt note on nano material fa o materials and its properti- notes on quantum dots mic force microscope	isnm c. 5 5) ANSWER ALL THE QU field of nano biotechnolog abrication ies cope rs	d. 10 JESTIONS
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nanc B) Write short n 23. A) Explain atom B) Explain abou 24. A) Write short n B) Explain the n 25. A) What is drug	a typical DNA molecule i b. 2 $\frac{1 - B (5 X 5 = 25 MARKS)}{1 - B (5 X 5 = 25 MARKS)}$ e challenges faced in the f rt note on nano material fa o materials and its properti- notes on quantum dots mic force microscope ut scanning probe microscope ut scanning probe microscope ontes on types of biosenso molecular recognition eler c? Explain its discovery?	isnm c. 5 5) ANSWER ALL THE QU field of nano biotechnolog abrication ies cope rs	d. 10 JESTIONS
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nanc B) Write short n 23. A) Explain atom B) Explain abou 24. A) Write short n B) Explain the n 25. A) What is drug	a typical DNA molecule i b. 2 I - B (5 X 5 = 25 MARKS) e challenges faced in the f rt note on nano material fa o materials and its properti- notes on quantum dots mic force microscope ut scanning probe microscope notes on types of biosenso molecular recognition eler	isnm c. 5 5) ANSWER ALL THE QU field of nano biotechnolog abrication ies cope rs	d. 10 JESTIONS
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nanc B) Write short n 23. A) Explain atom B) Explain abou 24. A) Write short r B) Explain the n 25. A) What is drug B) Short notes o	a typical DNA molecule i b. 2 I - B (5 X 5 = 25 MARKS)e challenges faced in the f rt note on nano material fa o materials and its properti- notes on quantum dots mic force microscope ut scanning probe microscope ut scanning probe microscope ontes on types of biosenso molecular recognition eler g? Explain its discovery? on nano medicine	isnm c. 5 5) ANSWER ALL THE QU Field of nano biotechnolog abrication ies cope rs ments (MRE)	d. 10 JESTIONS y?
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nanc B) Write short n 23. A) Explain atom B) Explain abou 24. A) Write short r B) Explain the n 25. A) What is drug B) Short notes o	a typical DNA molecule i b. 2 I - B (5 X 5 = 25 MARKS)e challenges faced in the f rt note on nano material fa o materials and its properti- notes on quantum dots mic force microscope ut scanning probe microscope ut scanning probe microscope ontes on types of biosenso molecular recognition eler g? Explain its discovery? on nano medicine	isnm c. 5 5) ANSWER ALL THE QU field of nano biotechnolog abrication ies cope rs	d. 10 JESTIONS y?
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nanc B) Write short r 23. A) Explain ator B) Explain abou 24. A) Write short r B) Explain the r B) Explain the r B) Explain the r B) Short notes o SECTION	a typical DNA molecule i b. 2 I - B (5 X 5 = 25 MARKS)e challenges faced in the f rt note on nano material fa o materials and its properti- notes on quantum dots mic force microscope ut scanning probe microscope ut scanning probe microscope ontes on types of biosenso molecular recognition eler g? Explain its discovery? on nano medicine	isnm c. 5 5) ANSWER ALL THE QU Field of nano biotechnolog abrication ies cope rs ments (MRE)	d. 10 JESTIONS y?
20. The width of a a. 1 SECTION 21. A) What are th B) Write a shor 22. A) Explain nanc B) Write short r 23. A) Explain ator B) Explain abou 24. A) Write short r B) Explain the r B) Explain the r B) Explain the r B) Short notes o SECTION 26. Write the essay	a typical DNA molecule i b. 2 $\frac{1 - B (5 X 5 = 25 MARKS)}{1 - B (5 X 5 = 25 MARKS)}$ e challenges faced in the f rt note on nano material fa o materials and its properti- notes on quantum dots mic force microscope ut scanning probe microscope ut scanning probe microscope on types of biosenso molecular recognition eler g? Explain its discovery? on nano medicine - C (3 X 10 = 30 MARKS)	isnm c. 5 3) ANSWER ALL THE QU field of nano biotechnolog abrication ies cope rs ments (MRE) 5) ANSWER ALL THE Q	d. 10 JESTIONS y?

- 29. Write an essay on mode action of biosensors and application of biosensors
- 30. Explain about cancer research and cancer therapy

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>SBEC – IV</u> <u>BIOFARMING</u>

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS12	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the principles of conventional cropping systems and natural farming	K1 & K2
CO2	Manipulate integrated pest management fo the development of pesticide free plant products	K2 & K3
CO3	Develop the concepts of organic farming	K4 & K5
CO4	Understand the concepts of organic agricultural policy and GMOs	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	L	L
CO2	S	S	S	М	М
CO3	S	S	S	М	М
CO4	S	S	S	М	S

UNIT	CONTENT	HOURS
Ι	Agro-ecological zones and geographical distribution of crop plants in Tamil Nadu. Cropping systems - different types and their importance in food production- Package and practices followed for major crops and cropping systems in Tamil Nadu.	8
II	Green revolution in India - After effects - Definitions of Natural Farming, Traditional farming - Their concepts and scope - Natural Farming - Institutions- their activities and role.	8
III	Pest - Definition - categories of pests-pest control - natural, artificial-pest management IPM. Store grain pest management. Pesticides consumption and hazards. Role of biopesticides and biofertilizers in IPM.	8
IV	Organic farming - concept and relevance in the agriculture - problems and	8

	remedies - Encouragement and dissemination for effective practicing of organic farming. Production and marketing of Organic products.	
V	Organic agriculture policy, Genetically Modified Organisms as organic regulation	8

SUGGESTED READINGS:

- 1. Basu, D.N. and Guha, G.S. (1996). Agroclimatic regional planning in India, ARPU, Ahmedabad
- 2. Krishna, K. R., (2010). Agroecosystems of south India, Brownwalker press, Florida
- 3. John H. Perkins, *Geopolitics and the Green Revolution: Wheat, Genes, and the Cold War*, Oxford University Press, 1997.
- 4. Lester R. Brown, *Seeds of Change: The Green Revolution and Development in the 1970's*, 1970, Praeger Publishers, New York.
- 5. Kogan, M 1998. Integrated Pest Management: Historical Perspectives and Contemporary Developments, Annual Review of Entomology Vol. 43: 243-270 (Volume publication date January 1998)
- 6. Dharam P. Abrol (Editor), Uma Shankar 2013. Integrated Pest Management: Principles and Practice Amazon text book store
- 7. NPCS Board of Consultants & Engineers, (2008). The complete book on organic farming and production of organic compost, Asia Pacific Business Press Inc.
- 8. Shalini Suri, APH, (2012). Organic farming Vedams books from India.

MODEL QUESTION PAPER (BIOFARMING)

NAME OF THE COURSE: BIOFARMING

COURSE CODE: 18U6BTS12 | DURATION: 3 Hrs

MAX MARKS: 75

SECTIO	N - A (1 X 20 = 20 MA)	ARKS)	ANSW	ER ALL TH	E QUESTIC	ONS
1. Agro ecological ze	oning can be used as th	e basis	of a me	ethodology fo)r	
a. Calculating maximum yield				Land resourc		d. Land use planning
	ents contained in the de educing the need of			made availab	le to crops d	luring
a. Forage leaves	b. Fertilizer	1	-	fertilizer	d. Soil orga	nic matter
3. World geographic larger region of Ir	al scheme for recording	g plant o	distribu	tions (WGSI	RPD) is inclu	uded within the
a. Fauna of India	b. Flora of India	c. Fa	una of	Tamilnadu	d. Flora	of Tamilnadu
4. In Tamilnadu, Coi	mbatore receives an av	erage ra	ainfall	from North e	ast Monsoon	n of
a. 444.3mm	b. 443.4 mm	с.	434.4	mm	d. 344.	4 mm
5. Natural farming is	an ecological farming	establis	shed by	·		
a. Yamamoto Komba	i b. Masanobu Fuk	uoka	c. Shi	zen noho	d. Yoshikaz	zu Kawaguchi
6. Cop rotation and out	companion planting are	e the me	ethods	adopted when	nfa	arming is carried
a. Traditional	b. Organic		c. 1	Mixed crop	d. 1	Natural
7. Green revolution i	n India refers to a perio	od when	1			
a. Indian agriculture	b. Indian agricult	ure c. l	Indian	agriculture	d. Indian	agriculture was
was converted into	was converted in		was	-		ted into industrial
revenue generating	waste manageme	nt	into	renewable	system	l
system	system			ce system		
8. HYV seeds techni	cally can be applied on	ly in a l	land wi	th assured		
a. Fertilizer supply	b. Soil supply		c. `	Water supply	d. 1	Seed supply
9. Pery Adkisson an	b. Soil supply d Ray F. Smith receive	d the		World Food	Prize for en	couraging IPM
a. 1995	b. 1996	c. 199	7		d. 1998	
10. The most importa	nt insect damaging pul	ses in fi	ield and	d storage are	referred as -	
	Weevils				d. None o	
	important tools in integ					
	nd maintaining environ					
a. 2014	b. 2015			2016		2017
	owing pesticide is respo	onsible				-
_	Susceptibility to fungal infection	(c. Egg	shell thinnin	-	line in juvenile ulation
13. Which of the follo	owing is NOT the adva	ntage of	f organ	ic farming?		

	Maintains environment	b. Helps in		Ensures optimum	d.	Enhances crop	
1	by reducing pollution	keeping	1	utilization of natural	p	roduction by tillage	
	level	agriculture at a	1	resources for short term	ut	tilization and forage	
		sustainable level	1	benefit	cı	ropping system	
	14. Which of the follow	ring state first received	the	organic certification in I		** * *	
	a. Madhya Pradesh	b. Rajasthan		c. Maharashtra		d. Uttar Pradesh	
	15. NPOF stands for						
a.	National project on	b. National Project of	n	c. National Project on	d.	National project on	
	organic farmers	organic farming		organic fertilizers		organic forages	
	16. Indian agricultural policy was framed and drafted by						
	a. ICAR	b. IARI		c. CSIR	d. I	ICAS	
	17. The genetically eng	ineered seeds were intr	odu	ced in			
	a. 1994	b. 1995		c. 1996		d. 1997	
	18. "Round-up ready cr	ops" is a common name	e of				
a.	Pesticide crops b.	Herbicide crops c	. S	aline resistant crops	d .]	Drought resistant crops	
	19. The use of toxic and pervasive pesticides and petroleum based fertilizers is not allowed in the production of						
a.	Organic farm products	b. Biopesticides		c. Bioinsecticides	d .]	Bt - Cotton	
	20. Organic food produ	ction act (OFPA) was a	ame	nded in			1
	a. 1990	b. 1991		c. 1992		d. 1993	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALI	L THE QUESTIONS
21. A) Write shot notes on the different types of cropping systems	s (OR)
B) List out the packages and practice methods followed for ma	ajor crops
22. A) Briefly write about green revolution	(OR)
B) Explain the benefits of natural farming	
23. A) Explain about store gain pest management	(OR)
B) Explain the role of biopesticides in IPM	
24. A) Explain in brief about Organic farming	(OR)
B) Explain the marketing of organic products	
25. A) List out the organic agriculture policies	(OR)
B) Explain the use of organic policies in the development of fo	prage products

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Write an essay on different types and their importance of cropping system

27. Give a detailed account on natural farming

28. Write an essay in Integrated Pest Management (IPM)

29. Give a detailed account on organic farming, their production and marketing

30. Write elaborately on the role genetically modified organisms in framing the organic farming policies

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>NMEC – I</u>

BIOSAFTEY, BIOETHICS & IPR

Paper	: NMEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U5BTN01	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	8
II	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	8
ш	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non patentables.	8
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	8

	and general requirements of patent law. Patentable subjects and protection in	
	Biotechnology.	
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy.	8
	Ethical implications of GM crops, biopiracy and biowarfare.	

SUGGESTED READINGS:

1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.

2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.

3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.

4. Sasson A, Biotechnologies and Development, UNESCO Publications.

5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY,	COURSE	CODE:	DURATION: 3 Hrs
BIOETHICS AND IPR	17U5BTN01		
MAX MARKS: 75			

SECTION –	A (1 X 20 = 20 MARKS	5) ANSWER ALL THE (UESTIONS			
1. Bio-related research activities may not involve						
a. Micro organisms b. Animal cells c. Plant cells d. All						
2. A pathogen that	2. A pathogen that is unlikely to cause any disease in humans or animals					
a. Risk group I	b. Risk group II	c. Risk group III	d. Risk group IV			
3. Korean hemorrh	3. Korean hemorrhagic fever is example for					
a. Risk group II	b. Risk group III	c. Risk group IV	d. Risk group I			
4. Physical contai	inment is achieved by		I			
a. One type	b. Two types	c. Three types	d. Four types			
5. Which one of the	e following is not relevan	t to sterilization techniqu	e?			
a. Ethanol	b. Incinerator	c. Microscope	d. Autoclave			
6. Cartagena Protoc effect from		onvention on Biological I	Diversity came with			
a. 11 September	b. 12 September	c. 11 September	d. 12 September			
2003	2003	2004	2004			
	ll Biosafety Committee h	as a nominee for				
a. DST	b. DBT	c. UGC	d. ICAR			
	M meeting held in 2018?					
a. 7	b. 8	c. 9	d. 6			
	l not include the followin					
a. DBT b.	ICMR	c. UGC	d. CSIR			
10. GEAC establish	ed under					
a. MoEF &	b. UGC	c. DBT	d. DST			
11. Trade name is o	therwise called as					
	b. Model	c. Business name	d. Trademark			
12is an	y information of commer	cial value concerning pro	oduction			
a. Trade	b. Trade Secret	c. Patent d	. Industrial Design			
13. IPR initially star	ted in North Italy during					
a. Renaissanc	b. Renaissance	c. Renaissance	d. Renaissance			
e era. In	era. In 1472	era. In 1473	era. In 1474			
14. Protection of IPR not allow the following						

a.	Innovator	b. Brand ow	ner	c. Teacher		d. Coj	pyright holder
15. In	15. Intellectual property not refers to creations of the mind						
a.	a. Hard b. Inventions c. Literary and artistic works d. Names					d. Names	
16. W	hich one is co	mes under type of	intelle	ctual property (I	P)?		
a.	Copyright	b. Patent		c. Tradem	ark	d.	All the above
17. M	athematical al	gorithms are					
a.	Patenta	b. Non patenta	ble	c. Both	d.	None of	of the above
18. So	oftware is a						
a.	Patenta	b. Non patenta	ble	c. Both	d. 1	None of	the above
19. Pa	atentable biote	chnological inven	tions is				
a.	a. Prote b. DNA sequences c. Both of the (a) and (b) d. None of the above					of the above	
	20. Early founders of bioethics put forth four principles which form the framework for moral						
re	asoning			1		-	
a.	4	b. 3		c. 2			d. 1

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS			
21. A) Explain different levels of biosafety.	(OR)		
B) explain different types of sterilization methods.			
22. A) What is institutional committe and their roles?	(OR)		
B) Explain RCGM and GEAC?			
23. A) explain object of Intellectual property law?	(OR)		
B) Explain the importance of IPR?			
24. A) Write a note on benefits of patent.	(OR)		
B) explain patentable and non-patentable biotechnological inventions?			
25. A) define bioethics, explain purpose and scope of bioethics?	(OR)		
B) Explain perspectives and methodology of bioethics?			

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Explain different types of bio-safety measures in laboratory?

27. Explain Cartagena protocol on biosafety.

28. What is IPR and explain their different types?

29. Patent - Definition, History and Law

30. Explain framework for making ethical decisions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>NMEC – I</u> BIOINFORMATICS

Paper	: NMEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U5BTN02	External	: 75

PREAMBLE

To make students on understanding the basic concepts biological soft wares and their applicability in enhancing the need based quality of living systems

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of nucleic acid sequence databases	K1, K2 & K3
CO2	To understand the concepts of specialized databases	K2, K3 & K4
CO3	To understand the basic concepts of sequence analysis and sequence alignment	K2, K3 & K4
CO4	To understand the concepts of gene prediction methods through <i>insilico</i> approaches	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS	
Ι	Bioinformatics – Biological Databases- Nucleic acid sequence databases – GenBank/NCBI, EMBL, and DDBJ. Protein sequence databases – UniprotKB and PIR, Structure databases – PDB, CATH and SCOP.	8	
II	Specialized Databases – BLOCKS, PRINTS and Pfam, Microarrays- Microarray data analysis, Proteomic data Analysis.		
III	Sequence Analysis- sequence alignment, Dot plot, pairwise Sequence Alignment- Local alignment and Global alignments- Dynamic programming algorithm for sequence alignment, Scoring matrices, gap penalties.	8	
IV	Multiple sequence alignment- scoring methods-clustal W- Phylogenetic	8	

	Analysis- tree construction methods- Maximum likelihood and maximum	
	parsimony- distance methods- Database similarity search- Basic Local	
	Alignment search tool (BLAST).	
	Gene prediction methods - ORF finder, Restriction site analysis. Protein	
V	secondary structure prediction -Comparative Modeling -Drug Designing-	8
	- Molecular Docking	

SUGGESTED READINGS:

- 1. Bioinformatics: Sequence, Structure and Databanks: A Practical Approach (The Practical Approach Series, 236), Des Higgins (Editor), Willie Taylor. 1st edition, October 2000, Oxford University Press. ISBN: 978-0199637904.
- 2. Bioinformatics: Sequence and Genome Analysis, David W. Mount. 2nd edition, June 2004, Cold spring harbor laboratory press. ISBN: 978-0879697129
- 3. David, H. M. 2005. Bioinformatics. Second edn. CBS Publishers, New Delhi.
- 4. David, R., Westhead, J., Howard, P. and Richard, M., and Twyman. Instant Notes-Bioinformatics Viva Books Private Limted, Chennai.
- 5. Gribskov, M., Devereux, J. 1989. Sequence analysis primer. Stockton Press.
- 6. Introduction to Bioinformatics, Teresa Attwood, David Parry-Smith, 1st edition, May 2001, Pearson Education. ISBN: 978-8178085074
- Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Second Edition, Andreas D. Baxevanis, B. F. Francis Ouellette. 3nd edition, October 2004, A John Wiley & Sons, Inc., Publication. ISBN: 978-0471478782.
- 8. Seizberg, S. L., Searls, D. B. and Kasif, S. 1998. Computational methods in Molecular biology now comprehensive Biochemistry. Elsevier.

MODEL QUESTION PAPER (BIOINFORMATICS)

NAME OF THE COURSE: BIOINFORMATICS	COURSE CODE: 17U5BTN02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	f - A (1 X 20 = 20 MAR)	KS) ANSWER ALL TH	HE QUESTIONS
1. A single piece of	information in a databa	ase is called	
a. File	b. Field	c. Record	d. Data set
2. Which of the foll	owing is a nucleotide se	equence database?	
a. EMBL	b. SWISPOT	c. PROSITE	d. TREMBL
3. BLAST Program	me is used for		
a. DNA Sequence	b. Protein sequence	e c. DNA barcoding	d. Sequence analysis
4. The BLAST prog	gram was developed on		
a. 1992	b. 1995	c. 1990	1991
5. Phylogenetic ana	lysis is a		
a. Dendrogram	b. Genbank	c. Data retrieval Tool	d. Data Searching tool
6. Which of the foll	owing is a part of the sta	atistical test of sequence	es?
 An optimal alignment between two chosen sequences is obtained at the end 	b. Unrelated sequences of the same length are then generated through a randomization process	c. Unrelated sequences of the different length are then generated through a randomization process	d. Related sequences of the same length are then generated through a randomization process
7. Clustal W is a			
a. Multiple sequence alignment tool	b. Protein secondar structure predic		val c. ORF finder
	align many sequences s		
a. Multiple sequence alignment	b. Pairwise alignment	c. Global alignment	d. Local alignment
9. Which one is spe	cially made for protein of	data base?	
a. DDBJ	b. EMBL	c. PIR	d. Genbank
10. Genbank mainta	ined by		1
a. DDBJ	b. EMBL	c. Swissport	d. NCBI
11. Submission of se	equences to genbank three	ough	
	1	79	

	a. Bankit	b. Sequin	b. A	& b	0	c. None of the above
	12. The final step i	nvolves pairwise align	ment by e	xtending fron	n the	words in both direction
	while counting t	the using the s	ame substi	tution matrix		
	a. Dock score	b. Alignment sco	ore c	c. Both a & b		d. None of the above
	13. Which of the fol	llowing is not a variant	of BLAST	?		
	a. BLAST N	b. BLAST P		c. BLAST X	K	d. TBLAST X
14. Phylogenetics is the study of the evolutionary history of living organisms using tree				organisms using treelik		
	diagrams to repr	resentof these	e organism	8		
	a. Distance matrix	b. Maximum l	ikelihood	c. Ped	igree	d. Maximum parsimony
	15. When the two	domains are located in	n two diffe	erent proteins	, to pr	reserve the same
	functionality, th	eir close have	to be prese	erved as well.		
	a. Solubility and	b. Proximity		d length and		d. "N" and "C"
	Polarity	and	Bo	nd energy		terminals
	16 Which of the for	interaction	ndina tha C	TDINCO		
		llowing is not true rega				I
	a. Search Tool for the Retrieval of Interacting	b. Functional association include only the dire protein-protein	ct evi	s based on comb dence of gene lir ne fusion and		d. It is a web server tha predicts gene and protein functional
	Genes/Proteins	interactions		logenetic profile	es	associations
	- t t 1 t 4 1 4	0	•	t is extremely		that the extensive
	sequences must a. Unlikely	en the two sequences h have derived from a co b. Possible	as been aco mmon evo c. L	quired randon lutionary orig ikely	nly, me gin	
	sequences musta. Unlikely18. Which of the following	en the two sequences h have derived from a co b. Possible llowing is incorrect reg	as been aco mmon evo c. L arding sequ	quired random lutionary orig ikely lence homolo	nly, me in gy?	eaning that the two
a.	sequences must a. Unlikely	en the two sequences h have derived from a co b. Possible llowing is incorrect reg	as been acommon evo c. L arding sequences When two are descent common origin, the	quired random lutionary orig ikely uence homolo to sequences ended from a evolutionary and to bomologous	nly, me in gy? d. W de ev	eaning that the two
a.	sequences must a. Unlikely 18. Which of the for Two sequences can homologous relationship even if have do not have common origin	en the two sequences h have derived from a co b. Possible llowing is incorrect reg b. It is an important concept in	as been acommon evo c. L arding sequences when two are desce common origin, th have a hor relations ect about M	quired random lutionary orig ikely uence homolo to sequences ended from a evolutionary ley are said to omologous hip Microarray (or	nly, me in gy? d. W de ev sa	A. Relevant Then two sequences are escended from a common volutionary origin, they are aid to share homology
a. a.	sequences must a. Unlikely 18. Which of the for Two sequences can homologous relationship even if have do not have common origin 19. Which of the giv It is a new technology in which all of the genes of an organism are represented by oligonucleotide sequences spread out in an 80 x 80 array on microscope slides	en the two sequences h have derived from a co b. Possible llowing is incorrect reg b. It is an important concept in sequence analysis ven statements is incorr b. The oligonucleotide sequences cannot be synthesized directly on the slide	as been acommon evo c. L arding sequences when two are descent common origin, the have a hore relations ect about M c. The c are con hybri labele librar rever mRN	quired random lutionary orig ikely uence homolo to sequences ended from a evolutionary tey are said to omologous hip Microarray (or bligonucleotides oblectively dized to a ed cDNA y prepared by se-transcribing A from cells	nly, mo in gy? d. W de ev sa e micro	A. Relevant A. Re
	sequences must a. Unlikely 18. Which of the for Two sequences can homologous relationship even if have do not have common origin 19. Which of the giv It is a new technology in which all of the genes of an organism are represented by oligonucleotide sequences spread out in an 80 x 80 array on microscope slides 20. Other types of e	en the two sequences h have derived from a co b. Possible llowing is incorrect reg b. It is an important concept in sequence analysis ven statements is incorr b. The oligonucleotide sequences cannot be synthesized directly	as been acommon evo c. L arding sequences when two are desce common origin, th have a hore relations ect about N c. The c are cc hybri labele librar rever mRN	quired random lutionary orig ikely uence homolo to sequences ended from a evolutionary ey are said to omologous hip Microarray (or oligonucleotides ollectively dized to a ed cDNA y prepared by se-transcribing A from cells	nly, mo in gy? d. W de ev sa e micro	A. Relevant A. Re

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE (QUESTIONS
21. A) Write an short Biological Database	(OR)
B) Explain the NCBI data base	
22. A) Give an account on BLOCKS, PRINTS	(OR)
B) Explain the application of Pfam	
23. A) Write short note on sequence alignment	(OR)
B) Briefly define Scoring matrices	
24. A) Write short notes on Phylogenetic Analysis	(OR)
B) Write about database similarity search	
25. A) Explain ORF finder	(OR)
B) Explain the steps involved in Restriction site analysis	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

- 26. Give a detailed account on Biological databases
- 27. Explain elaborately about the types of Biological data bases
- 28. Give a detailed account on BLAST
- 29. List out the difference between Local alignment and Global alignments
- 30. Give a detailed account on Molecular Docking

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>NMEC – II</u>

CONCEPTS OF BIOTECHNOLOGY

: NMEC II	Total Hours	: 40
: 2	Exam Hours	:03
: 2	Internal	: 25
: 17 U3BTN03	External	: 75
	: 2 : 2	: 2 Exam Hours : 2 Internal

PREAMBLE

To make non major life science students in understanding basic and applied principles of biotechnology and its technical approach in society in generating value added, reliable and reproducible products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the scope and application of biotechnology	K1, K2 & K4
CO2	Use of enzymes in generating basic recombinant DNA concepts	K2, K3 & K4
CO3	Use of plasmid vectors in experimenting and designing cloning strategies	K3, K4 & K5
CO4	Use molecular techniques of the identification of positive recombinant clones	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Scope of Biotechnology: History of Biotechnology; Conventional and modern Biotechnology – Biotech industries. Biotechnology tree. Strategies for gene cloning.	8
II	Tools used in gene cloning – Restriction endonucleases – Types – Features. Ligases – linkers, adaptors and homopolymer tailing. Modifying enzymes	8
III	Vectors-properties of good vector. Constructed plasmids-pBR 322. Cosmid vectors, Animal vectors-SV40. Plant vectors – Ti derivatives	8
IV	Introduction of genes – vector mode – transformation and transfection. Vector less mode – Biolistics, Electroporation, Microinjection	8

techniques

SUGGESTED READINGS:

- 1. Principles of gene manipulations. Old and Primrose (1989), 3rd edition.
- 2. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 3. Biotechnology and genomics, Gupta PK (2004). Rastogi publications.
- 4. Gene cloning and DNA analysis. Brown TA. (1996). Blackwell science, Osney Mead, Oxford.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- 6. Biotechnology, Singh BD (2004). Kalyani Publications. New Delhi.

MODEL QUESTION PAPER (CONCEPTS OF BIOTECHNOLOGY)

NAME OF THE COURSE: CONCEPTS OF BIOTECHNOLOGY	COURSE CODE: 17 U3BTN03	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION	I - A (1 X 20 = 20 MAR)	KS) ANSWER ALL TH	HE QUESTIONS		
1. The following is not a branch of Biotechnology					
a. Genetic engineering	b. Tissue culture	c. Physiology	d. Microbiology		
2. Cell theory was proposed by					
a. Schleiden and Schwann	b. Robert Hooke	c. Leeuwen Hooke	d. Beetle and Tatum		
3. DNA recombination	nt technology is also call	led as			
a. Gene manipulati	on b. Totipotency	c. Splicing	d. Gene cloning		
4. The PCR techni	ique was developed by				
a. Karry mullis	b. Kohler	c. Milstein	d.Altman		
5. Gene cloning me	ans				
a. Production of mutated genes	b. Production of wild genes	c. Production of dominant genes	d. Production of large population of desire DNA fragment		
6. A small circular	DNA present in bacteria	l cells are called as			
a. Enzyme	b. Ribosomes	c. Plasmids	d. Vector		
	A samples are taken from				
a. Same	b. Different	c. Different	d. None of the above		
individual	individual	species			
8. The function of I	Restriction enzyme is to				
a. Cut the DNA	b. Join the DNA	c. Amplify the DNA	d. None of the above		
9. Who discovered	the restriction enzymes?)			
a. Natham & Arber and smith	b. Watson & Crick	c. Boyer & Co	hen d. Paul & Berg		
10. Which organism	has the highest number	of vectors?			
a. Yeast	b. Mammalian cel	ls c. E.coli	d. Fungi		
11. Boliver and Roc	riguez constructed whic	h vectors	•		
a. P ^{uc8}	b. Y ^{ip7}	c. P ^{BR322}	d. M ¹³		
12. How many set o	f antibiotics resistance d	oes the plasmids PBR3	22 carry?		
a. 1	b. 2	c.3	c. Nothing		
13. Cosmids vectors	s are used for				
	1	.84			

	a. Cloning a small fragments	b. Cloning a fragment	-	c. Cloning prokary		d. Cloning eukaryotes
	14. Single stranded v	vectors are useful	ctors are useful			
	a. For sequencing of cloned DNA	b. For oligo nu directed mu			probe paration	d. All the above
	15. Chemicals used f	or gene transfer met	thod			
	a. Polyethylene	b. Dextran	c.	Calcium chlori	de	d. All the above
	16. Polymerase used	for PCR is extracted	d from?			
	a. E.coli b.	Bacillus sp c	. Therm	os aquaticus	d. Sacchai	romyces cerevisiae
	17. At which temperature does the DNA is denatured during PCR?					
	a. 60°C	b. 54°C		c.74°C	d.9	94°C
	18. Molecular marke	rs include			I	
	RAPD	b.AFLP		c.AFLP	d. All o	f these
	19. Western blotting	is the techniques for	r the det	ection of		
a.	Specific RNA in a sample	b. Specific DNA i a sample		pecific protein a sample	d. Spec sample	cific glycolipids in a e
	20. What is probe?					
a.	Chemically synthesized DNA	b. Purified DNA	c. Fra dup	gmented DNA blex	syntl	er purified or hesized single single ided DNA

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS
21. A) Write history of biotechnology
B) Write a short note on biotechnology tree
22. A) Explain ligases enzymes
B) Notes on homopolymer tailing
23. A) Explain the properties of good vectors
B) Explain cosmid vectors
24. A) Write notes on bio plastics
B) Explain microinjection methods
25. A) Write notes on RFLP
B) Application on RAPD

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Write the essay strategies of gene cloning

27. Explain the types and functions restriction enzymes

28. Write the essay P^{BR322} and uses of this vector

29. Write a essay on gene transfer methods

30. Explain PCR principle methodology and applications

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

<u>NMEC – II</u>

BIOTECHNOLOGY FOR SOCIETY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U3BTN04	External	: 75

PREAMBLE

To make students on understanding the applied part of biotechnology to non-major and non-life science back ground students

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of silk worm, earth worm cultivation and its applications	K3, K5 & K6
CO2	To understand the concepts of bio fertilizers, bio plastics and Bioweapons	K3, K5 & K6
CO3	To understand the basic concepts of biodegradation of xenobiotic Compounds	K3, K5 & K6
CO4	To understand the concepts of generating genetically modified/transgenic organisms	K3, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
Ι	Seri culture, Aquaculture, Apiculture, Vermi culture and Mushroom Technology	8
Π	Biofertilizers, Biopesticides, Bio repellents, Pest control and management, Biomass (SCP), Bioplastics, Bioweapons.	8
III	Bio dyes, Bio fuels – Biodiesel & Biogas, Bio indicators, Biodegradation – Role of genetically modifies organisms	8
IV	Production of penicillin, Recombinant Vaccines (HBV), Recombinant Insulin, Plantibodies, Vaccines in animal cells, Gene therapy.	8
V	Transgenic animals and their applications. Mice, Sheep and Fish. Transgenic plants and their applications – BT cotton, Flavr-Savr tomato and golden rice	8

SUGGESTED READINGS:

- 1. Animal Biotechnology, Ranga MM (2000). Agrobios
- 2. Introduction to Plant Biotechnology. Chawla (2003).2nd edition. Oxford and IBH publications.
- 3. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 4. Industrial Microbiology Patel AH (2005). Mac Millan Publishers.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- Environmental Biotechnology, Chatterji AK, 3rd edition, PHI Learning Pvt Ltd, Newdelhi.

MODEL QUESTION PAPER (BIOTECHNOLOGY FOR SOCIETY)

NAME OF THE COURSE: BIOTECHNOLOGY FOR SOCIETY	COURSE CODE: 17U3BTN04	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION 1. Sericulture is a r		RKS) ANSWER ALL THE	E QUESTIONS
		1 1	
a. Silk worm	b. Lac insect	c. Honey bee	d. Fish
2. Aquaculture is a	rearing of		
a. Silk worm	b. Lac insect	c. Honey bee	d. Fish
3. Which of the fol	lowing is used as food to	o feed Bombyx mori?	
a. Hibiscus leaves	b. Mulberry leave	es c. Palm leaves	d. Nome of the above
4. The seeds used f	or mushroom cultivation	n is called as	
a. Callus	b. Bed	c. Spawn	d. Altman
5. Which of the fol	lowing can be used as bi	oweapons?	
a. Bacillus	b. Escherichia	c. Streptococcus	d. Clostridium
6. Which of the fol	lowing is used as SCP to	feed cattle?	
a. Azolla	b. Spirullina	c. Mushroom	d. Yeast
	owing is an example for		
a. PBH	b. PVC	c. PCC	d. PCV
8. Bacillus thuring	iensis is used as		
a. Biofertilizer	b. Biopesticide	c. Bioplastic	d. Biorepellent
9. The chemical fur	nctional group that gives	color to the substance is	called as
a. Iodophore	b. Basophore	c. Chromophore	d. None of the above
10. Which organism	n produces biodiesel?		
a. Chrococcus	b. Botrycoccus	c. Scenedesmu	s d. Both b & c
11. Biogas is produ	ced by certain bacteria by	y the process of	
a. Acetogenesis	b. Chlorogensis	c. Methanogenesis	d. Nitrification
12. Petroleum hydro	ocarbons are greatly degr	raded by	
a. <i>Serratia</i>	b. Bacillus	c. Proteus	d. Pseudomonas
	accines are produced by -		
a. Cutting	b. Grafting	c. Harvesting	d. Cloning
	1 11		
14. Hepatitis is com	monly caused by		d Drotono-
14. Hepatitis is com a. Bacteria	b. Fungi	c. Virus	d. Protozoa
14. Hepatitis is coma. Bacteria15. Penicillin is pro	b. Fungi duced by	c. Virus	
14. Hepatitis is coma. Bacteria15. Penicillin is proa. Bacteria	b. Fungi duced by b. Fungi	c. Virus	d. Protozoa
 14. Hepatitis is com a. Bacteria 15. Penicillin is pro a. Bacteria 16. Insulin is pancre 	b. Fungi duced by b. Fungi	c. Virus c. Virus ofpeptide chain	d. Protozoa
14. Hepatitis is coma. Bacteria15. Penicillin is proa. Bacteria16. Insulin is pancrea. 1b.	b. Fungi duced by b. Fungi eatic hormone composed 2 c. 3	c. Virus c. Virus ofpeptide chain	d. Protozoa

	a. Fibrin	b. Antithrombin	c. Insulin	d. Interferon	
	18. Recombinant proteins (RPs) are extensively produced by using one of the following cell line				
	a. MCF	b. CHO	c. HeLa	d. MG-63	
	19. BT cotton is generated for the purpose of				
a	. Controlling cotton production	b. Controlling Honey b population	ee c. Controlling butt propagation	erfly d. Controlling cotton pests	
	20. Transgenic tomato was produced by recombinant DNA technology for the purpose of				
	a. Increasing CHO content	b. Increasing vitamin content	c. Increasing lipid content	d. Increasing protein content	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS	S	
21. A) Write shot notes on the rearing of silkworm	(OR)	
B) Write a short note on the applications of vermin compost		
22. A) Explain the uses of SCP.	(OR)	
B) List out the hazardous consequences of bioweapons		
23. A) List out the composition of biogas	(OR)	
B) Write short notes on pest control management		
24. A) Write short notes on plantibodies	(OR)	
B) Write short notes on gene therapy		
25. A) How will you produce golden rice?	(OR)	
B) Briefly write about uses of Flavr-Savr Tomato		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS

26. Give a detailed account on mushroom cultivation technology

27. Give a detailed account on biopesticide production

28. Give a detailed account on bio diesel production

29. Give a detailed account on penicillin production

30. Give a detailed account on the production of transgenic mice

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

190