VIVEKANANDHA

COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2008 Certified Institution
Affiliated to Periyar University
(Approved by AICTE and Re-accredited with "A" Grade by NAAC)
Recognized Under 2(f) and 12 (b) of UGC Act, 1956.
Elayampalayam, Tiruchengode-637 205, Namakkal Dt., Tamil Nadu, India

DEPARTMENT OF BIOTECHNOLOGY

Bachelor of Science

B. Sc SYLLABUS

[For the Candidates admitted on 2020-2023 onwards under Autonomous, CBCS & OBE pattern] (I to VI SEMESTERS)

SPONSORED BY ANGAMMAL EDUCATIONAL TUST

ELAYAMPALAYAM – 637 205, TIRUCHENGODE Tk., Namakkal Dt., Tamil Nadu VEERACHIPALAYAM – 637 303, SANKARI Tk., Salem Dt., Tamil Nadu

Tel.: 04288 234670 (4 lines), Fax: 04288 234894

Website: www.vivekanandha.ac.in e.mail: info@vicas.org

B.Sc BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

GRADE	OBJECTIVE
PEO: 1	Biotechnology graduate students shall attain professional/industrial expertise by developing competent, creative and ever ready personality to accept recent, innovative and challenging roles in Industry and Academic and Research sectors
PEO: 2	Students shall inculcate in the development of entrepreneurial traits in order to cuddle innovative opportunities by adapting emerging biotechnological concepts in terms of techniques with subsequent development of leadership in the course of start-up of small-medium scale biotech based industry
PEO: 3	Students shall progressively adapt, follow and learn the concepts of biotechnology continuously by aiding modern teaching tools
PEO: 4	Imparting the basic and outstanding knowledge in all terms of biotechnology
PEO: 5	Students shall acquire the concepts to disseminate the advanced biotechnological aspects and its cutting edge developments in specific and developing area in the field of Biotechnology

PROGRAMME OUTCOMES (POs)

GRADE	OUTCOME
PO: 1	To train and develop students with the much needed biotechnological education, so that they develop added competitive skill metrics (CSM) for industrial employment higher education and employment upon graduation
PO: 2	To comprehend the assorted knowledge of biotechnical concepts domains and their applicability in the development of value added products for the welfare of the society
PO: 3	To develop a broad range of biotechnological skills and knowledge, development of general and specific competences to meet-out current expectations and requirements of medical, pharmaceutical, bio-molecular and agricultural sectors
PO: 4	To understand and merge the knowledge and concepts of biochemical, biophysical and bio statistical domains
PO: 5	To clarify various challenges in health care by integrating different biological domains including clinical, immunological, pharmaceutical and cancer genomics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

GRADE	SPECIFIC OUTCOME
PSO: 1	To provide solutions for the challenges faced by pharmaceutical and molecular diagnostic Sectors
PSO: 2	To provide technical products with high frequency of reproducibility to the society
PSO: 3	To gain vertical mobility in career that will make students more competent to face national/international qualifying exams with practical knowledge acquaintance and in modern biotechnology field
PSO: 4	To solve complex problems in the field of Biotechnology with an understanding of social, ethical, legal and cultural aspects of the society
PSO: 5	To understand the over-all theme/concepts of each specialization in biotechnology and analysing the frequency of its applicability in industry, research and for the goodness of Society

SYLLABUS FRAMEWORK

Hour/Week Semester I Semester I	Subjects	Inst.	Credits	Subjects	Inst.	Credits
Language I						
English			1			
Core I					6	
Allied I	English I	6	3	English II	6	3
Core practical I	Core I	5	5	Core II	4	5
Allied practical I 3	Allied I	4	3	Allied II	4	4
VAC - YOGA 2 2 VAC - EVS 4 2 Total 30 22 Total 30 22 Semester III Language III 6 3 Language IV 6 3 English III 6 3 English IV 6 3 Core III 5 5 Core IV 5 5 Allied III 4 3 Allied IV 4 3 Core practical IV 4 3 Core practical IV 3 3 Allied practical IV 3 3 Allied practical IV 3 3 SBEC I 2 2 SBEC II 2 2 Semester V Semester VI Core V 5 5 Core VIII 5 5 Core VI 5 5 Core VIII 5 5 Core practical VI 5 3 Core practical V 5 5 Core practical VI 5	Core practical I	4	3	Core practical II	3	3
Total 30 22 Total 30 22 Semester III Language III 6 3 Language IV 6 3 English III 6 3 English IV 6 3 Core III 5 5 Core IV 5 5 Allied III 4 3 Allied IV 4 3 Core practical IV 4 3 Core practical IV 4 3 Allied practical IV 3 3 Allied practical IV 3 3 IV 3 3 Allied practical IV 3 3 SBEC I 2 2 SBEC II 2 2 Smester V Semester V Semester V Semester VI Core V 5 5 Core VII 5 5 Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 <td< td=""><td>Allied practical I</td><td>3</td><td>3</td><td>Allied practical II</td><td>3</td><td>2</td></td<>	Allied practical I	3	3	Allied practical II	3	2
Semester III	VAC - YOGA	2	2	VAC – EVS	4	2
Language III	Total	30	22	Total	30	22
English III	Sei	mester III		Sem	nester IV	
Core III 5 5 Core IV 5 5 Allied III 4 3 Allied IV 4 3 Core practical IV 4 3 Core practical IV 4 3 Allied practical IV 3 3 Allied practical IV 3 3 SBEC I 2 2 SBEC II 2 2 2 Semester V Semester VI Core V 5 5 Core VII 5 5 Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 -	Language III	6	3	Language IV	6	3
Core III 5 5 Core IV 5 5 Allied III 4 3 Allied IV 4 3 Core practical IV 4 3 Core practical IV 4 3 Allied practical IV 3 3 Allied practical IV 3 3 SBEC I 2 2 SBEC II 2 2 2 Semester V Semester VI Core V 5 5 Core VII 5 5 Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 -	English III	6	3	English IV	6	3
Core practical IV 4 3 Core practical IV 4 3 Allied practical IV 3 3 Allied practical IV 3 3 SBEC I 2 2 SBEC II 2 2 Total 30 22 Total 30 22 Semester V Core V 5 5 Core VII 5 5 Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 SBEC III 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity -	Core III	5	5	Core IV	5	5
Allied practical IV 3 3 Allied practical IV 3 3 SBEC I 2 2 SBEC II 2 2 Total 30 22 Total 30 22 Semester V Semester VI Core V 5 5 Core VII 5 5 Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24	Allied III	4	3	Allied IV	4	3
SBEC I 2 2 SBEC II 2 2 2 Total 30 22 Total 30 22 Total 5 5 5 Core VII 5 5 5 Core VIII 5 5 5 Core practical V 5 3 Core practical V 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC III 3 SEC III 5 5 5 5 5 5 5 5 5	Core practical IV	4	3	Core practical IV	4	3
SBEC I 2 2 SBEC II 2 2 Total 30 22 Semester VI Semester VI Core V 5 5 Core VII 5 5 Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	Allied practical	3	3	Allied practical IV	3	3
Total 30 22 Total 30 22 Semester V Core V 5 5 Core VII 5 5 Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	IV					
Semester VI Core V 5 5 Core VII 5 5 Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	SBEC I	2	2	SBEC II	2	2
Core V 5 5 Core VII 5 5 Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	Total	30	22	Total	30	22
Core VI 5 5 Core VIII 5 5 Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	Se	mester V		Sem	nester VI	
Core practical V 5 3 Core practical V 5 5 Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	Core V	5	5	Core VII	5	5
Core practical VI 5 3 Elective II 5 4 Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	Core VI	5	5	Core VIII	5	5
Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	Core practical V	5	3	Core practical V	5	5
Elective I 4 3 NMEC II 2 2 NMEC I 2 2 SBEC IV 2 2 SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29		5	3	_	5	4
SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	Elective I	4	3	NMEC II	2	2
SBEC III 2 2 Library/Sports 1 - Library/Sports 1 - Mini project 5 5 Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29	NMEC I	2	2	SBEC IV	2	2
Extension activity 1 1 Extension activity - 1 Total 30 24 Total 30 29			2		1	-
Total 30 24 Total 30 29	Library/Sports	1	-	Mini project	5	5
	Extension activity	1	1	Extension activity	-	1
Grand total 140	Total	30	24	Total	30	29
	Grand total		1			140

CBCS SYLLABUS – UG (OBE PATTERN) (For candidates admitted from 2020-2023 onwards) YEAR I

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
			SEMESTER I					
18U1LT01 18U1LM01 18U1LH01 18U1LF01	I	Language I	Tamil I Malayalam I Hindi I French I	6	3	25	75	100
20U1LE01	II	Language II	Foundation English I	6	3	25	75	100
20U1BTC01	III	Core I	Cell Biology & Genetics	5	5	25	75	100
20U1BTCP01	III	Core I Practical	Lab in Cell Biology & Genetics	4	3	40	60	100
18U1BCA01	III	Allied I	Biochemistry I	4	3	25	75	100
18U1BCAP01	III	Allied Practical I	Lab in Biochemistry I	3	3	40	60	100
17U1VE01	IV	Value Education I	Yoga	2	2	25	75	100
		Total		30	22	205	495	700
			SEMESTER II					
18U2LT02 18U2LM02 18U2LH02 18U2LF02	I	Language II	Tamil II Malayalam II Hindi II French II	6	3	25	75	100
18U1LE02	II	Language II	Foundation English II	6	3	25	75	100
20U2BTC02	III	Core II	Microbiology	4	4	25	75	100
20U2BTCP02	III	Core Practical II	Lab in Microbiology	3	3	40	60	100
18U2BCA02	III	Allied II	Biochemistry II	4	4	25	75	100
18U2BCAP02	III	Allied Practical II	Lab in Biochemistry II	3	3	40	60	100
17U2VE02	IV	Value Education II	Environmental Studies	4	2	25	75	100
		Total		30	22	205	495	700
	Grand	Total of First	Year	60	48	410	990	1400

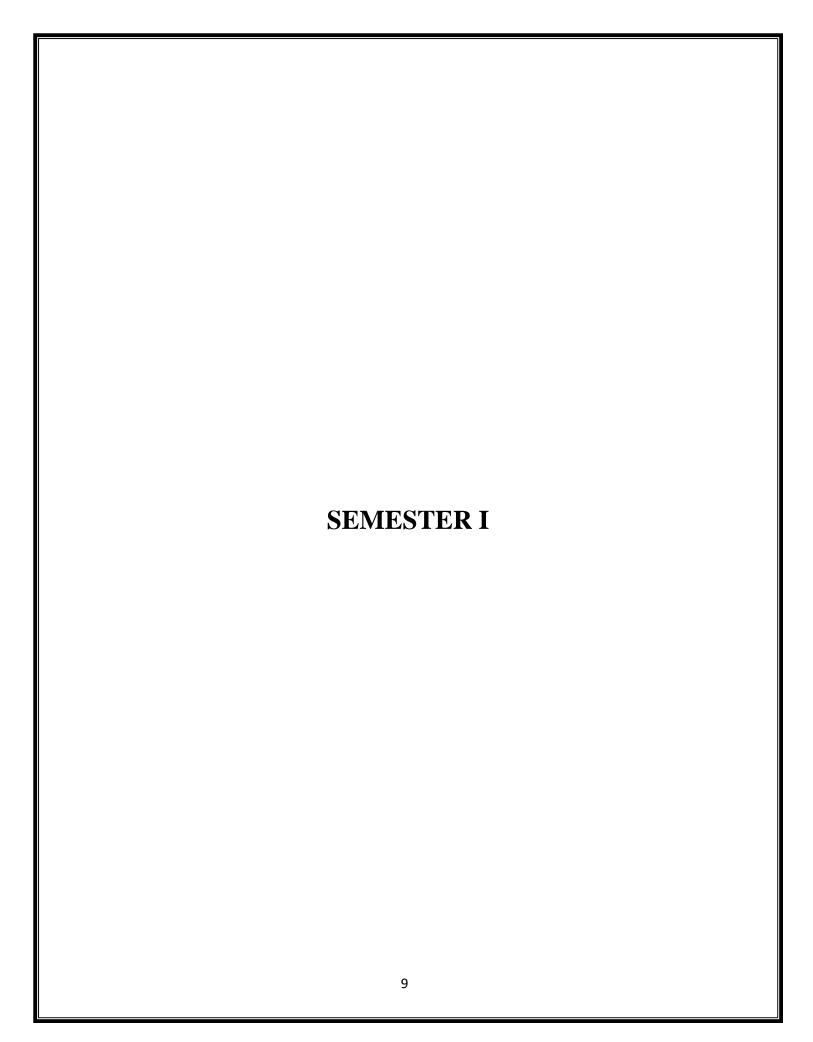
YEAR II

Subject code	Part	Course	Title	Hrs/ Week	Credit	Internal	External	Total	
	SEMESTER III								
18U3LT03 18U3LM03 18U3LH03 18U3LF03	I	Language III	Tamil III Malayalam III Hindi III French III	6	3	25	75	100	
18U3LE03	II	Language III	Foundation English III	6	3	25	75	100	
20U3BTC03	III	Core III	Molecular Biology	5	5	25	75	100	
20U3BTCP03	III	Core Practical III	Lab in Molecular Biology	4	3	40	60	100	
19U3BOA01	III	Allied III	Plant Science I	4	3	25	75	100	
19U3BOAP01	III	Allied Practical III	Lab in Plant Science I	3	3	40	60	100	
	IV	SBEC I	Optional	2	2	25	75	100	
		Total		30	22	205	495	700	
	T	T	SEMESTER 1		_	T	1		
18U4LT04 18U4LM04 18U4LH04 18U4LF04	I	Language IV	Tamil IV Malayalam IV Hindi IV French IV	6	3	25	75	100	
18U4LE04	II	Language IV	Foundation English IV	6	3	25	75	100	
20U4BTC04	III	Core IV	Genetic Engineering	5	5	25	75	100	
20U4BTCP04	III	Core Practical IV	Lab in Genetic Engineering	4	3	40	60	100	
19U4BOA02	III	Allied IV	Plant Science II	4	3	25	75	100	
19U4BOAP02	III	Allied practical II	Lab in Plant Science II	3	3	40	60	100	
	IV	SBEC II	Optional	2	2	25	75	100	
		Total		30	22	205	495	700	
G	rand T	Total of Second	Year	60	44	410	990	1400	

YEAR III

Subject code	Part	Course	Title	Hrs/ week	Credit	Internal	External	Total
			SEMESTER V	7				
20U5BTC05	III	Core V	Immunology	5	5	25	75	100
20U5BTC06	III	Core VI	Plant Biotechnology	5	5	25	75	100
20U5BTCP05	III	Core practical V	Lab in Immunology	5	3	40	60	100
20U5BTCP06	III	Core practical VI	Lab in Plant Biotechnology	5	3	40	60	100
	III	Elective I	Optional	4	3	25	75	100
	IV	SBEC III	Optional	2	2	25	75	100
		NMEC I	Optional	2	2	25	75	100
19U5BTEX01	IV	Internship		1	1	40	60	100
		Library/Sports	Reference/Health Management	1	ı	ı	-	-
		Total		30	23	245	555	800
	Ţ	1	SEMESTER V				T	1
20U6BTC07	III	Core VII	Bioprocess technology	5	5	25	75	100
20U6BTC08	III	Core VIII	Animal Biotechnology	5	5	25	75	100
20U6BTCP07	Ш	Core practical VII	Lab in Bioprocess technology and Animal biotechnoogy	5	5	40	60	100
	III	Elective II	Optional	5	4	25	75	100
	IV	SBEC IV	Optional	2	2	25	75	100
	IV	NMEC II	Optional	2	2	25	75	100
20U6BTMP01	IV	Research Activity	Mini project	5	5	40	60	100
		Extension activ		-	1	-	-	-
		Library/Sports	Reference/Health Management	1	-	-	-	-
	<u> </u>	Total		30	29	205	495	700
	Tota	l of Third Year			140	1270	3030	4300

	LIST OF ELECTIVE PAPERS					
GRADE	SUBJECT	SUBJECT CODE				
Elective I	Pharmaceutical Biotechnology	20U5BTE01				
	Enzymology and Enzyme Technology	20U5BTE02				
	Tissue Engineering	20U5BTE03				
	Genomics and Proteomics	20U6BTE04				
Elective II	Biophysics and Bioinstrumentation	20U6BTE05				
	Environmental Biotechnology	20U6BTE06				
	LIST OF SKILLED BASED ELECTIVE P	APERS				
	Lab in food processing and technology	18U3BTS01				
SBEC I	Developmental Biology	18U3BTS02				
	Food biotechnology	18U3BTS03				
	Lab in poultry science	17U4BTS04				
SBEC II	Marine Biotechnology	18U4BTS05				
	Forensic science and technology	18U4BTS06				
	Lab in Bioinformatics	17U5BTS07				
SBEC III	Biosafety, Bioethics and IPR	18U5BTS08				
	Cancer Biology	18U5BTS09				
	Lab in Entrepreneurship in Biotechnology	18U6BTS10				
SBEC IV	Nano Biotechnology	18U6BTS11				
	Biofarming	18U6BTS12				
	LIST OF NON-MAJOR ELECTIVE PAPERS					
NMEC I	Biosafety, Bioethics and IPR	17U3BTN01				
INIVIEC I	Bioinformatics	17U3BTN02				
NMEC II	Concepts of Biotechnology	17U3BTN03				
INIVILLE II	Biotechnology for Society	17U3BTN04				


	BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN					
KL	CPD	DESCRIPTION				
K1	Remember	Retrieving, recognizing and recalling knowledge from long-term memory				
K2	Understand	Constructing meaning from oral, written and graphic messages through interpreting				
К3	Apply	Carrying out or using a procedure through executing or Implementing				
K4	Analyse	Breaking material into constituent parts, determining how the parts relate to one another and to an overall structure or purpose through differentiating, organizing and attributing				
K5	Evaluate	Making judgments based on criteria and standards through checking and critiquing				
K6	Create	Putting elements to form a coherent or functional hole, reorganizing elements into a new pattern or structure through generating, planning or producing				
Note: I	KL: Knowledg	e Level; CPD: Cognitive Process Dimension				

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR MODEL AND SEMESTER EXAMINATION

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A: 20 X 1	K1 & K2	20	Multiple choice questions	
B: 1 out of 2 (5 X 5) Either or choice	K2, K3, K5 & K6	25	Short notes	75
C: 3 out of 5 X 10	K3, K4, K6	30	Essay type descriptive	

BLOOM'S TAXONOMY BASED INTERNAL ASSESSMENT PATTERN FOR CIA I & II EXAMINATIONS

SECTION	CPD/GRADE	MARKS	CONTENT	CUMULATIVE
A: 10 X 1	K1 & K2	10	Multiple choice questions	
B: 1 out of 2 (1 X 5)	K2, K3, K5 & K6	5	Short notes	25
C: 1 out of 2 (1 X 10)	K3, K4, K6	10	Essay type descriptive	

CELL BIOLOGY & GENETICS

Paper : CORE I **Total Hours** : 75 Hours/Week Exam Hours : 03 : 5 Credit Internal : 25 : 5 Paper Code : 20U1BTC01 External : 75

PREAMBLE

To make the students to understand the basics concepts living cellular organization and cellular function and to impart knowledge of classical genetics

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquire the conceptual knowledge of fundamentals of Cellular architecture	K1
CO2	Understand the functions of cellular organelles of cell, nucleus and familiarize with cellular physiology	K1 & K2
CO3	Have a comprehensive knowledge on cellular energetics and basics of genetics	K2 & K4
CO4	Gain expertise in gene interaction mechanisms and ploidy levels	K3 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	L	M	M	M	L
CO2	M	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	M	S	S

UNIT	CONTENT	HOURS			
I	History of cell biology and cellular architecture: Cell theory.	15			
	Classification of cell types (prokaryotic & eukaryotic). Organization of				
	plant and animal cell. Cell wall and cell membrane. Cytoskeletal structures				
	- (Micro tubules, Micro filaments and intermediary filaments).				
	Cytoskeleton movements (Sliding & Contraction). Nutrient transport				
	(Active, passive & facilitated diffusion).				

II	Subcellular organelles and Chromosomal organization: Structure and functions of Endoplasmic reticulum, Golgi apparatus, Chloroplast,	15	
	Ribosomes, Mitochondria, Vacuoles, Lysosomes, Glyoxysomes,		
	Peroxysomes, Nucleus. Chromosome: Morphology, Structure.		
III	Meiosis, Signal transduction: definition, signals, ligands and receptors. Endocrine, paracrine and autocrinesignaling G Protein coupled receptors- structure, mechanism of signal transmission, regulatory GTPases, heterotrimeric G proteins and effector molecules of G Proteins. Cell death - types. Necrosis - causes and mechanism. Apoptosis: morphology, causes and mechanism Differences between		
***	apoptosis and necrosis.	1.5	
IV	Cellular energetics & History of genetics: Concepts of Phenotype, genotype, heterozygous, homozygous, allele-dominant & recessive, wild type mutant), character, gene, gene locus, hybrids. Chromosome, Centrosome, telomere, Chemical composition of chromatin, structural organization of heterochromatin. ATP formation. Mendelian Principles, Segregation, Independent Assortment, Dominance relations, Multiple alleles, Incomplete dominance, Over dominance.	15	
V	Gene interaction and Chromosome variation: Gene interaction, Epistasis, Sex determination and sex linkage in diploids, Linkage and crossing over. Sex determination on XX-XY, XX-XO, ZW-ZZ, ZO-ZZ types in animals. Chromosomal variation in number (Ploidy) and changes in chromosomal structure (addition, deletion, duplication, translocation & inversion).		

SUGGESTED READINGS:

- 1. Alberts et al., 1994. Molecular Cell Biology of Cell Bruce, Galand publications NY.
- 2. Jack D. Bruke Cell Biology The William Company
- 3. Lodish et al., (2008). Molecular Cell Biology, 6th ed. Wilson J and Hunt T (2002). Molecular Biology of the Cell: A Problems approach, 4th ed.
- 4. EJ Gardner, MJ. Simmons and DP Snustad, 2006. Principles of Genetics 8th edition, John Wiley & Sons Publications.
- 5. Karp G. 2008. Cell and Molecular Biology, 5th edition. John Wiley and Sons Inc. Hardcover. ISBN: 978-0-470-04217-5.
- 6. PS. Verma and VS Agarwal. 1986. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S Chand and Company, New Delhi.
- 7. Lodish et al Molecular Cell biology 8th ed. Freeman, 2016.
- 8. Abouelmagd and Ageeley. Basic Genetics. 2 nd ed. Univ Publ. 2013.
- 9. Twyman. Advanced Molecular Biology. BIOS Sci Publ. 2000.
- 10. Karp. Cell & Molecular Biology 8 thed 2016. Wiley.
- 11. Elrod S. Schaum"s Outline of Genetics. 5 th ed. McGraw Hill. 2010.
- 12. Fletcher et al. Instant Notes in Genetics. 4th ed. Garland Science. 2012.
- 13. Watson. Molecular Biology of the Gene. 7th ed. Pearson Edu, 2013.

MODEL QUESTION PAPER (CELL BIOLOGY AND GENETICS)

NAME OF THE COURSE: CELL	COURSE CODE:	DURATION: 3 Hrs
BIOLOGY AND GENETICS	20U1BTC01	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. The cell	l wa	s first discovered	by_			
a. Schwann b. Robert Hooke				c. Debary	7	d. Tatum
2. Cell the	ory	was proposed by				
a. Schleiden and Schwa		b. Robert Hooke		c. Leeuwen H		d. Beetle and Tatum
3. Microfil	ame	ents are composed	d ma	inly of a prote	ins call	led
a. Actin		b. Tubulin		c. Myosin		d. chitin
4. The sub	unit	s of prokaryotic r	ibos	ome are		
a. 60s + 40s		b. 70s + 30s		c. 60s + 3	80s	d. 50s + 80s
5. The plan	nt ce	ell wall mainly co	mpc	osed of	-	
a. Cellulose		b. Starch		c. Protein		d. Lipid
6. Smooth	end	doplasmic reticulu	ım i	s the site of		
a. Protein		b. Carbohydrate		c. Amino		d. Lipid
synthesis		synthesis		synth	esis	synthesis
7. The cell	the	ory not applicable	e to			
a. Bacteria		b. Algae		c. Viruses	S	d. Fungi
8. Which o	ne 1	the power house of	of th	e cell?		
a. Cell wall		b. Mitochondri	ia	c. Nucleu	lS	d. Ribosome
9. Apoptos	is c	annot kill the foll	owi	ng cells		
a. Cell infected with virus		b. Cell with DNA damage	A	c. Cancer cell	ls	d. Immune cell
10. Special	len	zymes are release	d du	ring necrosis f	from	
a. Lysosomes		b. Vacuoles				Golgi bodies
11. Chromosomes are duplicated during the cell cycle in						
a. B phase		b. G phase		c. S phase	е	d. P phase
12. Spindle	e fit	er is formed duri	ng -			
a. Anaphase		b. Telophase		c. Prophase		d. Pro metaphase
13. Which of the following is the end product of respiration process?						

a.	Release of	b. Release of CC	c. Anabolism	d. Transfer of CO ₂		
	oxygen					
	14. Who is reg	arded as the father of	genetics?			
	a. Bateson	b. Morgan	c. Mendel	d. Watson		
	15. Mendel ex	perimental material w	/as?	, '		
a.	Pisum	b. Lathyrus	c. Oryza	d. Mirabilis jalappa		
	sativum	odaratus	sativa			
	16. What was	the most commonly u	ised "energy currer	ncy" of cells for all		
	organisms'	?				
	a. ATP	b. ADP c.	Inorganic phospha	ate d. DNA		
	17. What does	t-RNA bind with	?	·		
	a. DNA	b. mRNA	c. Northing	d. rRNA		
	18. Lethal gene	es were first discover	ed by?			
a.	William	b. Lucien Cuenot	c. Clarence Cook	d. Gluecksohn-		
	Ernest			Waelsch		
	Castle					
	19. Repetition	of a chromosomal seg	gment means	?		
a.						
	20. Walter Sutton and Theodore Boveri formally proposed that chromosomes					
	contain the	genes in the year of				
	a. 1903	b. 1901	c. 1920	d. 1930		

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUI	ESTIONS
21. A) Write the classification of cell types?	(OR)
B) Write a short note on Cytoskeleton?	
22. A) Explain structure and functions of nucleus?	(OR)
B) Structure and morphology of chromosomes?	
23. A) Differences between apoptosis and necrosis?	(OR)
B) Explain the types of cell signaling?	
24. A) Write a short note on ATP formation?	(OR)
B) Redox potential of the cell membrane?	
25. A) What is gene and how to interact?	(OR)
B) Chromosomal theory of inheritance?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Write the essay on cell types and cytoskeletal structures and movements
27. Explain the structure and functions of any five subcellular organelles
28. Write the essay on mitosis and meiosis and G-protein coupled receptor
29. Write an essay on mendlian principles
30. Explain the variation in chromosome structure and function

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN CELL BIOLOGY& GENETICS

Paper : CORE PRACTICAL I **Total Hours** : 60 Hours/Week Exam Hours : 4 : 05 Credit : 3 Internal : 40 Paper Code : 20U1BTCP01 External : 60

PREAMBLE

To make the students to understand the basics microscopy, cell division, histology, subcellular organelle isolation and mendelian principles

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquiring hands on skills on microscopy and visualization of	K1 & K2
	prokaryotic and eukaryotic cells	
CO2	Exposure towards various stages of cell division	K1 & K2
CO3	Gain knowledge on basics concepts organelle isolation and	K4
	Estimation	
CO4	Performing and validating mono and dihybrid crosses experiments	K3 & K4 &
	and result interpretation	K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	M	S
CO4	S	S	S	M	M

Exp. No	Title	Hours
1	The Microscope: the bright field microscope, use of oil immersion (100x),	8
	Measurements: ocular and stage micrometers, measuring depth, measuring	
	area and measuring volume.	
2	Enumeration of cells (cell counting by Neubauer chamber).	4
3	Preparation of mitotic cells stages from onion root tip squash	4
4	Preparation of meiosis cell stages from Grass hopper testis cells.	8
5	Isolation of chloroplast from spinach leaves	4
6	Observation of specialized cells (Nerve cell, sperm cell, Muscle cell and	8
	Cardiac cell).	
7	Staining of macro molecules (Carbohydrate, Lipid and Protein)	4
8	Histochemistry: preparation of permanent slides, Periodic acid Schiff	8
	(PAS) reaction	
9	Mono & Dihybrid cross	4
10	Buccal smear preparation (Bar body preparation)	4

MODEL QUESTION PAPER (LAB IN CELL BIOLOGY & GENETICS)

NAME OF THE COURSE: LAB IN CELL BIOLOGY & GENETICS	COURSE CODE: 20U1BTCP01	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT						
Exp: 12	p: 12 Obs: 5 Res: 3 Total: 20 MARKS					
1. (i) Explore any one of the stages of mitosis from the onion root tip squash (A) sample.						
Display the results for observation (OR)						
(ii) Isolate the r	nitochondria from the gi	ven plant sample (A). D	risplay the results for			
observation			(OR)			
(iii) Perform to	tal blood cell count (cell	counting by Neubauer c	chamber) from the			
given blood sar	nple (A). Display the res	sults for observation				
MINOR EXPERIME	NT					
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS			
2. (i) Perform carbo	ohydrate staining from the	ne given leaf sample (B)	. Display the results			
for observation (OR)						
* *	roplast from the given le	eaf sample (B). Display	the results for			
observation	observation (OR)					
` ,		I from given buccal epith	nelial cell sample (B)			
	method. Display the rest	ults for observation				
SPOTTERS			X 4 = 20 MARKS)			
3. Identify the given spotters C, D, E, F & G and comment on them						
RECORD		(1)	x 5 = 5 MARKS)			
VIVA-VOCE			5 MARKS			
TOTAL			60 MARKS			

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

BIOCHEMISTRY I

Paper	: ALLIED I	Total Hours	: 60
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 18U1BCA01	External	: 75

PREAMBLE

To make the students to understand the basics biological molecules existing the living cell systems. Students also acquire knowledge on their biological functions and their importance in cell growth and development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

Cos	Outcome	CPD
CO1	Acquiring knowledge on carbohydrate and its types in biological	K1 & K2
	systems.	
CO2	Understanding the basic concepts on proteins and amino acids and	K1 & K2
	their properties	
CO3	Under the role of biological catalysts (Enzymes) and lipids, their role	K2, K3 & K4
	in basic biochemical reactions	
CO4	To gain over all information on vitamins, their physiological	K4, K5 & K6
	functions and deficiency symptoms and consequent diseases	

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	Carbohydrates – Carbohydrate – classification, monosaccharide"s (glucose, fructose, galactose & xylose)- physical and chemical properties, disaccharides (sucrose, lactose), polysaccharides (glycogen, starch, pectin, keratin sulphate & chondroitin sulphate).	12
II	Amino acids and proteins: Classification, Structure, Essential and Non-essential amino acids. Definition, Classification, Functions and Properties of protein. Proteins structure -primary, secondary, tertiary and quaternary structures.	12
III	Enzymes: Definition, holo enzyme, apo enzyme, active site, Enzyme units,	12

	classification, Lock and Key model and Induced fit hypothesis. Enzyme			
	kinetics (MM & LB plot), factors affecting enzyme activity.			
IV	Lipids: Classification, structure, function and properties of simple, compound, Derived, Essential fatty acids and Non-essential fatty acids, cholesterol.			
V	Vitamins: Classification, occurrence, deficiency symptoms and biochemical functions of vitamins (Fat soluble and water soluble vitamins).	12		

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper's Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G. Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY I)

NAME OF THE COURSE: BIOCHEMISTRY I	COURSE CODE: 18U1BCA01	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS							
1. The general formu	1. The general formula of monosaccharide is						
a. CnH ₂ nOn	a. CnH ₂ nOn b. Cn ₂ H ₂ On c.		c. CnH ₂ O ₂ n		d. CnH ₂ nO ₂ n		
2. The aldose sugar i	2. The aldose sugar is						
a. Glycerose	b. Ribulose	c. Er	Erythrulose d. Dihydoxyacetone		ihydoxyacetone		
3. Polysaccharides ar	e	l.					
a. Polymers	b. Acids		c. Proteins		d. Oils		
4. The most importar	nt epimer of glucose is						
a. Galactose	b. Fructose		c. Arabinose		d. Xylose		
5. A heteropolysacch	raide among the follow	wing is					
a. Inulin	b. Cellulose		c. Heparin		d. Dextrin		
6. An example of a s	aturated fatty acid is			•			
a. Palmitic acid	b. Oleic acid		c. Linoleic acid		d. Erucic acid		
7. Molecular formula of cholesterol is							
a. C27H45OH	b. C29H47OH		с. С29Н47ОН		d. C23H41OH		
8. Sphingomyelins as	re						
a. Phospholipids	b. Nitrolipids		c. Glycolip	ids	d. Alcohol		
9. The end product o	f saponification is		_				
a. Glycerol	b. Acid	c. S	c. Soap		d. Both (A) and (C)		
10. All proteins cont		•					
			nino acids ring in nature		d. Only a few amino acids		
	ng amino acid is			II.			
a. Methionine	b. Leucine c.		c. Valine		d. Asparagine		
12. An essential amin	no acid in man is			,			
a. Aspartate	a. Aspartate b. Tyrosine c. Methionine		d. Serine				
13. Which of the foll	owing is a dipeptide?		•		•		
a. Anserine	b. Glutathione	c. (c. Glucagon d. β –l		β –Lipoprotein		

	14. Vitamins are a. Accessory food factors		11					
8	- 1	b. Genera	11					
	- 1		b. Generally		c. Produced in			d. Proteins in
		synthe	esized in th	e	endocrine	;		nature
		body			glands			
1	15. One manifestat	ion of vitamin	A deficien	ncy is			'	
8	a. Painful joints	b. Nigh	nt blindnes	s	c. Loss of	hair		d. Thickening of
	J							long bones
1	16. Vitamin K is fo	ound in			1			-
8	a. Green leafy pla	ints	b. Mo	eat	c. Fi	sh	d. Milk	
1	17. In human body highest concentration of asc				bic acid is foun	d in		
8	a. Liver	b. Adrenal cortex		С	c. Adrenal medulla			d. Spleen
1	18. A nucleoside co	onsists of						
8	a. Nitrogenous	b. Purine or		c. Pur	rine or pyrimidii	ne d	Puri	ne + pyrimidine
	base	pyrimidine		_				e + sugar +
		sugar			1 1		p os	sphorous
1	19. RNA does not	contain						
a. I	Uracil	b. Adenine		С	c. Thymine		d.	Ribose
2	20. The major cata	bolic product of	of pyrimidi	nes in	human is			
8	a. Alanine	b. Urea		c.	Uric acid	d	G a	nine

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS				
21. A) Explain Polysaccharides (OR)				
B) Write the structure and importance of maltose.				
22. A) Classify the fatty acids with examples.	(OR)			
B) Write the structure of cholesterol.				
23. A) Explain the reactions of amino acid with ninhydrin	(OR)			
B) Describe the primary structure of protein				
24. A) Write about energy rich bond	(OR)			
B) Explain oxidative phosphorylation				
25. A) Write about Vitamin E (OR)				
B) Explain the structure & sources of Vitamin C				

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Classify the carbohydrate with examples
27. Classify the lipids with examples
28. Write the structural organisation of protein
29. Explain the double helical structure of DNA
30. Write the structure, physiological function & deficiency symptoms of Vitamin A

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN BIOCHEMISTRY I

Paper	: ALLIED PRACTICAL I	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 03
Credit	: 3	Internal	: 40
Paper Code	: 18U1BCAP01	External	: 60

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

COURSE OUTCOMES

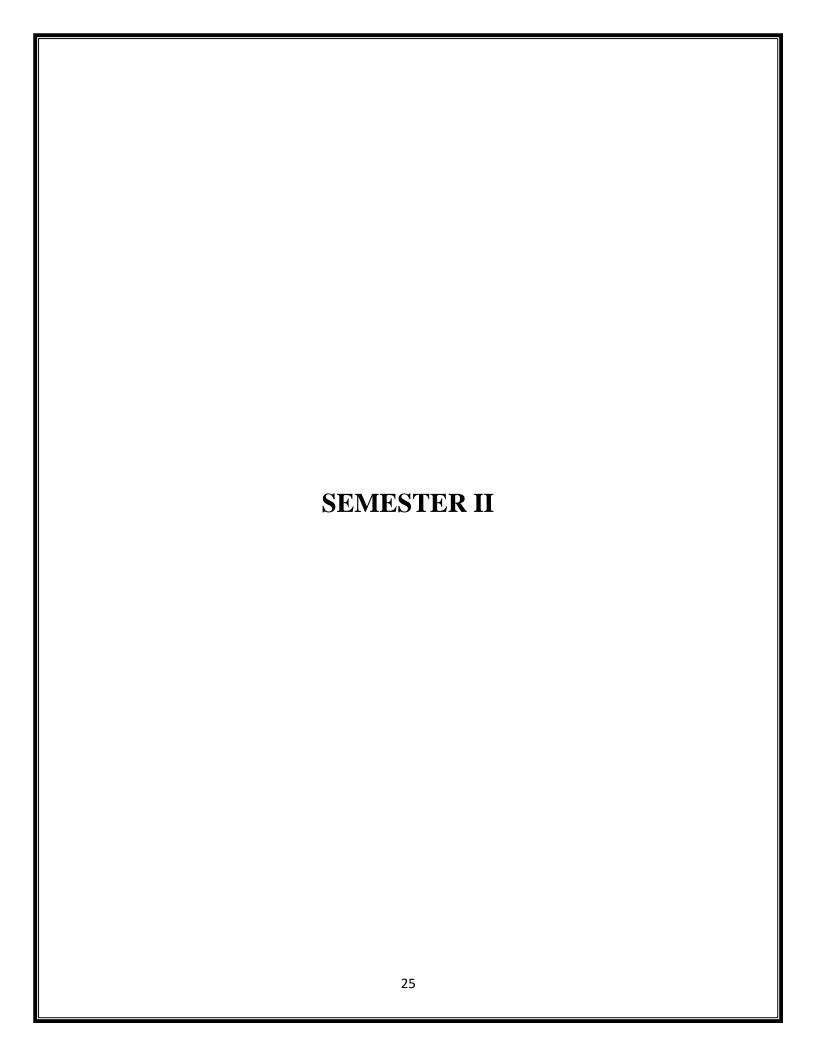
On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquiring knowledge on qualitative analysis of carbohydrates.	K3, K4 & K5
CO2	Acquiring knowledge on qualitative analysis of aminoacids.	K3, K4 & K5
CO3	Under the role of thin layer chromatography in the separation of amino acids	K3, K4 & K5
CO4	Under the role of thin layer chromatography in the separation of Lipids	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	M	S	M	S	M
CO4	M	S	M	S	M

Ex. No	CONTENT	HOURS
1	PREPARATION OF SOLUTION Normal, Molar, Percentage solution and calculation	3
2	Analysis of sugars a) Monosaccharides - Glucose, Fructose.	6
3	Analysis of sugars a) Monosaccharides - Galactose, Pentose.	6
4	Analysis of sugars b) Disaccharides - Sucrose, Maltose and Lactose.	6
5	Analysis of sugars c) Polysaccharide – Starch	3


6	Analysis of amino acids a) Histidine b) Tyrosine	6
7	Analysis of amino acids c) Tryptophan d) Methionine	6
8	Analysis of amino acids e) Cysteine f) Arginine	3
9	Separation of amino acids by paper chromatography	3
10	Separation of lipids by thin layer chromatography	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY I)

NAME OF THE COURSE: LAB IN BIOCHEMISTRY I	COURSE CODE: 18U1BCAP01	DURATION: 3 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT	
	Total 25 MARKS
1. (i) Systematically analyze the give carbohydrate sa	mple (A) and display the results for
observation	(OR)
(ii) Separate the given lipid sample (A) by thin lay	er chromatography.
MINOR EXPERIMENT	
	Total: 25 MARKS
2. (i) Separate the given amino acid sample (B) by page	per chromatography and display
the results for observation	(OR)
(ii) Systematically analyze the give amino acid san	mple (B) and display the results for
observation.	
RECORD	$(1 \times 10 = 10 \text{ MARKS})$
TOTAL	60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

MICROBIOLOGY

Paper	: Core II	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 4	Internal	: 25
Paper Code	: 20U2BTC02	External	: 75

PREAMBLE

To make students on understanding and identification of simple and polysaccharides, and to make them in understanding the knowledge on qualitative identification of amino acids. The students also gain hands on skills on basic separation of biomolecules by simple chromatographic techniques.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand historical prospective on the evolution of microbiology and gaining the concepts microscopic techniques	K1 &K2
CO2	To acquire knowledge on the basic concepts on prokaryotic cellular structure	K1 &K2
CO3	To acquaintance of basic nutritional requirements of microorganism and their growth pattern and media requirements	K2, K3 & K4
CO4	To know about the anti-microbial therapy and their mode of action on controlling the growth of microorganisms	K2, K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	M
CO2	S	S	M	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	DEFINITION AND SCOPE OF MICROBIOLOGY: History and	15
	recent Developments: Contributions of Leevenhoek, Louis Pasteur,	
	Robert Koch, Elie Metchnikoff, Edward Jenner, Alexnder fleming,	
	Spontaneous generation, Biogenesis of Microbiology. Nobel prize	
	winners in the field of Medicine.	
II	MICROSCOPY: Simple and Compounds microcopes. Dark field	15
	contrast, Fluorescence microscopes. Electron microscopes (TEM &	
	SEM). Stain and staining techniques – Simple, differential and	
	special staining (Endospore and Capsular).	

III	CELLULAR STRUCTURES OF PROKARYOTES: Ultra	15
	structure and functions of bacterial cell wall, Plasma membrane,	
	Flagella, Pili and capsule. Ultra structure of fungi, Viruses and	
	cyanobacteria.	
IV	STERILIZATION AND CULTURE TECHNIQUES: Physical	15
	and chemical methods. Growth of bacteria – multiplication –	
	nutritional requirements. Factors affecting growth. Growth	
	curve, Determination of growth. Media and its types, Culture	
	techniques (pure culture, anaerobic culture). Cultivation of	
	anaerobes, Chemoautotrophs, chemoheterotrophs and	
	photosynthetic microbes. Culture collection, preservation,	
	lyophilization and freeze drying	
V	ANTIMICROBIAL CHEMOTHERAPY: Definition and	15
	types of antibiotics. Mode of action of broad and narrow	
	spectrum antibiotics. Anti-microbial resistance. Mechanisms of	
	resistance. Test for	
	evaluating anti-microbial effect. Microbial metabolism- Microbial	
	metabolism. Photosynthesis in microbes. Role of	
	chlorophylls, carotenoids and phycobilins, Calvin cycle.	

SUGGESTED READINGS:

- 1. Microbiology concepts and application by Paul A. Ketchum, Wiley Publications 2010.
- 2. Fundaments of Microbiology- Frobisher, Sauders & Toppan publications 1975.
- 3. Microbiology Ronald M. Atlas 1993.
- 4. Introductory Biotechnology R.B. Singh C.B.D. India (1990)
- 5. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 6. Industrial Microbiology Casida, E. Wiley Eastern Ltd 1962.
- 7. Fundamentals of Bacteriology Salley 1996.
- 8. Microbiology Pelczar, Chan, Krieg, Tata McGraw Hill Publications 2005.
- 9. Frontiers in Microbial technology P.S. Bisen, CBS Publishers 1994.
- Biotechnology: International Trends of perspectives A.T.Bull, G. Holl,
 M.D.Lilly, Oxford & TBH publishers 1987.
- 11. General Microbiology-C.B.Powar, H.F. Daginawala, Himalayan Publishing House 2011.

MODEL QUESTION PAPER (MICROBIOLOGY)

NAME OF THE COURSE: MICROBIOLOGY	COURSE CODE: 20U2BTC02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
1. The third kin	ngdom,	protista, as sugg	gested by	E.H. Haeckel inc	ludes		
a. bacteria		b. algae		c. fungi		d. all the above	
2. Who discov	ered the	bacteria that ca	use chole	era?			
a. Pierre Berthelot		b. Robert Koch		c. Louis Pasteur	d	. Rudolf Virchow	
3. Which we	re the in	nvestigators live	d at the s	ame time?			
a. Darwin and Woe	se	b. Koch and Pas	steur	c.Van Leeuenhoek Ricketts	and	d. Berg and Hooke	
4. Which of the	e follov	ving is not found	l in the ki	ngdom Monera?			
a. Organelles	b. C	Organized cell str	ructure	c. Ability to repr	roduce	d. Ability to use energy	
5. Resolving p	ower of	f a microscope is	a function	on of			
a. Wavelength of li used	ght	b. Numerical ap of lens syste		c. Refractive index d.		Wavelength of light used and numerical aperture of lens system	
6. In fluorescent except the			of the fol	lowing performs	the functi	on of removing all light	
a. Exciter filter	•	b. Barrier f	ilter	c. Dichroic 1	nirror	d. Mercury arc lamp	
7. In Phase cor	ıtrast m	icroscopy, the ra	ate at whi	ch light enters thr	ough obj	ects is	
a. Constant		ersely proportional to eir refractive indices		c. Directly proportional to their refractive indices		d. Exponentially related to their refractive indices	
						ture of the specimen?	
a. Transmission Electron Micros		b. Scanning Ele Microscope		c. Compound Microscope	d. I	Phase Contrast Microscope	
		ving is an examp	_		·		
a. Hydra		b. Euglena		c. Chlamydomonas		d. mycoplasma	
10. The unifying feature of the archaea that distinguishes them from the bacteria is							
a. Habitats which are extreme environments with regard to acidity		b. Absence of a nuclear membrane temperature		c. Presence of a cell wall containing a characteristic outer membrane		d. Cytoplasmic ribosomes that are 70S	
		is used in the pro					
a. cheese	b	. citric acid	c. gl	uconic acid	d. ci	tric acid and gluconic acid	

12. Fungi are sensitive to which of the following antibiotics							
a. Penicillin b. Te		o. Tetracyclin	c. Chloramphenicol		d.	Griseofulvin	
13. SDA that supports the growth of fungi is composed of							
a.Glucose and ammo	nia	b. Maltose and pe	ptone	c. Sucrose and peptone		d. Peptone	
14. The portion o	of the g	growth curve wher	re a rap	id growth of bacteria is ob	served i	s known as	
a. Lag phase		b. Log phase		c. Stationary phase	d.	Decline phase	
15. The generation	on time	e for <i>E.coli</i> is			•		
a. 20 min		b. 35 min		c. 39 min		d. 13 min	
16. What is the co	olor o	f colonies of Staph	hylococ	cus aureus upon its grow	th in nut	rient agar ?	
a. Pink		b. Red		c. Violet	d.	Yellow	
17. Which bacter	ia hav	e an unusual caps	ule amo	ong the following?	l		
a. H. influenzae		b. K. pneumo	nia	c. S. pneumoniae	d. B. anthracis		
18. What is the cl	hemic	al nature of endote	oxins?		•		
a. Protein	b. F	Polysaccharide	c.	Lipo polysaccharide	d.	lipid	
19. Nystatin is ef	fective	e in curing?			•		
a. Deep mycoses b. Dermatophytosis c. Systemic mycoses d. Candidiasis					Candidiasis		
20. Which drug is used for treatment of leishmaniasis?							
a.Chloroquine phosphate b. Metronidazole c. Sodium stibogluconate d. Suramin							

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUES	
21. A) Explain the contributions of Louis Pasteur	(OR)
B) Explain about Biogenesis and Abiogenesis with examples	
22. A) Describe the working mechanism of phase contrast microscope	(OR)
B) Explain about SEM	
23. A) Write a short note on ultra-structure of bacterial cell	(OR)
B) Explain the structure of Fungi	
24. A) Explain the process of reproduction in bacteria	(OR)
B) Brief various media involved in growth of microbes	
25. A) Elaborate the antimicrobial resistance	(OR)
B) Explain the types of antibiotics	
SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUES	STIONS
26. Give detailed account on History of microbiology	
27. Give detailed account on TEM and specimen preparation	
28. Differentiate the Gram positive and negative organisms with example	S
29. Write a detailed account on various sterilization techniques	
30. Explain different types of antibiotics and antimicrobial resistance	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN MICROBIOLOGY

Paper	: Core practical II	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 20U2BTCP02	External	: 60

PREAMBLE

To make students on understanding basic microbiological techniques, aseptic practices in laboratory. The candidate also shall know how to maintain and culture the microorganisms in laboratory and their biochemical identification mechanisms.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand and implement the principles of aseptic practices in	K1, K2 & K3
	Laboratory	
CO2	To gain knowledge on the media preparation and culturing the	K2, K3 & K4
	Microorganism	
CO3	To identify the microorganisms by staining techniques and	K3, K4 & K5
	biochemical tests	
CO4	To check the growth pattern of microorganisms towards various	K4, K5 & K6
	classes antibiotics	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	M	M	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	General Laboratory rules to be followed in microbiological	3
	Laboratory	
2	Sterilization techniques (Dry heat, Moist heat, Filtration - membrane	4
	and HEPA filters)	
3	Preparation of nutrient media (Solid, semi - solid and liquid)	5
4	Isolation of pure culture (Streaking methods – simple, continuous,	2
	quadrant and "T" streaking)	

	5	Simple and negative staining	3
Ī	6	Differential staining (Gram"s staining, Capsule staining, Spore	10
	7	Fungal staining (LCB)	5
	8	Determination of bacterial motility (Hanging drop method)	5
	9	Biochemical characterization of microorganisms (IMViC), TSI test, Carbohydrate fermentation test, Urease test, Catalase test	12
Ī	10	Antibiotic sensitivity test (Kirby-Bauer method)	10

MODEL QUESTION PAPER (LAB IN MICROBIOLOGY)

NAME OF THE COURSE: LAB IN MICOROBIOLOGY	COURSE CODE: 20U2BTCP02	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
1. (i) Perform Gram's staining for the given sample (A). Display the results for observation.				
	(OR)			
(ii) Perform LCB sta	(ii) Perform LCB staining for the given fungal (A) and display the results for observation. (OR)			
(iii) Identify the mo	tility of the given bacter	ial strain (A) and display	the results for	
Observation				
MINOR EXPERIME	NT			
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
	sitivity pattern of the give	ven bacterial culture (B)	against the given	
antibiotics	antibiotics (OR)			
(ii) Perform quadrant streaking from the bacterial sample (B) and display the results for				
observation (OR)			<u>′</u>	
(iii) Perform catalase test for the given bacterial culture (B) for hydrogen peroxide production and display the results for observation				
GD O FFFFF G		(5.2	X 4 = 20 MARKS)	
SPOTTERS				
3. Identify the given spotters A, D, H, F & G and comment on them				
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $			x 5 = 5 MARKS)	
VIVA-VOCE 5 MARKS			5 MARKS	
TOTAL			60 MARKS	

BIOCHEMISTRY II

Total Hours Paper : ALLIED II : 60 Hours/Week : 4 **Exam Hours** : 03 Credit : 3 Internal : 25 Paper Code External : 75 : 18U2BCA02

PREAMBLE

To make students on understanding basic biochemical reaction mechanisms of various biomolecules. The students also acquire knowledge on their regulation and also about the concepts of various endocrine systems and their deficiency consequences in human being.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of thermodynamics and energy production in living systems	K1 & K2
CO2	To understand the basic concepts of carbohydrate metabolism and their energy yield	K1, K2 & K4
CO3	To understand the basic concepts of protein & lipid metabolism and their energy yield	K1, K2 & K4
CO4	To understand the basic concepts of human endocrine system	K1, K2 & K4

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	M	M	S	M
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS	
I	Bio energetics – Laws of thermo dynamics, Concepts of free energy and standard free energy, Exergonic and Endergonic reactions. Electron transport chain. Inhibitors of ETC. Oxidative phosphorylation, High energy compounds.	12	
II	Carbohydrate metabolism: Glycolysis, Citric acid cycle with Energetics, glycogenesis, Glycogenolysis, HMP shunt.		
III	Protein metabolism: Transamination, oxidative and non-oxidative deamination, decarboxylation- urea cycle. Interrelationship of carbohydrates, proteins and fat metabolism.	12	
IV	Lipid metabolism: Basic principles of lipid metabolism. Oxidation of	12	

	saturated $(\alpha, \beta \text{ and } \omega)$ and unsaturated fatty acids. Oxidation of odd chain fatty acids, Cholesterol biosynthesis and its importance.		
V	Endocrinology – Definition, Classification of Hormones, secondary		
	messenger(cAMP) Biological function and disorders of Pancreatic	12	
	Hormones (Insulin and Glucagon), Thyroid hormone (thyroxin).		

SUGGESTED READINGS:

- 1. R.K. Murray, D.K. Granner, P.A. Mayes, D.W. Rodwell (2006), Harper's Biochemistry, twenty fifth edition, Prentice Hall, New Jersey.
- 2. D. Voet, and G. Voet (2006), Biochemistry, John Wiley and Sons, New York.
- 3. G.L Zubay (1999) Biochemistry, 4th Ed, WCB, McGraw-Hill, New York.
- 4. Ambika Shanmugam(1998)., Fundamentals of Biochemistry for Medical Students.
- 5. U. Satyanarayana., (2006) A textbook of Biochemistry, Books & Allied, Kolkata.
- 6. J.L Jain., (2005). Fundamentals of Biochemistry. S.Chand Publishing, New Delhi.
- 7. D.L.Nelson, and M.M. Cox (2008) Lehninger Principles of Biochemistry, 5th Ed, W.H. Freeman and Company, New York

MODEL QUESTION PAPER (BIOCHEMISTRY II)

NAME OF THE COURSE: BIOCHEMISTRY II	COURSE CODE: 18U2BCA02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS					
1. In exergonic reaction heat is					
a. Consumed b	Liberated c. No change in heat transfer			d.]	Enthalphy in more than 1
2. Hydrogen is transfe	erred through a series	of enzyme s	ystems to form		
a. Oxygen	b. Water	c. Carbo	hydrate d	. ATI)
3. One molecule of A	ATP is equal to	molecules	of NADP		
a. 1	b. 2	c.3		d. 4	
4. Oxidative phospho	rylation occurs in				
a. Chloroplast	b. Mitochondria	c.	Endoplasmic retion	culum	d. Tonoplast
5. In which of the foll	owing phase in glyco	lysis does th	e ATP is consume	d?	
a. Payoff phase	b. Interphase	c. Prepa	ratory phase	d.	Gap phase
6. The term glycogene	olysis defines	-			
a. Break down of	b. Breakdown o	f c. S	ynthesis of	C	l. Synthesis of
glucose	glycogen		glucose		glycogen
7. HMP stands for					
a. Hexo kinase	o. Hexose mono nitrat	e c. He	xose mono	d. I	Hexose mono
shunt	shunt	shunt phosphate shunt butyrate sh		butyrate shunt	
8. Which of the follow	ving enzyme mainly i	nvolved in tl	ne process of glyco	ogenes	sis?
a. Glucagon lyase	b. Glycogen lyase		ogen synthase	d. Glu	cagon synthase
9. Transamination of	amino acids is chiefly			•	
a. Deaminase	b. Transaminase	c. Trans	ketolase d.	Trans	decarboxylase
10. Which of the follo	wing aminoacid invo	lved in Urea	cycle?		
a. Serine	b. Typtophan	c. Aspai	ragine	d. Cit	rulline
11. SGOT is an enzyr	ne that catalyzes	reaction			
a. Deamination	b. Trans deamination		ransamination	C	l. Decarboxylation
12. Non-oxidative deamination reactions is accomplished by					
a. The conversion of	b. Conversion	on of	c. Removal c	of	d. None of the
alpha amino grou		group to	amino gr	-	above
to ammonia	CO ₂		as nitroge	en	
13. Lipid metabolism				1	
a. Synthesis of	b. Oxidation of fatty		ction of fatty	d	. Conversion of fatty
fatty acids	acids	acids acids in to glycero		acids in to glycerol	

Ī	14. Fatty acid synthase is a multi-enzyme complex composed of sub units				
	a. 1	b. 2		c. 3	d. 4
	15. Phenanthrene nuc	leus is found in			
-	a. Stigmesterol	b. Ergosterol		c. Cholesterol	d. Levosterol
	16. The precursor for	the cholesterol biosyn	thesis	s is	
	a. Acyl Co-A	b. Acetyl Co-A		c. Aceto acetyl Co-A	d. Keto acyl Co-A
-	17. Ductless glands se	ecretes		<u> </u>	
	a. Serum	b. Hormone		c. Plasma	d. CSF
	18. Hyper insulinism	leads to	l	1	
	a. Decreased level of glycogen			c. Increased level of glucagon	d. Increased rate of muscle phosphorylation
	19. Which of the follo	wing is an example for	or sec	ondary messenger?	
	a. cGMP b. c	cGMP b. cTMP c. cUM		UMP	d. cAMP
	20. Thyroid hormone is highly concentrated on				
	a. Baso lateral plasma membrane of active histiocytes	b. Baso lateral plasma membro of active hepatocytes	ane	c. Baso lateral plasma membrane of active thyocytes	d. Baso lateral plasma membrane of active thrombocytes

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS		
21. A) Write short notes on standard free energy	(OR)	
B) Write about the inhibitors of ETC		
22. A) Explain the energetics of glycolysis	(OR)	
B) Write shortly on the process of glycogenesis		
23. A) Write short notes on transamination reactions	(OR)	
B) Write short notes on oxidative deamination reactions		
24. A) Explain the energetics of beta oxidation of fatty acids	(OR)	
B) Explain the oxidation of odd chain fatty acids		
25. A) Explain the clinical manifestations of hypo parathyroidism	(OR)	
B) Explain the complications faced by a victim having hyperglycemia		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on electron transport chain
27. Give a detailed account on TCA cycle
28. Elaborately discuss on Urea cycle with neat chemical reactions
29. Write an essay on cholesterol biosynthesis with neat chemical reactions
30. Explain the biological function thyroid hormone. Add a note on hypo and hyper thyroidism

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ALLIED - LAB IN BIOCHEMISTRY II

Paper : ALLIED PACTICAL II **Total Hours** : 60 Hours/Week Exam Hours : 03 : 3 Credit Internal : 25 : 3 Paper Code : 18U2BCAP02 External : 75

PREAMBLE

To make students on understanding basic biochemical calculations and preparing reagents and solutions. The students also gain knowledge on estimating quantitatively the biomolecules substances.

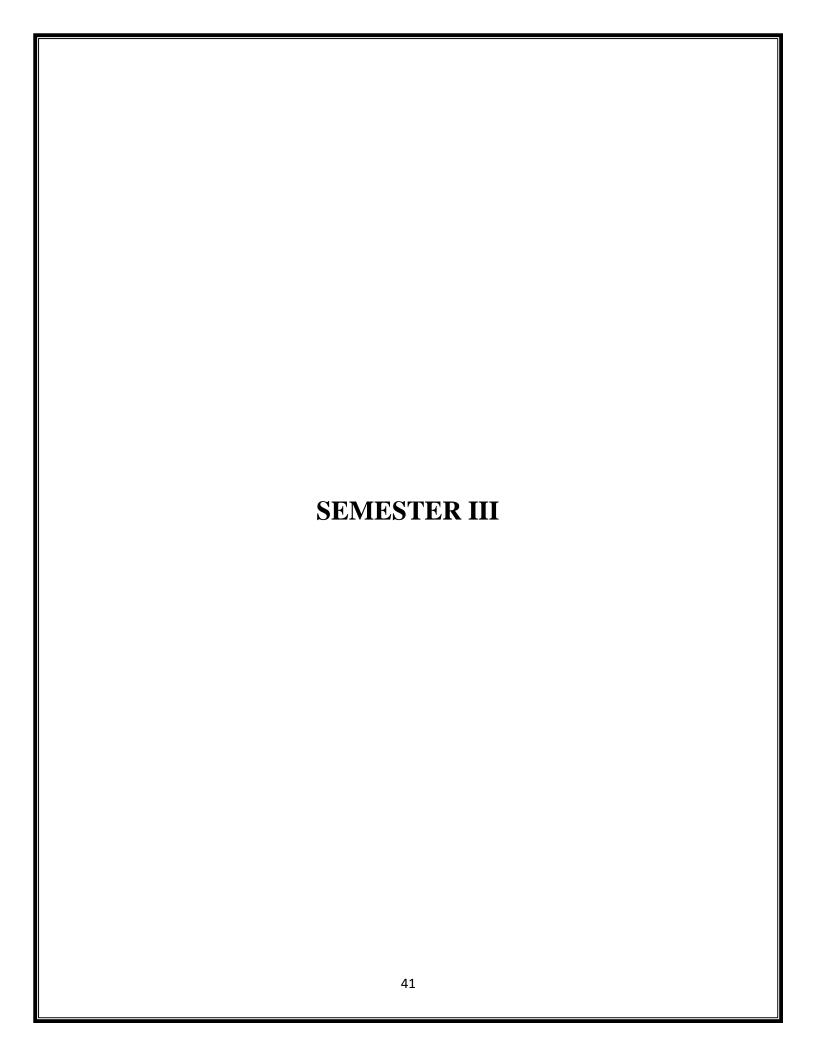
COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Become familiar in preparing different strengths of solutions for	K1, K2, K4 & K5
	the basic requirement of executing biochemical experiments	
CO2	To know about the quantitative determination on the strength of	K1, K2, K4 & K5
	various specific biomolecules	
CO3	Gaining knowledge on using basic instruments such as	K1, K2, K4 & K5
	colorimeter and UV spectrophotometer for measuring the colour	
	intensity developed in the reaction mixture	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	M
CO2	S	S	S	S	M
CO3	S	S	S	S	M


Ex. No	CONTENT	HOURS
1	Estimation of glucose by ortho toluidine method	3
2	Estimation of glycine by formal titration method	3
3	Estimation of ascorbic acid by 2,4 dichloro phenol indo phenol method	3
4	Estimation of urea by diacetyl monoxime method	3
5	Estimation of DNA by diphenylamine method	3
6	Estimation of RNA by orcinol method	3
7	Estimation of protein by lowry"s method	3
8	Estimation of cholesterol by zak"s method	3

MODEL QUESTION PAPER (LAB IN BIOCHEMISTRY II)

NAME OF THE COURSE: LAB IN BIOCHEMISTRY II	COURSE CODE: 18U2BCAP02	DURATION: 3 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT	
	Total 25 MARKS
1. (i) Estimate the amount of glycine present in the given sample (A)	(OR)
(ii) Estimate the amount of ascorbic acid present in the given samp	le (A)
MINOR EXPERIMENT	
	Total: 25 MARKS
2. (i) Estimate the amount of protein present in the given sample (B)	(OR)
(ii) Estimate the amount of RNA present in the given sample (B)	
$\mathbf{RECORD} \tag{1 x 10}$	0 = 10 MARKS
TOTAL	60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

MOLECULAR BIOLOGY

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U3BTC03	External	: 75

PREAMBLE

To make students on understanding basic structure of genetic materials (DNA & RNA) and molecular concepts of a gene expression and its regulatory mechanisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To under the basic concepts of DNA/RNA structure and	K1, K2
	experimental evidences as genetic material	
CO2	To under the mechanisms of replication of DNA and it regulation	K1, K2, K4
CO3	To know about the transcription process and its modifications	K1, K2, K4
	into functional mRNA and translation into proteins	
CO4	To under the concepts of gene regulation and know about the	K2, K3, K4 & K5
	mechanisms of transposition	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	M	M
CO2	S	S	M	M	S
CO3	S	S	M	M	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS				
	Genetic material: Evidences showing DNA and RNA as genetic material;	12				
I	DNA- Chemical composition & molecular structure, Watson and Crick"s					
	model - its biological significance; Forms of DNA (A, B, C, D & Z).Central					
	dogma of molecular biology.					
	DNA replication : Origin & Models of - Meselson and Stahl"s experiment -	16				
	types of replication - Mechanism of DNA replication in prokaryotes and					
II	eukaryotes - Enzymology of replication. DNA repair- causes of DNA					
	damage & biochemical mechanism of DNA repair. Homologous					
	recombination- Holliday model					
***	Transcription: RNA types and functions; RNA polymerase; Transcription	16				
III	in prokaryotes and eukaryotes; Post transcriptional modification -					

	Transcription and processing of RNA in prokaryotes;Post transcriptional modifications, splicing, spliceosomes. Editing, Nuclear export of mRNA Transcription and processing of RNA in prokaryotes.	
IV	Translation & Protein synthesis: Genetic code: Properties of genetic code; codon- anticodon interaction- Wobble hypothesis and elucidation of genetic code; Translation in prokaryotes and eukaryotes; Post translational modification of proteins & molecular chaperonins.	16
V	Regulation of gene expression: Gene expression in transcriptional level (lac and trp operon); gene expression in bacteriophages. Transposons — types and mechanism of transposition. Gene silencing . Recombination — Homologous and Non — homologous recombination. Molecular techniques; DNA finger printing, DNA Microarray, Gene Mapping, Protein Micro array.	15

SUGGESTED READINGS:

- 1. David Freifelder . 1990. Molecular Biology, 2nd Edition. Narosa Publishing house
- George M. Malacinski. 2008. Essentials of Molecular Biology, 4th Edition. Narosa Publishing house
- 3. Veer Bala Rastogi. 2010. Fundamentals of Molecular Biology. Ane Books India
- 4. James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine and Richard Losile. 2008. Molecular Biology of the gene, 5th Edition. Pearson Education.
- 5. Lodhish, Berk, Matsun dairg, Kaiser, Krieger, Scott, Zipursky and Darnell. 2004. Molecular Cell Biology, 5th Edition. W. H. Freeman and Company
- 6. Robert F. Weaver. 1999. Molecular Biology. WCB Mc Graw Hill
- 7. E. D. P. De Robertis & E. M. F De Robertis, Jr. 2001. Cell and Molecular Biology, 8th Edition. Lipin cott William and Wilkins
- 8. Lehninger. 2005. Principles of Biochemistry. Nelson Cox, CBS Publishers
- 9. Alexander Mc Lenna, Andy Bates, Puil Turner & Mike White. 2015. Molecular Biology, 4th Edition. GS Garlan Sciences, Taylor and Francis Group
- 10. George M. Malacinski & David Freifelder. 1998. Essentials of Molecular Biology, 3rd Edition. Jones and Bartcett Publishers
- 11. Richard R. Sinden. 1994. DNA Structure and function. Academic press
- 12. R.C. Rastogi. 2010. Cell and Molecular Biology. New Age International Publishers
- 13. Pragya Khana. 2008. Cell and Molecular Biology. IK International Publishing House
- 14. William D. Stanfield, Jaine S. Colome and Raul J. Cano. 2008. Shaum's Outline- Molecular Cell Biology. Tata Mc Graw Hill
- 15. H.S. Bhamrah & Kavita Juneja. 2002. Molecular Cell Biology. Anmol Publications
- 16. G. P. Jeyanthi. 2009. Molecular Biology. MJP Publishers
- 17. N. Vidhyarasthi & D. M. Chelan. 2007. Molecular Biology. IK International Publishing House
- 18. P.S. Verma & V. K. Agarwal. 1998. Concepts of Molecular Biology. S. Chand and Company Ltd
- 19. Phil Turner, Alexander Mc Lennan, Andy Bates & Mike White. 2001. Molecular Biology, 3rd Edition. Bios Instant Notes
- 20. H. D. Kumar, 2000. Molecular Biology, 2nd Edition. Vikas Publishing House
- 21. AVSS Sambamurhty. 2008. Molecular Biology. Narosa Publishing House

MODEL QUESTION PAPER (MOLECULAR BIOLOGY)

NAME OF THE COURSE: MOLECULAR BIOLOGY	COURSE CODE: 20U3BTC03	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS							
1. Number of hydrogen bonds between adenine and thymine is							
a. 1 b. 2				c. 3			d. 4
2. Difference between RNA and DNA lies on							
a. Sugar	b. Phosphate group	c. I	Nitro	genous base	e	d. None of the above	
3. The distance be	etween two adjacent nitro	ogenou	s bas	se pair is	A	\ °	
a. 2.4	b. 3.4	c.4.	4			d. 5.4	
4. DNA in chromo	some is tightly packed w	vith		-			
a. Histones	b. Glycoproteins		c. L	ipoproteins		d. G	lycoproteins
5. Which of the fol	lowing mode of replicati	ion is o	bserv	ved in a livi	ng cell?		
a. Conservative	b. Dispersive	c. S	Semi	-Conservati	ve	d.	None of the above
6. Which of the fol	lowing protein relaxes th	ne fricti	ional	pressure fo	und on	the re	plication fork?
a. Helicase b. Gyrase			c.	Topoisome	rase	C	l. SSB
7. Which of the fol	lowing maintains the sin	ngle stra	ande	d nature of I	ONA?		
a. Helicase	b. Gyrase		c.	Topoisome	rase	C	l. SSB
8. Photo reactivation	on of DNA is catalyzed b	oy					
a. Gyrase	b. Topoisomerase	c.	UVr	В		d. Pho	otolyase
9. The regulatory e	lements in a DNA is cor	ntrolled	by -				
a. Cis elements	b. Trans elements	c.	. Strı	ıctural elem	ents	d.	Control elements
10. Introns in mRN	NA is removed by						
a. Editing	b. Splicing	c. Ca	appir	ng	d. Po	oly ade	enylation
11. Difference bety	ween holo and core enzy	me is					
a. Alpha subunit	b. Beta subunit		c. I	Epsilon sub	ınit		d. Zigma subunit
12. Formation of lariat is commonly found during							
a. Transcription	b. Post transcriptional	c. '	Tran	slation	d. Post		
10 5 1 1	modifications modifications						
13. Each codon is o	characterized by	-					
a. Singlet b. Doublet nucleotide c. Triplet nucleotide d. None of the about the nucleotide					. None of the above		

	14. The starting codon AUG codes for which of the following amino acid?						
	a. Cysteine	b. Methionine		c. Serine	d. Threonine		
15. Glycosylation of proteins describes the addition of to the growing poly peptide							
	a. Glucose	b. Gelatin	c.	Chalmoogric acid	d. Vitamin A		
	16. Which of the fol	lowing machinery inv	olved	in post translational modifi	cations of proteins?		
	a. Molecular	b. Molecular		c. Molecular channels	d. Molecular		
	motors	chaperons			locomotors		
	17. The function of t	rans acetylase is to					
a.	Transfer of	b.Transfer of CH ₃ C-	OH	c. Transfer of CH ₂ C=O	d. Transfer of		
	CH ₃ C=O group group			group	CH₃COOH group		
	18. Ty element is fo	und in		·			
	a. Bacteria	b. Fungi		c. Protozoa	d. Yeast		
	19. Retroposons is commonly found in						
	a. Retroviridae b. Rhinovirida		ie	c. Adenoviridae	d. <i>Poxviridae</i>		
	20. Catabolic repres	sion refers to	-				
	a. Regulon b. Operon			c. Citron	d. Recon		

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS					
(OR)					
(OR)					
(OR)					
(OR)					
(OR)					

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Explain the chemical and physical structure of DNA
27. Give a detailed account on DNA replication in prokaryotes
28. Give a detailed account on Eukaryotic transcription
29. Explain the process of translation in prokaryotes
30. Explain the lac operon. Add a note on its regulation

LAB IN MOLECULAR BIOLOGY

Paper : Core practical III **Total Hours** : 75 Hours/Week Exam Hours : 4 : 05 Credit : 3 Internal : 40 Paper Code : 20U3BTCP03 External : 60

PREAMBLE

To make students on understanding basic procedure in isolation separating purifying proteins. The students gain knowledge in DNA quantification and gene transfer methods

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To know about the isolation, purification and quantification of	K1, K2, K3, K4 &
	Protein	K5
CO2	To know about the separation and quantification of DNA	K1, K2, K3, K4 &
		K5
CO3	To know about the various types of gene transfer techniques	K1, K2, K3, K4 &
		K5 K1, K2, K3,
		K4 & K5
CO4	To identify and isolate the mutated bacterial by special	K2, K4 & K5
	Techniques	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of protein	4
2	Estimation of protein by Lowry"s method	4
3	Purification of protein by dialysis	4
4	Separation of proteins by native – PAGE	4
5	Separation of DNA by agarose gel electrophoresis	4
6	Quantification of DNA by UV-visible spectrophotometer	4
7	Induction of mutation in bacterial cells UV light	4
8	Bacterial DNA transformation by CaCl method	4
9	Bacterial conjugation	4
10	Isolation of auxotrophic mutants by replica plating technique	4

MODEL QUESTION PAPER (LAB IN MOLECULAR BIOLOGY)

NAME OF THE COURSE: LAB IN MOLECULAR BIOLOGY	COURSE CODE: 20U3BTCP03	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIM	ENT					
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS			
1. (i) Isolate protein fr	1. (i) Isolate protein from the given sample (A). Display the results for observation. (OR)					
(ii) Separate the pr	otein from the g	given sample (A) by SD	S-PAGE. Display the results for			
observation.			(OR)			
, , ,	_	1 ,	st cell by appropriate method.			
Display the results		1				
MINOR EXPERIM	ENT					
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS			
2. (i) Purify the given	protein sample ((B) by dialysis. Display	the results for observation (OR)			
(ii) Separate the gi	ven DNA sampl	le (B) electrophoresis ar	nd display the results for observation			
		(OR)				
` /		*	B) for hydrogen peroxide production			
and display the res	sults for observa	tion				
SPOTTERS			(5 X 4 = 20 MARKS)			
3. Identify the given spotters A, D, H, F & G and comment on them						
RECORD			$(1 \times 5 = 5 \mathbf{MARKS})$			
VIVA-VOCE			5 MARKS			
TOTAL			60 MARKS			

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

PLANT SCIENCE I

Total Hours Paper : ALLIED III : 60 Hours/Week : 4 Exam Hours : 05 Credit : 3 Internal : 40 Paper Code : 19U3BOA01 External : 60

PREAMBLE

To make students on understanding basic concepts of fungi algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge on basics of fungi and algae	K1 & K2
CO2	To gain knowledge on basics of bryophytes	K1 & K2
CO3	To gain knowledge on basics of lichens	K1 & K2
CO4	To gain knowledge on basic concepts of plant physiology	K1, K2 & K4

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	M	S	S	S
CO3	S	M	S	S	S
CO4	M	S	S	M	M

UNIT	CONTENT	HOURS		
I	ALGAE: General characteristics of algae. Study on thallus structure,			
	reproduction and life cycle of Gellidium, Gracillaria and Polysiphonia.	12		
	Economic importance of algae in industries.			
II	FUNGI: General characteristics of fungi. Study on thallus structure,			
	reproduction and life cycle of Agaricus, Penicillium and Saccharomyces	12		
	cerevisieae. Economic importance of fungi.			
III	LICHENS: General characteristics of fungi. Study on thallus structure,			
	reproduction of foliose, Crustose, Fruticose and Squamulose groups of	12		
	lichens			
IV	BRYOPHYTES, PTERIDOPHYTES AND GYMNOSPERMS: General			
	characteristics. Study on the structure, reproduction and life cycle of	10		
	bryophytes (Marchantia), Pteridophytes (Lycopodium), Gymnosperms	12		
	(Cycus) and their economic importance.			
V	PLANT PHYSIOLOGY: Absorption of water (Active and passive).			
	Photosynthesis (Light and Dark reactions). Cyclic and non-cyclic			
	photophosphorylation. Transpiration and its types (Stomatal transpiration).			

SUGGESTED READINGS:

- 1. Vashishta BR, AK. Sinha. (2010). Botany for Degree student Fungi. S. Chand & Co. New Delhi.
- 2. Pandey SN, Mishra SP and Trivedi PS. (2009). A text book of
- 3. Botany, Vol II, Vikas Publishing House Pvt. Ltd., Delhi.
- 4. Rao, KN, Krishnamoorthy KV and Rao GS. (1979). Ancillary Botany S. Viswanathan Pvt., Madras.
- 5. Text Book of Algae. (2018). KS. Bilgrami and LC Saha, 1st edition, CBS Publishers.
- 6. Algae. (2011). OP. Sharma, Tata Mc Graw Hill Education.
- 7. Advances in Mycology. (2012). Sohan Sharma, random Publications Publishers and Distributors, New Delhi.
- 8. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited.
- 9. BP Pandey. (1986). Text Book of Botany, Vol I & II Chand. S & Co. New Delhi.
- 10. Fuller. HJ and Tippo O. (1949). College Botany, Henry Holt & Company.
- 11. Ganguly AK. (1975). General Botany Vol I. (1971) and Vol II. The new Book stall, Calcutta.

LAB IN PLANT SCIENCE I

Paper	: ALLIED PRACTICAL III	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U3BOAP01	External	: 60

PREAMBLE

To make students on understanding basic concepts of fungi, algae and bryophytes. The students also know about the lichenology and basic plant physiology

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge on the identification of fungi and algae	K4, K5 & K6
CO2	To gain knowledge on the identification basics of bryophytes	K4, K5 & K6
CO3	To gain knowledge on the economic importance of major plant	K4, K5 & K6
	Kingdoms	
CO4	To gain experimental knowledge on plant physiology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	M
CO2	S	S	S	S	M
CO3	S	S	M	S	S
CO4	S	S	S	S	S

1.	Sectioning of given specimens	$(3 \times 8 = 24 \text{ marks})$
	a. Algae (or) Fungi	8 marks
	b. Bryophyte (or) Pteridophyte	8 marks
	c. Gymnosperms	8 marks
2.	Identification of spotters (Permanent slides)	$(4 \times 3 = 12 \text{ marks})$
	d. Algae (or) Fungi	4 marks
	e. Bryophyte (or) Pteridophyte	4 marks
	f. Gymnosperms (or) Lichens	4 marks
3.	Identification of spotters (Morphology)	$(3 \times 3 = 9 \text{ marks})$
	g. Algae	3 marks
	h. Fungi	3 marks
	i. Bryophyte/Pteridophyte/Gymnosperm	3 marks
4.	Identification of the given setup (Physiology)	$(3 \times 1 = 3 \text{ marks})$
	j. Ganong"s photometer (or) Wilmutt"s bubbler	
5.	Identification of spotter (Economic importance)	$(1 \times 2 = 2 \text{ marks})$
	k. Gellidium (or) Penicillium (or) Yeast	
6.	Record	10 marks

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC I LAB IN FOOD PROCESSING AND TECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 40
Paper Code	: 18U3BTS01	External	: 60

PREAMBLE

To make students on understanding basic concepts of food quality management and deals with various food processing concepts and technologies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To gain knowledge of food preservation	K4, K5 & K6
CO2	To gain knowledge of self-life of different foods	K4, K5 & K6
CO3	To gain knowledge on the economic importance of Dairy and	K4, K5 & K6
	Dairy products	
CO4	To gain experimental knowledge on Food processing	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	M
CO2	S	S	S	S	M
CO3	S	S	M	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	To study different types of blanching of fruits and vegetables	4
2	Preservation of food by canning	4
3	To perform cut out analysis of caned product	4
4	Preservation of food by high concentration of sugar i.e. jam	4
5	Preservation of food by high concentration of salt/acid i.e. pickle	4
6	Preservation of food by addition of chemicals i.e. tomato ketchup	4
7	Preservation of milk by pasteurization and sterilization	4
8	Determination of total fat, protein in milk and milk products	4
9	Estimation of synthetic Food colours from canned food. Natural Food coloring agents	4
10	Detection of adulterants in edible oil and ghee	4

MODEL QUESTION PAPER (LAB IN FOOD POCESSING AND TECHNOLOGY)

NAME OF THE COURSE: LAB IN FOOD PROCESSING AND TECHNOLOGY	COURSE CODE: 18U3BTS01	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXP	ERIMENT			
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS	
1. (i) Perform cutout analysis of the given canned food sample (A). Display the results for				
observation	1.		(OR)	
(ii) Preserve	e the given food sample (A) by sugar/salt/acid	(OR)	
(iii) Estimat	te the amount of total fat	from the given milk sample	le (A)	
MINOR EXPERIMENT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
2. (i) Perform food preservation by chemical additives for the given food sample (B) (OR)			en food sample (B) (OR)	
(ii) Perform	pasteurization of milk fr	pasteurization of milk from the given milk sample (B) (OR)		
(iii) Estimat sample (B)	te the amount of syntheti	c Food colour in the given	sweet/confectionary/beverage	
SPOTTERS			(5 X 4 = 20 MARKS)	
3. Identify the	given spotters A, D, H, I	F & G and comment on the	m	
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $				
VIVA-VOCE	VIVA-VOCE 5 MARKS			
TOTAL	60 MARKS			

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC I DEVELOPMENTAL BIOLOGY

Paper : SBEC I **Total Hours** : 40 Hours/Week Exam Hours : 03 : 2 Credit : 2 Internal : 25 Paper Code : 18U3BTS02 External : 75

PREAMBLE

To make students on understanding basic concepts of mammalian developmental systems and also to deals with the developmental system plants

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the concepts of animal system development	K1, K2 & K3
CO2	To understand the concepts of vertebrate system development	K1, K2 & K3
CO3	To understand the concepts of plantsystem development	K1, K2 & K3
CO4	To understand the concepts of invertebrate system development	K1, K2 & K3

MAPPING WITH PROGRAMME OUTCOMES					
COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	M	M
CO2	S	S	S	M	M
CO3	S	S	S	M	M
CO4	S	S	S	M	M

UNIT	CONTENT	HOURS
I	Basic concepts of development in animal system-I Stages of development- zygote, blastula, gastrula, neurula, cell fate & commitment – potency- concept of embryonic stem cells, lineages of three germ layers. Embryo development	8
II	Basic concepts of development in animal system-II Mechanisms of differentiation- cytoplasmic determinants, embryonic induction, concept of morphogen, mosaic and regulative development, model organisms in Developmental biology.	8
Ш	Early Development in invertebrate / vertebrate models Drosophila, <i>C.elegans</i> , Xenopus, Mouse/ human, Cleavage, gastrulation, Axis specification (Dorsoventral, anterior posterior), and body plan patterning. Hormones involved in reproduction.	8

IV	Late Development in invertebrate /vertebrate models Organogenesis- development of central nervous system in vertebrates, vulval formation in <i>C.elegans</i> . Distribution of cytoplasmic substances in the egg–Metamorphosis (Insects and amphibians) – Hormone control of metamorphosis.	8
V	Basic concepts of development in Plant system Organization of the plant cell, plant meristems and cell fate; root and shoot development; secondary growth; vascular development; Outline of experimental embryology. Sexual reproduction; flower development; mechanisms of gametogenesis and fertilization.	8

MODEL QUESTION PAPER (DEVELOPMENTAL BIOLOGY)

NAME OF THE COURSE: DEVELOPMENTAL BIOLOGY	COURSE CODE: 18U3BTS02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION -	A (1 X 20 = 20 MAR)	KS) ANSWER ALL T	HE QUESTIONS			
1. How many cleavages are completed in 16 cell stages of frog"s egg?						
a. 3	b. 8	c. 4	d. 12			
2. The expulsion of	completely developed	foetus from the uterus	is known as			
a. Ovulation	b. placentation	c. gestation	d. parturition			
3. For fertilization of frog"s egg						
a. Sperms of same species are essential	b. Sperms do not need penetration	c. Sperms of any animal can fertil	d. Only presence of male is sufficient			
4. Grey crescent is p	present in					
a. Zygote of frog	b. Brain of rabbit	c. Eye of frog	d. Retina of cockroach			
5. Which of the follo	owing does not show	metamorphosis?				
a. Frog	b. Housefly	c. Hydra	d. Mosquito			
6. The first phase in	the sexual reproduction	on of organisms is				
a. Spermatogenesis	b. Oogenesis	c. Spermiogenesis	d. Gametogenesis			
7. The formation, de	evelopment and matur	ation of the female gam	ete is called			
a. Ovulation	b. Oogenesis	c. Vitellogenesis	d. Folliculogenesis			
8. During fertilization of	on the spermatozoa pe	netrate through the egg	membranes with the help			
a. Flagellum b. A	c. Sperm acroso	n lysins released from the ome	d. Mitochondira located at the middle piece			
9. During normal de		ion of the egg is achieve	ed by			
a. Vitellogenesis	b. Oogenesis	c. Spermatogenesis	d. Fertilization			
10. When the eggs a	are released from the o	ovary of frogs they are a	t the			
a. primary oocyte stage	b. secondary oocyte	e stage c. ootid stage	d. matured ova stage			
11. The formation o	f the neural tube is kn	own as				
a. Neurulation	a. Neurulation b. Tubulation c. Craniation d. None of the above					
12. During metamorphosis, the disappearance of larval organs is called						
a. Histogenesis b. Paedogenesis c. Histolysis d. Paedomorphos						
13. Cleidoic eggs are found in						
a. Birds	b. mammals	c. insects	d. molluses			
14. Metamorphosis	is a characteristic feat	ure of				

a. Direct ontogenic development	b. Indirect ontogenic development	c. Chordates d.	Embryogenesis in mammals			
15. The sexual embryo of the male and female frogs is called						
a. Copulation	b. Amphimixis	c. Syngamy	d. Amplexus			
16. Human egg is						
a. Centrolecithal	b. Microlecithal	c. Mesolecithal	d. Telolecithal			
17. Which of the fo	llowing develops from ed	ctoderm?				
a. Spinal cord and brain	b. Liver and heart	c. Eye and skin	d. Notochord and vertebral column			
	me structurally and functors of differentiation calle	tionally a spermatozoan, ed	each spermatid has to			
a. Spermiation	b. Spermiogenesis	c. Spermatogenesis	d. Androgenesis			
19. In the human fe	male, the primary oocyte	s remain small without a	ny growth for			
a. 4-5 years	b. 6-8 years	c. 8 - 10 years	d. 12 -14 years			
20. The sperm produces substances of enzymatic nature of sperm lysin. In mammals, it is called						
a. Hyaluronidase	b. Hyaluronic acid	c. Androgamone	d. Cryanogamone			

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUES'	TIONS
21. A) What is differentiation? How it differs from redifferentiation?	(OR)
B) What is meant by embryonic period of development?	
22. A) State the functions of cytoplasmic determinants.	(OR)
B) Define inductive signals with an example.	
23. A) Define cleavage and mention its importance.	(OR)
B) What is gastrulation? State its significance.	
24. A) How the nervous system develops in human?	(OR)
B) What make up the central nervous system of vertebrates?	
25. A) Define plant meristem. State its types.	(OR)
B) Draw the structure of a flower and label its parts.	, ,

S	SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Wh	nat are the stages of a developing embryo? Give illustrations.
27. Wh	ny Drosophila melanogaster is used as model organisms? Comment on it.
	tify the statement - Caenorhabditis elegans as an emerging model for studying the sic biology.
29. Des	scribe germ layers and organs produced by them in detail.
30. Dra	aw the structure of plant cell and elaborate its cell inclusions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC I FOOD BIOTECHNOLOGY

Paper : SBEC I **Total Hours** : 40 **Exam Hours** Hours/Week : 2 : 03 Credit : 40 : 2 Internal Paper Code : 18U3BTS03 : 60 External

PREAMBLE

To make students on understanding basic concepts of food preservation methods by applying technological basics. The paper also deals with the food spoilage, food adulteration and development of value added products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

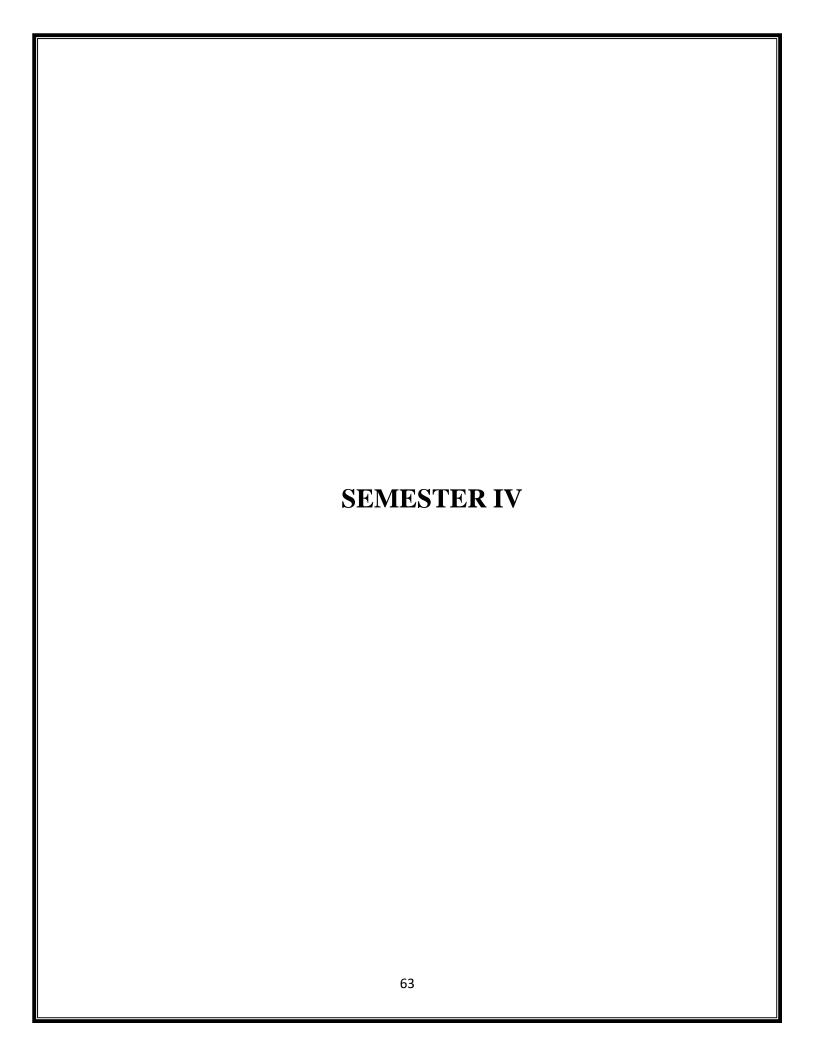
COs	Outcome	CPD
CO1	To understand the concepts of basic food preservation methods	K1 & K2
CO2	To understand the role of water in food spoilage and preservation	K1 & K2
CO3	To explore the physical factors involving in food processing	K1 & K2
CO4	To make familiar with food sanitation and its importance	K2, K2 & K3

MAPPING WITH PROGRAMME OUTCOMES						
COs	PO1	PO2	PO3	PO4	PO5	
CO1	S	S	S	S	S	
CO2	S	S	S	S	S	
CO3	S	S	S	S	S	
CO4	S	S	M	M	M	

UNIT	CONTENT	HOURS
I	Food Preservation by application of Heat: Principles of Heat Transfer, Blanching, Pasteurization, Heat Sterilization.	8
II	Food Preservation through Water Removal: Forms of Water in Foods, Sorption of Water in Foods, Water Activity, Drying Technology, Evaporation Technology.	8
III	Food Preservation through Physical and Chemical methods :Chilling, Freezing, Radiation, Ionizing, Microwave, Salt, Smoke, Sugar, Other Chemical Additives.	8
IV	Sensory evaluation of food quality, quality factors for consumer safety. FSSAI, HACCP, FDA. Food Packaging, Food Plant Sanitation, Environmental Aspects of Food Processing.	8
V	Genetically Modified Food – Bovine somatotropin, alpha lactalbumin & lactoferrin in milk, Edible vaccine (Cholera vaccine – potatoes & Hepatitis B vaccine - maize)	8

MODEL QUESTION PAPER (FOOD BIOTECHNOLOGY)

NAME OF THE COURSE: FOOD	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	18U3BTS03	
MAX MARKS: 75		


SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
1. Pasteurization is the process of heating milk							
a. Above 121°C	b. Abo	b. Above boiling point		t	c. Below boiling	point	d. Above 150 °C
2. Cold sterilisation refers to the preservation of food by							
a. Refrigeration	b. R	adiation		c. 1	Dehydration		d. Lyophilisation
3. Who is regarded	d as the father	of canni	ng?			,	
a. Nicolas appert	b. Lo	ouis Paste	eur		c. John hal	1	d. Bryan dokin
4. The reason for f	food spoilage	is					
a. Growth of micro	oorganism	b. A	utolys	sis	c. Ranci	dity	b. All the above
5. Before drying, v	egetables sho	ould be		-			
a. Autocleave	b.Sal	lted			b. Blanche	ed	c. Sulfured
6. A food additives that prevent colour and flavour loss							
a. Enzymes	a. Enzymes b. Yeast c. Fruit buffer d. Ascorbic acid				d. Ascorbic acid		
7. Preventing the g	growth of path	nogens in	food -				
a. Danger zone	b. Contamina	ation	c. Foo	od pres	servation	d. Cros	s contamination
8. Jam and jellies a	and preserves	can be pi	reserv	ed by	adding sugar a	at concei	ntration of
a. 65%	b. 75	%			c. 40%		d. 30%
9. A fungus that ca	auses ferment	ation					
a. Bacteria	b. M	old			c. Yeast		d. Virus
10. A type of food containers		technique	e that i	involv	es sealing foo	d in steri	llized air light
a. Irradiating	b. C	anning			c. Freezing	5	d. Drying
11. Iodized salt contains iodine in the form of							
a. NaCl	b. K	IO3			c. Kl		d. Na
12. The first synthetic sweetening agent used as?							
a. Cyclamates		b. Aspartame c. Sucralose d. Sacchavr.		d. Sacchavrin			
13. Agar-agar is us	sed as						

a. Antil	biotic	b. Stabilizer and thickness	c. Nutrient supplement	d. Colouring agent				
14.	14. Frozen storage is generally operated at temperature of							
9	-0°C	b18°C	c50°C	d. 60°C				
			C30 C	u. 00 C				
15.	What is the b	est method in storing nuts?						
a. Vac	cuum packing	b. Smoking	c. Drying	d. Freezing				
16.		_Standard help ensure food quality	y?					
a.	National	Packing	b. Legal	c. All of these				
17.	The freezing	point for pure water is						
a.	10	b. 28	c. 15	d. 32				
18.	Corn syrup is	s a mixture of						
a.	dextrose and	b. Dextrose and	c. Galactose and	d. Glucose and				
	maltose	Galactose	Maltose	Galactose				
19.		is essential for forming haemog	globin in the blood					
a. Cal	cium	b. Iron	c. Phosphorn	d. Magnesium				
20.	Fat is comple	etely digested in the						
a.	Stomach	b. Mouth	c. Small intestine	d. Mouth				
		ION - B (5 X 5 = 25 MARKS) AN	NSWER ALL THE QUES					
21. A) Write short notes on pasteurization B) Write a short notes on principles of food preservation (OR)								
	22. A) Explain drying (OR)							
		ntamination? What is the role of wa	ater in contamination?	, ,				

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS	
21. A) Write short notes on pasteurization	(OR)
B) Write a short notes on principles of food preservation	
22. A) Explain drying	(OR)
B) Define contamination? What is the role of water in contamination?	
23. A) Notes short notes on freezing?	(OR)
B) Explain the role of radiation in food preservation	
24. A) Write short notes on chemical additives?	(OR)
B) Describe the role of salt and sugar in food preservation?	
25. A) What is food processing? Explain?	(OR)
B) Food laws and regulations?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Write the essay on food preservation principles and application?	
27. Explain the evaporation methodology?	
28. Write an essay on the physical, chemical methods of food preservation?	
29. Write an essay on the environmental aspects of food processing?	
30. Roles and scientific uses of water in food processing industries?	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

GENETIC ENGINEERING

Paper	: Core IV	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U4BTC04	External	: 75

PREAMBLE

To make students on understanding basic principles of gene manipulation and its application in the development of novel pharmaceutical and drug products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1		K1 & K2
	Technology	
CO2	To gain knowledge on different types plasmid vectors and their	K1 & K2
	Usage	
CO3	To acquire knowledge on basic gene cloning strategies	K2, K3 & K4
CO4	To evaluate the usage and applications of gene cloning for the	K5 & K6
	development value added products	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	SCOPE AND MILESTONES OF GENETIC ENGINEERING: Biomolecular tools and their applications in genetic engineering: Restriction endonucleases and its types, DNA polymerases, DNA Ligase, Methylase, Taq polymerase, Reverse transcriptase. DNA modifying enzymes (Alkaline phosphatase, Polynucleotide kinase, Terminal deoxy nucleotidyl transferase). S1nuclease, RNAse H and DNAse I. Ligation(cohesive & blunt end ligation) – linkers & adaptor.	15
II	GENE CLONING VECTORS: Plasmids (PBR322, PUC and BAC), Lambda vectors, Phagemids, Cosmids, M13 vectors, Shuttle vectors and artificial chromosomes (YAC and BAC). DNA sequencing (Maxam-Gilbert and Dideoxy) methods. DNA amplification: PCR (Principles & types - RT PCR, Real time PCR and Nested PCR). cDNA synthesis and cloning: mRNA enrichment, reverse transcription.	15

III	CLONING STRATEGIES: Cloning of interacting genes - Yeast two hybrid systems Nucleic acid micro arrays and Site directed mutagenesis. Methods to study gene regulation: DNA transfection, Primer extension, S1 mapping, RNase protection assay.	15
IV	INTRODUCTION TO CLONING: Detection & Screening of clones. Expression strategies for heterologous genes. Vector engineering and codon optimization. <i>In-vitro</i> transcription, expression of cloned genes in prokaryotes (bacteria – Glucose promoter) and eukaryotes (Yeast – Alcohol promoter).	15
V	APPLICATIONS OF rDNA TECHNOLOGY. Transgenic plants with reference to virus and pest resistances, herbicide tolerance and stress tolerance (cold, heat and salt); cytoplasmic male sterility; delay of fruit ripening. Transgenic animals — Pharmaceutical products - insulin. Farm animal production. Recombinant DNA Technology in the production of vaccine. T-DNA tagging and transposon tagging, Transgenic and gene knock out technologies	15

SUGGESTED READINGS:

- 1. Molecular cloning: a laboratory manual. J. Sambrook, EF. Frisch and T. Maniatis, Cold Spring Harbor Laboratory Press, New York.2000.
- 2. DNA cloning: a practical approach, DM. Glover and BD Hames, IRL Press, Oxford, 1995.
- 3. Molecular and Cellular Methods in Biology and Medicine, PB. Kaufman, W.Wu. D, Kim and L.J Cseke, CRC Press, Florida, 1995.
- 4. Methods of Enzymology vol. 152, Guide to molecular cloning techniques, SL. Berger and AR. Kimmel Academic Press, Inc. An Diego, 1998.
- 5. Methods in Enzymology. Vol 185, gene expression technology, DV. Goeddel Academic Press, inc. San Deigo, 1990.
- 6. DNA science. A first Course in Recombinant Technology. DA. Mickloss and GA. Freyer; CokJ Spring Harbor Laboratory Press, New York, 1990.
- 7. Molecular Biotechnology. SB. Primrose, Blackwell Scientific Publishers, Oxford, 1994.
- 8. Milestones in Biotechnology. Classic papers on genetic Engineering. JA. Davis and WS. Reznikoff, Butterworth-Heinemann, Boston, 1992.
- 9. Route maps in Gene technology, MR. Walker and R. Rapley, BlackwelScience Ltd., Oxford, 1997.
- 10. Genetic Engineering. An Introduction to gene analysis and exploitation in eukaryotes, SM. Kingsman and AJ. Kingsman, Blackwell Scientific Publications, Oxford, 1998.
- 11. Molecular Biotechnology Glick and Pasternak.
- 12. Principles of gene manipulations Old & Primrose.

MODEL QUESTION PAPER (GENETIC ENGINEERING)

NAME OF THE COURSE: GENETIC ENGINERING	COURSE CODE:	DURATION:
	20U4BTC04	3 Hrs
MAX MARKS: 75		

S	SECTIO	0N - A (20 X 1 = 20)	0 MAR	KS) ANSV	VER AL	L THE Q	UESTIONS
1 Tannolym	omono in	s isolated from					
1. <i>Taq</i> porym	ierase is	s isolated from					
a. E.coli	b.	Thermus	C	. Thermus		d. Ba	acillus stereothermophilus
		aquaticus		marinus			
2. Which of t	he follo	wing sequence is r	ecogniz	ed by Hind	d III?		
a. AA GCTT		b. A AGCTT		c. G	TCGA (C	d. GT CGAC
3. RNase H	cleaves	hybrid					
a. DNA-RNA	A	b. DNA-DNA		c. R	NA-RN	A	d. RNA-Protein
4. Which of t	he follo	wing enzyme is us	ed to cr	eate the sti	cky ends	on DNA	?
a. Acid phosphata	ase	Polynucleotidyl ki			tidyl tran	ferase	d. Alkaline phosphatase
5. Which of t	he follo	wing vectors conta	ins Ori	"C" sites f	rom two	different	species?
a. Cosmids		b. M13 vectors		c. Shutt	le vector	`S	d. Phagemids
6. The inser	tional v	ector λgt10 can abl	le to car	ry up to	·0	f foreign I	ONA
a. 4 kb		b. 5 kb		c. 7	kb		d. 8 kb
7. The size of	f YRp7	is					
a. 5.8 kb		b. 6.8 kb			.7 kb		d. 6.7 kb
8. Which of the	he follo	wing contains cova	alently c	closed sing	le strand	ed circula	r DNA molecules?
a. Phagemids	3	b. M13 vector	S	c. S	huttle ve	ectors	d. Cosmids
9. Which of t	he follo	wing DNA is used	as temp	olate in cha	in termi	nation me	thod DNA sequencing?
a. Plasmid D		b. Genomic DN			iral DN		d. λ DNA
10. Denatura	tion of l	DNA during PCR i	s usuall	y carried o	ut at	°C	
a. 94		84		b. 6	4		c. 74
		NA is partially deg as	raded by	y exonucle	ases to p	roduce fu	nctional trancriptome. This
a. cDNA libra	•	b. mRNA en	richmer	nt c.	. DNA		d. DNA
construct	ion				sequei	ncing	amplification
		rid analysis, the tar fors and the vector					
a. YAC	1311 140	b. BAC	- Jiisti ut	c. S		•	d. Lambda
	•	se (GOX) promoter	found i			ans is ind	uced byand

	a. Starch, Glucose	b. Starch, Fructose	c. Starch, Galactose	d. Starch, Xylose
	14. The chemical me	thod of DNA sequencing	can be used to rapidly sequen	ce DNA that are
	a. < 0.5	b. > 0.5	c. < 1.0	d. > 1.0
	15. The DNA – phos	phate containing mixture	is incubated with the recipien	t cells for
a.	24 hrs	b. 48 hrs	c. 72 hrs	d. 98 hrs
	16. Short pulses are	generated in electroporation	on in higher voltage at the rate	e of
	a. 1100 V	b. 1200 V	c. 1300 V	d. 1400 V
	17. Which of the foll protein engineeri	- -	ipulated for enhancing its enz	ymatic activity through
		5'		
	a. Amylase	b. Subtilisin	c. Anti-trypsin	d. Chymotrypsin
	18. Which of the foll	b. Subtilisin owing assay is useful for	c. Anti-trypsin monitoring for the purification of polymers like DNA, RNA,	n and function mf many
	18. Which of the foll	b. Subtilisin owing assay is useful for	monitoring for the purification	n and function mf many
	18. Which of the foll different enzyme a. Enrichment assay	b. Subtilisin owing assay is useful for s catalysing the synthesis b. Manipulating assay	monitoring for the purification of polymers like DNA, RNA, c. Incorporation	n and function mf many or proteins? d. Sequence specific
a.	18. Which of the foll different enzyme a. Enrichment assay	b. Subtilisin owing assay is useful for s catalysing the synthesis b. Manipulating assay owing method comes und	monitoring for the purification of polymers like DNA, RNA, c. Incorporation assay	n and function mf many or proteins? d. Sequence specific
a.	18. Which of the foll different enzyme a. Enrichment assay 19. Which of the foll Selection based gene tagging	b. Subtilisin owing assay is useful for s catalysing the synthesis b. Manipulating assay owing method comes und b. rDNA tagging	monitoring for the purification of polymers like DNA, RNA, c. Incorporation assay ler gene tagging technology? c. Marker assisted	n and function mf many or proteins? d. Sequence specific targeting assay

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS	
21. A) Write short notes on DNA modifying enzymes (OR)	
B) Write short notes on type III restriction endonucleases	
22. A) Write about PBR 322 with neat illustrations (OR)	
B) Explain about the principle of mRNA enrichment	
23. A) Explain the process of site directed mutagenesis (OR)	
B) Explain the principle of S1 mapping with neat illustrations	
24. A) Give a brief account on codon optimization (OR)	
B) Explain the expression of cloned in eukaryotes with suitable example	
25. A) Write short notes on transposon tagging (OR)	
B) Write shortly about gene knock technology	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give detailed account on restriction endonucleases
27. Give detailed account on M13 vectors
28. Give detailed account on cloning differentially expressed genes
29. Give detailed account on expression of heterologous genes
30. Give detailed account on processing, purification, refolding and characterization of recombinant proteins

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN GENETIC ENGINEERING

Paper : Core Practical IV **Total Hours** : 75 Hours/Week : 4 Exam Hours : 06 Credit : 3 Internal : 25 Paper Code : 20U4BTCP04 External : 75

PREAMBLE

To make students on understanding basic principles on the usage of genomic and plasmid DNA in the development of microbial recombinant clones by selection strategies

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To isolate genomic and plasmid DNA, and to digest them restriction	K2, K3 & K4
	Enzyme	
CO2	Shall acquire practical knowledge on ligating vector and target DNA	K2, K3, & k4
CO3	Shall know about the amplification strategies of cloned vector	K3, K4 & K5
CO4	To demonstrate the selection of recombinant clones by using	K4, K5 & K6
	selectable markers	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Genomic DNA from E.coli	10
2	Isolation of Plasmid DNA mini prep and maxi prep from E.coli	10
3	Construction of restriction map of a plasmid by Hind III and BamHI	10
4	Ligation of DNA and plasmid by T4 DNA ligase	5
5	Purification of DNA fragment from gel by electro-elution	5
6	Amplification of ligated plasmid by PCR	10
7	Transformation of recombinant DNA in Host <i>E.coli</i> by CaCl method	10
8	Selection of recombinant clones by (IPTG-X-gal: Blue white selection)	15

MODEL QUESTION PAPER (LAB IN GENETIC ENGINEEING)

NAME OF THE COURSE: LAB IN GENETIC ENGINEERING	COURSE CODE: 20U4BTCP04	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT				
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS	
4. (i) Isolate genon	4. (i) Isolate genomic DNA from the given bacterial sample (A). Display the results for			
observation	observation (OR)			
(ii) Isolate plas	mid DNA from the give	n bacterial sample (A). I	Display the results for	
observation	observation (OR)			
, ,	estriction digestion of the	given DNA sample (A)	using the given	
1 0	results for observation			
MINOR EXPERIMENT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS	
5. (i) Perform liga	5. (i) Perform ligation of the given DNA sample (B) using DNA ligase. Display the			
results for observation (OR)			(OR)	
(ii) Perform DNA transformation in the given host cell sample (B) using calcium				
chloride (OR)				
(iii) Purify the given DNA sample (B) by electro elution. Display the results for				
Observation				
SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$				
6. Identify the given spotters C, D, E, F & G and comment on them				
RECORD		(1)	x 5 = 5 MARKS)	
VIVA-VOCE			5 MARKS	
TOTAL			60 MARKS	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

PLANT SCIENCE II

Total Hours Paper : ALLIED IV : 60 Hours/Week : 4 **Exam Hours** : 05 Credit : 40 : 3 Internal Paper Code External : 19U3BOA01 : 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospectives.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic concepts of phyllotaxy	K1 & K2
CO2	To make clear cut understanding of Bentham"s and Hooker"s Classification	K1 & K2
CO3	To understand the concepts of plant anatomy and ecology	K4 & K5
CO4	To understand the concepts of plant embryology	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	S	S	M
CO2	M	S	S	S	S
CO3	S	M	S	M	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	EXTERNAL MORPHOLOGY: Phyllotaxy. Types of leaf – simple and	
	compound. Inflorescence – Rocemose, Cymose and special types (Head &	12
	Cyathium). Terminology with reference to flower description.	
II	TAXONOMY: Bentham & Hooker"s system of classification. Study of	
	major plant families and their economic importance (Annonaceae,	12
	Rubiaceae, Cucurbitaceae, Asteraceae and Poaceae).	
III	ANATOMY: Simple & Permanent tissues: Parenchyma, Collenchyma &	
	Sclerenchyma. Complex permanent tissues: Xylem & Phloem. Primary	12
	structure of dicot root and stem; monocot root and stem.	
IV	PLANT ECOLOGY: Climatic factors, morphological and anatomical	12
	adaptations in hydrophytes and xerophytes.	12

V	EMBRYOLOGY: Structure of anther and male gametophyte. Types of	
	ovule and female gametophyte (Polygonum). Fertilization process. Structure	12
	and development of dicot embryo (Capsell - Bursa pastoris).	

- 1. Bhijwani SS and Bhatnagar SP. (2009). The embryology of angiosperms. Vikas Publishing House Private Limited, New Delhi.
- 2. Davis PH and Heywood VM. (1965). Principles of Angiosperm Taxonomy. Oliver and Boyd, Edinburgh.
- 3. BP. Pandey. (2011). A Textbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany, S. Chand Limited, New Delhi.
- 4. Pandey BP. (2001). Plant Anatomy. S.Chand and Company Private limited, New Delhi.

LAB IN PLANT SCIENCE II

Paper	: ALLIED PRACTICAL IV	Total Hours	: 60
Hours/Week	: 3	Exam Hours	: 05
Credit	: 3	Internal	: 40
Paper Code	: 19U4BOAP02	External	: 60

PREAMBLE

To make students on understanding basic and applied principles of plant science, their anatomical, ecological and embryological prospective.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the practical concepts of general plant families	K1 & K2
CO2	To understand the microscopic observations of anatomy	K1 & K2
CO3	To acquire practical exposure in sectioning of plant tissues	K1, K2 & K4
CO4	To acquire basic experimental approach on mounting and preparation of permanent slides	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

ii) Dicot stem or Dicot root

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	M
CO2	S	S	S	M	S
CO3	M	S	S	S	M
CO4	S	S	M	S	S

1.	Identification of plant families (Any two out of five)	$(2 \times 5 = 10 \text{ marks})$
	a. Annonaceae, Rubiaceae and Cucurbitaceaei	5 marks
	b. Asteraceae and Poaceae	5 marks
2.	Identification of spotters (Economic importance)	$(5 \times 3 = 15 \text{ marks})$
	c. Annonaceae	3 marks
	d. Rubiaceae	3 marks
	e. Cucurbitaceae	3 marks
	f. Asteraceae	3 marks
	g. Poaceae	3 marks
3.	Sectioning of given plant part (Morphology)	$(2 \times 5 = 10 \text{ marks})$
	h. i) Monocot stem or monocot root	

i. i) Hydrophyte
 ii) Zerophyte
 4. Dissect and mount anyone stage of the given plant embryo (j) (1 x 6 = 6 marks)
 5. Identification of spotters (Permanent slides) (3 x 3 = 9 marks)
 k. Anatomy (Simple and complex tissue) 3 marks
 l. Embryology (Transverse section of anthers and types of ovules) 3 marks
 m. Ecology (Zerophyte - Nerium and Hydrophyte - Hydrilla) 3 marks
 6. Record

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - II

LAB IN POULTRY SCIENCE

Paper : SBEC I **Total Hours** : 40 Hours/Week : 2 Exam Hours : 03 Credit : 2 : 25 Internal Paper Code : 17U4BTS04 : 75 External

PREAMBLE

To make students on gaining practical exposure on poultry science and technology and its economic management and quality analysis of poultry products

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Evaluate quality control parameters of poultry for disease	K4, K5 & K6
	Diagnosis	
CO2	To evaluate the microbial contamination of poultry products for	K4, K5 & K6
	quality enhancement	
CO3	To evaluate poultry micro flora	K4, K5 & K6
CO4	To validate the preservation of poultry products and evaluation	K4, K5 & K6
	of its nutritive quality	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	S	S	M	S	S
CO3	M	S	S	S	S
CO4	M	S	S	S	S

Ex.no	CONTENT	HOURS
1.	Post-mortem examination of chickens and laboratory diagnosis of diseases	4
2.	Sero monitoring of viral infections in poultry	4
3.	Surveillance of common diseases prevailing in commercial poultry farms	5
4.	Screening of Salmonella of zoonotic importance in poultry and related Products	4
5.	Monitoring the health management in commercial poultry farms	5
6.	Isolation and prevalence of Microbes in poultry products	5
7.	Egg preservation by various methods	4
8.	Egg quality analysis	4
9.	Protein and Lipid estimation from egg samples	5

MODEL QUESTION PAPER (LAB IN POULTRY SCIENCE)

NAME OF THE COURSE: LAB IN POULTRY SCIENCE	COURSE CODE: 17U4BTS04	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 12	Obs: 5	Res: 3	Total 20 MARKS		
1. (i) Perform the e	numeration of microbes	from the given poultry s	ample (A) (OR)		
(ii) Perform pre	servation of the given eg	gg sample (A) by salt me	ethod (OR)		
(iii) Estimate th	e protein level in the giv	en poultry sample (A) b	y Lowry"s method		
MINOR EXPERIME	NT				
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS		
2. (i) Perform lipid	2. (i) Perform lipid estimation from the given poultry sample (B) (OR)				
(ii) Perform pre	(ii) Perform preservation of given egg sample (B) by freezing (OR)				
(iii) Find out th	e thickness of given egg	shell sample (B) by Gau	ge meter		
SPOTTERS		(5 Σ	X 4 = 20 MARKS		
3. Identify the given spotters C, D, E, F & G and comment on them					
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $					
VIVA-VOCE 5 MARKS					
TOTAL			60 MARKS		

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - II

MARINE BIOTECHNOLOGY

Paper	: SBEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U4BTS05	External	: 75

PREAMBLE

To make students on understanding the significance and importance of marine micro biota and its rational applicability in the development of industrially important products. The students also gain knowledge on the environmentally hazardous management marine ecosystem.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basics of marine ecosystem and its pollution issues	K1 & K2
CO2	To understand basic biodegradation and bioremediation marine ecosystem pollutants	K2 & K4
CO3	To understand the principles of bio fouling	K2 & K4
CO4	To acquire knowledge of wastewater treatment in marine ecosystem	K4 & K5

MAPPI	MAPPING WITH PROGRAMME OUTCOMES							
COs	PO1	PO2	PO3	PO4	PO5			
CO1	M	S	M	M	M			
CO2	M	S	S	S	S			
CO3	S	S	S	S	S			
CO4	S	S	S	S	S			

UNIT	CONTENT	HOURS
I	Marine organisms and environment interaction: Types of marine environment - Physical, Chemical and Biological aspects and their interaction with marine life; Air – Sea interaction; Green - house gases (CO2 and Methane)	8
II	Pollution: Marine pollution-major pollutants (heavy metal, pesticide, oil, thermal, radioactive, plastics, litter and microbial); Biological indicators (Marine microbes, algae and crustaceans) and accumulators: Application of Protein biomarkers; Biosensors and biochips.	
III	Biomaterial interaction: Biodegradation and Bioremediation; Biodegradation of natural and synthetic waste materials; Bioremediation;	8

	Separation, purification and bio removal of pollutants.	
IV	Fouling and corrosion: Biofouling; Biofilm formation; Marine fouling and boring organisms - their biology, adaptation; Factors influencing the settlement of macrofoulers; Antifouling and Anti boring treatments; Corrosion Process and control of marine structures.	8
V	Introduction to marine pharmacology: Terms and definitions; Medicinal compounds from marine flora and fauna - marine toxins, antiviral and antimicrobial agents.	8

- 1. Recent Advances in Marine Biotechnology Volume 3 Milton fingerman et al., 1999.
- 2. Cynobacterial and Algal Metabolisms and Environment Biotechnology Tasneem Fatma, 1999.
- 3. Environmental Biotechnology and cleaner Bioprocess Olguni, E.J. et al., 2000.
- 4. Environmental Biotechnology Theory and applications Evans et al., 2000.
- 5. Environmental Biotechnology Gareth M.Evams et al., 2003
- 6. Biotechnology, Recombinant DNA Technology, Environmental Biotechnology S.Mahesh et al., 2003

MODEL QUESTION PAPER (MARINE BIOTECHNOLOGY)

NAME OF THE COURSE: MARINE BIOTECHNOLOGY	COURSE CODE: 18U4BTS05	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. Which of the following is/are example(s) of conventional source of energy?						
a. Fossil fuels	b. Solar energy		c. Tidal energy	7	d. all of the above	
2. Global warming	2. Global warming is caused due to					
a. Decrease in	b. Decrease in Co	O_2	c. Decrease	in	d. increase in	
CO ₂ conc.	conc.		SO ₂ cor	nc.	NO ₂ conc.	
3. Which is the mos	t primitive group of al	lgae?				
a. Blue green algae	b. Red algae		c. Brown	algae	d. Green algae	
4. Ability to fix atm	ospheric nitrogen is fo	ound	in			
a. Leaves of some	b. Chlorella		c. Some ma	rine	d. Some Blue	
crop plants			Red alg	ae	green algae	
5. Which of the foll	owing bacterium is ca	lled a	as the superbug t	hat could	d clean up oil spills?	
a. Bacillus subtilis	b. Pseudomonas		c. Pseudomonas		d. Bacillus	
	putida	denitrificans		denitrificans		
6. Which of the foll	owing is a major caus	e of p	ollution?			
a. Plants	b. Bacterial spore		c. Fungi d. Hydrocarbon gas		drocarbon gas	
7. Minamata disease	e is caused by pollution	n of	water by	-		
a. Mercury	b. Lead		c. Tin d. Methyl iso		Methyl iso cyanide	
8. To reduce the wa be the best choice	ter pollution which of ce?	the f	ollowing genetic	cally mod	dified organism will	
a. Plant	b. Animal	c.	Bacteria	(d. None of the above	
9. Purification strate	egies in municipal wat	er su	pplies involves -			
a. Sedimentation	b. Filtration		c. Disinfect	ion	d. All the above	
10. Sedimentation of	of large particulate ma	tter is	s enhanced by			
a. Aluminium	b. Potassium		c. Potassium		d. Chlorine	
11. Septic tank is		•				
a. An aerobic condition	b. An aerobic		An anaerobic con		d. An anaerobic	
with growth	condition with		with growth biolo	ogical	condition with	
treatment system	suspended		treatment system		suspended growth	
growth biological treatment system				treatment system		

12. The process of converting environmental pollutants into harmless products by naturally occurring microbes is called					
a. Ex situ bioremediation	b. Intrinsic bioremediation	b. Intrinsic c. Extrinsic			
	also called as	bioremedia	ition	these	
a. Chemical corrosion	b. Electrochemical corrosion	c. Wet corrosi	on	d. Oxidation corrosion	
14. Which of the fol	lowing comes under the	wet corrosion?			
a. Concentration cell corrosion	b. Oxidation corrosion	c. Liquid meta corrosion	.1	d. Corrosion by other gases	
15. Initial attachmen	nt of microorganisms ofte	n involves			
a. Flagella and is reversible b. Flagella and is irreversible c. Exopolymers and is reversible is reversible is reversible					
16. What is the valu	e of fouling factor for sea	water?			
a. 0.0001-0.0002 m ² K/W	b. 0.0002-0.0003 m ² K/W	c. 0.0003-0.0004 m ² K/W		d. 0.0004-0.0005 m ² K/W	
	ich the biological process is called	es are used to purify	water i	n a wastewater	
a. secondary sewage treatmen	b. primary sewag treatment	c. wastev		d. biochemical reduction	
18. Aggregates of m	nicrobes as tiny masses in	activated sludge prod	cess is	called	
a. Activated sludge	e b. Masses	c. Colloidal mass	ses	d. Floccules	
19. High BOD indic	19. High BOD indicates				
a. Less polluted water	b. Less number of organisms	c. More polluted water	l	d. None of the above	
20. BOD/COD ratio	will always be	•			
a. = 1	b. > 1	c. <1	d.	None of the above	

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTI	ONS
21. A) Describe the food and feeding habits of marine organisms	(OR)
B) Briefly describe the pigments present in marine organisms	
22. A) Discuss the role of microbes in the sea	(OR)
B) Discuss the sources of pollution in marine environment	
23. A) Discuss the current status of seaweed farming in India.	(OR)
B) Give an account on the NMR characterization of biomolecules.	
24. A) Discuss the role of biotechnology in fouling and corrosion	(OR)
B) Give an account of bio-deterioration in marine environment	
25. A) Describe the composition, fate and effects of sewage pollution in sea	(OR)
B) Give account of the sources and treatment of oil pollution in sea.	

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. Discuss "Sea is a Biological Environment".
27. Discuss the sources of pollution and treatment methods in marine environment.
28. Give a detailed account on Biodegradation and Bioremediation
29. Describe the Corrosion process and control measures
30. Give detailed account on various techniques involved in waste water treatment using Microbes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - II

FORENSIC SCIENCE AND TECHNOLOGY

: SBEC I **Total Hours** : 40 Paper Hours/Week : 2 Exam Hours : 03 : 25 Credit : 2 Internal : 75 Paper Code : 18U4BTS06 External

PREAMBLE

To make students on understanding the importance of forensic principles and technology and its practical applicability in identifying the candidate who convicted the crime scenery. The students also gain added skills in terms tracing the victim death by means of adapting the measurable molecular approaches.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gain knowledge on forensic science laboratories across India	K1, K2 & K3
CO2	Acquires knowledge on fingerprint identification system	K3, K4, & K5
CO3	Know whereabouts on the FAI and the concepts of fatality Forensics	K3, K4, & K5
CO4	Understand the concepts of DNA finger printing technology	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

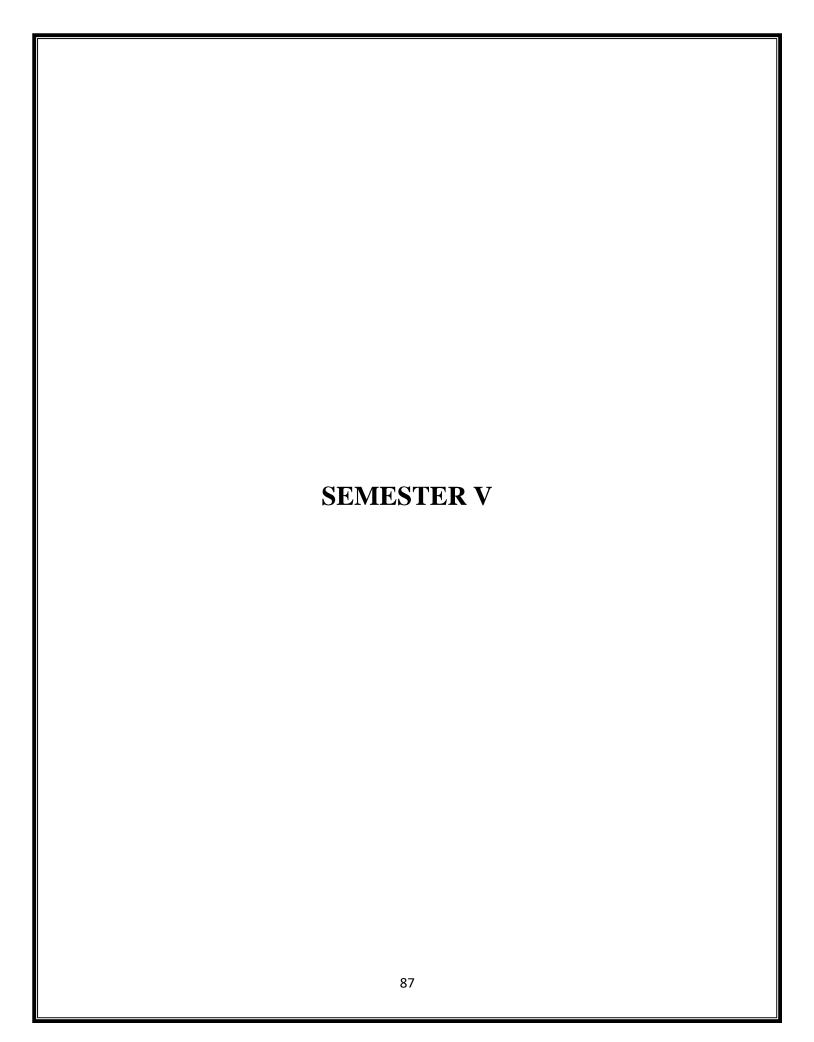
COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction, definition, Scope and branches of forensic science. Central F.S.L. and State F.S.L. Biological Evidence: Nature, collection, identification, evaluation of hair and fibres.	6
II	Definition and Classification of fingerprints (Henry system). Taking fingerprints from living and dead persons. Automatic fingerprint identification system (AFIS).	7
III	Forensic Art Illustration: Introduction, Finding and identifying human face image. Post mortem drawing, methods of superimposition.	5
IV	Fatality Forensics: Introduction, cause, manner and characteristics of death, Road traffic fatality (RTF) investigation. General classification of RTFs.	5
V	DNA Fingerprinting (DFP) technology: An overview, Applications of DFP in forensic investigations, paternity disputes. DNA Profiling practice in India with reference to criminal cases.	7

- 1. Richard Saferstein, 2001, Criminalistic: An Introduction to Forensic Science. 7th edition Prentice-Hall, New Jersey.
- 2. Chowdhri, S., Forensic Biology B.P.R. &D, Govt. of India.
- 3. Cammins, H. and Middle C., 1961. Fingerprints Palms and Soles. Dover Publications.
- 4. Furley, M.A. and Hamington, J.J. Forensic DNA Technology.
- 5. Kirby, DNA Fingerprinting Technology.
- 6. Epplen, J.T. and Eabjulm, T., 1999. DNA Profiling and DNA Fingerprinting Bukhaagar Verlag, Switzerland.
- 7. Taylor, 2000. Forensic Art and Illustration, CRC Press.

${\bf MODEL\ QUESTION\ PAPER\ (FORENSIC\ SCIENCE\ AND\ TECHNOLOGY)}$

NAME OF THE COURSE: FORENSIC SCIENCE AND TECHNOLOGY	COURSE CODE: 18U4BTS06	DURATION: 3 Hrs
MAX MARKS: 75		


SECTION	$-A (1 \times 20 = 20 \text{ N})$	1ARK	S) ANSWER ALL T	THE C	QUESTIONS
1. The dark portion	of the fingerprint is	called	1		
a. Core	b. Valley		c. Delta		d. Ridge
2. The most commo	on type of fingerprin	t patte	ern is	I	
a. Whorl	b. Accidental		c. Loop		d. Arch
3. Fingerprints disso	olved in this only gr	ow ba	ck with scars on then	n mak	king them more unique
a. Base	b. Water		c. Acid		d. Neutral
4. Most common fin same side they e		has ric	lges that enter from t	he rig	ht and exit from the
a. Arch	b. Whorl		c. Wheel		d. Loop
5. The region in sk	in found in between	n the e	pidermis and dermis	is the	layer
a. Top	b. Subcutane	eous	c. Cuticle		d. Basal
6. The study of fing	erprint is called		·	•	
a. Dactylography	b. Printology	c	. Anthropometry	d	l. None of the above
	aper can be sprayed purple print appear		this chemical that rea	icts w	ith amino acids in
a. Ninhydrin	b. Iodine		c. Cyanocrylate		d. Silver nitrate
8. What is the basis	for the determination	on of t	he primary classifica	tion o	of fingerprints?
a. The presence or absence of arch patterns	b. The presence of absence of whorl pattern	r of	c. The presence or absence of loop patterns		d. The presence or absence of minutiae
9. For most fingerpr	rint examiners, the c	chemic	cal of choice for visua	alizin	g latent prints is
a. Ninhydrin	b. Iodine		c. Chlorate		d. Silver nitrate
			lize latent prints is		
a. Laser illumination	b. Iodine fumi	ng	c. Cyanocrylate este fuming	r	d. Silver nitrate reagent
11. Identical twins h	nave identical				
a. Genetic makeup	b. Eyes		c. Fingerprints		d. None of the above
12. Fingerprints for	mation is			I	
a. An on-going lifetime process	b. Complete by the	ne	c. Occurring at birth		Occurring during fetal development
13. The only way to	permanently chang	e you	r fingerprint is to		

a. Damage dermal papillae	b. Wash with acid	c. Sand the ridges	d. Burn the skin			
14. The most common ridge pattern is						
a. Arch	b. Whorl	c. Wheel	d. Loop			
15. Fingerprints are -			•			
a. Valuable evidence	b. Individual evidence	c. Class evidence	d. Always good			
16. DNA finger print	ing was developed by		•			
a. Francis Crick	b. Khorana	c. Alec Jeffrey	d. James Watson			
17. The technique to	distinguish the individu	als based on their DNA p	rint patterns is			
a. DNA fingerprinting	b. DNA profiling	g c. Molecular fingerprinting	d. All the above			
18. The DNA finger	print pattern of a child is					
a. Exactly similar to that of both of the parents		c. 100% similar to the mother"s DNA print	d. 50% bands similar to father and rest similar to mother			
19. Each individual h	nas a unique DNA finger	rprint as individuals differ	in			
a. Number of minisatellites on chromosome	b. Location of minisatellites or chromosome	c. Size of minisatellites on chromosome	d. All the above			
20. DNA profiling technique to demonstrate the similarity between different plant species with reference to some specific protein coding DNA sequences is called						
a. Phyto blot	b. Garden blot	c. Plant profiling	d. All the above			

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUE	ESTIONS
21. A) Write short notes Organizational set up of Forensic Science Laboration	oratories (OR)
B) Write short notes on Scope and branches of forensic science	
22. A) Write about Classification of fingerprints	(OR)
B) How will you take fingerprints from living and dead persons?	
23. A) How will you find and identify human face image?	(OR)
B) How will you perform post mortem drawing?	
24. A) Write about Road traffic fatality (RTF) investigation	(OR)
B) Explain the basic injury mechanisms	
25. A) Explain the applications of DNA fingerprinting technology	(OR)
B) Write short notes on statutory considerations	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on Organizational set up of Forensic Science Laboratories
27. Write an essay on digital comparison of finger prints
28. Write elaborately on Forensic artist in court
29. Give a detailed fatality forensic science
30. Write an essay on quality assurance measures of DNA fingerprinting

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

IMMUNOLOGY

Paper	: Core V	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 25
Paper Code	: 20U5BTC05	External	: 75

PREAMBLE

To make students on exposing themselves to know in underlying concepts of biology of the immune system and how immunity being developed in human beings. In addition the students also know whereabouts on the mechanisms on the host pathogen interaction, principle defence mechanisms against infectious diseases and basic immune diagnostic techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Acquire knowledge on history on immunology development, and cells and their role in developing overall host immune system	K1 & K2
CO2	Knowing about the functions and properties of immunoglobulin and its expression in genetic level	K1 & K2
CO3	Acquire knowledge on antigen recognition and its processing principles by host immune system	K1, K2 & K4
CO4	Acquire basic concepts of immune regulatory molecules and their role in defence and concepts of autoimmunity	K1, K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	HISTORY AND SCOPE OF IMMUNOLOGY: Types of Immunity. Cells of Immune system. Organs of Immune response and their functions. Haematopoiesis. Antigen- properties, classes, epitopes, haptens and adjuvants. Factors influencing antigenicity.	13

II	IMMUNOGLOBULINS AND ITS EXPRESSION: Immunoglobulin- Structure, types, properties and functions. Immunoglobulin gene re-arrangements. Generation antibody diversity. Somatic hyper mutation. Ig gene expression and its regulation.	15	
Ш	ANTIGEN PROCESSING AND PRESENTATION: MHC – types and importance- distribution and function. Antigen processing and presentation to T- lymphocytes. Major classes of MHC genes and its regulation. Antigen – Antibody reactions – Agglutination, precipitation, RIA, ELISA, FACS and Immunopanning. Hybridoma Technology	17	
IV	CYTOKINES, IMMUNE CELL ACTIVATION AND ALLERGIC REACTIONS: Definition of cytokines, classification and types of cytokine, Biological functions of cytokines. Cytokine receptors. T-cell and B-cell activation and differentiation. Hypersensitivity reactions and its types. Plasma cells and memory cells	15	
V	AUTOIMMUNITY: Definition, types of autoimmune disorders. Mechanism of autoimmunity. Immunodeficiency disorder. Vaccines and its types. Immune response to bacterial, protozoal, parasitic diseases. Immuno deficiency diseases (HIV). Transplantation immunology – types of grafts. Mechanism of graft rejection. Immunosuppressive therapy.	15	

- 1. Ivan Riot Blackwell, 1988. Essentials of Immunology (6th Edition): Scientific Publications, Oxford,
- 2. Paul W.E (Eds) Ravan prss 1988. Fundamentals of Immunology:, New York,
- 3. Harlow and David Lane, 1988. Antibodies A laboratory Manual: cold spring harbor laboratory.
- 4. Janis Kuby Immunology, 1997. WH Freeman & Company, New York.
- 5. Tizard,1995.Immunology IV Ed Saunders college publishers, New York.
- 6. Robert M.Coleman., 1992. Fundamental Immunology. 2 nd edition., Wim. C.Brown Publishers.
- 7. Eli Benjamini et al., 1991. Immunology A short course –Wiley Publishers, NY.

MODEL QUESTION PAPER (IMMUNOLOGY)

NAME OF THE COURSE: IMMUNOLOGY	COURSE CODE: 20U5BTC05	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS				
1. The ability of an orga	anism to resist infections by	the pathogens is called?		
a. Infection	b. Hypersensitivity	c. Immunity	d. Allergy	
	ng is NOT a poly morpho nu	•	<i></i>	
a. Eosinophil	b. Mast cell	c. Macrophage	d. Basophil	
3. Name the first cell w	hich recruited at the place of	f infection.		
a. Nk cell	b. Basophil	c. Neutrophil	d. Macrophage	
4. Which of the following	ng cell is a multipotent cell?	,		
a. T-cell	b. B-cell	c. HSC	d. Monocytes	
5. Which of the following	ng antibody gives a primary	immune reaction?		
a. IgG	b. IgM	c. IgA	d. IgE	
6. What is the origin of	B-cell?			
a. Pancreas	b. Liver	c. Thymus	d. Bone marrow	
7. Who discovered the	structure of immunoglobuling	n by treating it with beta-	-mercaptoethanol?	
a. Nisonoff	b. Edelman	c. Porter	d. Whittekar	
8. Name the heavy chair	n of IgG.			
a. M	b. E	c. α	d. γ	
	ng is NOT the characteristic			
a. Large in size b. Fore	eignness c. Highly compl	d. Reproduce on	ly by binary fission	
10. Name the molecule	which constitutively express	sed on the dendritic cell?		
a. Class I MHC	b. Class II MHC	c. APC	d. Antigen	
11. Which of the follow	ring polypeptide is important	t for the expression of M	HC I on the cell membrane?	
a. Interferon	b. β ₂ -microglobin	c. Lymphokine	d. Interleukin	
12. Name the part of pro	ocessed antigen that binds to	the MHC molecule and	recognized by T-cells?	
a. Immunoglobulin	b. Paratope	c. Epitope	d. Chaperone	
13. Name the cytokines	which released in response	to virus infection?		
a. Monokines	a. Monokines b. Interferons c. Lymphokines d. Interleukins			
14. Name the nerve stimulator which is responsible for the pain of the inflammation.				

	a. Bradykinins	b. Prostaglandin	c.	Histamines	d. Ki	inins
-	15. Name the class of immunoglobulin which takes part in hypersensitivity reaction?					
	a. IgG	b. IgM	c.	IgA	d. IgI	Ξ
-	16. Out of these, which t	anscription factor does not	take pa	art in B-cell activ	ation?	
	a. Abl	b. NF- kB	c.	Jun	d. Fo	S
	17. Which among the following is not an autoimmune disease?					
	a. Myasthenia gravis b.	Systemic lupus erythemat	osus	c.Grave"s diseas	se d. Si	ckle cell disease
-	18. Vaccination was inve	nted by?			,	
-	a. Jenner	b. Pasteur	c.	Koch	d. Sa	ılk
	19. Heat killed vaccines are					
	a. Dead cells of bacteria b. Dead cells of virus c. Dead cells of fungi d. A & B					
	20. The major molecule responsible for graft rejection is					
	a. B-cells	b. T-cells	c.	MHC	d. an	tibodies

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QU	JESTIONS
21. A) Explain the organs involved in immune system	(OR)
B) Write a short note on factors influencing antigenicity	
22. A) Give a short note on antibody production	(OR)
B) Explain the IgA and IgM	
23. A) Explain the process of MHC regulation	(OR)
B) Describe Apoptosis	
24. A) Explain Type II hypersensitivity	(OR)
B) Brief about the classification of Cytokines	
25. A) Explain Autoimmunity	(OR)
B) Describe AIDS and HIV types.	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Give an detailed account on cells involved in Immune system	
27. Explain Immunoglobulin"s types, structure and functions	
28. Give a detailed account on Antigen processing and presentation	
29. Describe the types of hypersensitivity	
30. Give detailed account on various types of vaccines and explain with suitable example	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

PLANT BIOTECHNOLOGY

: Core VI **Total Hours** Paper : 75 Hours/Week : 5 **Exam Hours** : 03 Credit : 5 Internal : 25 Paper Code : 20U5BTC06 External : 75

PREAMBLE

To make students on exposing plants technically, so as manipulate them for the production of disease free, nutritive elite plant varieties. In addition candidates are exposed to the use of vector based engineering of plant genome for the generation of genetically modified plants and food products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about the historical development of plant tissue culture and basic tissue culture techniques and their principles	K1 & K2
CO2	Gaining knowledge on plant secondary metabolites and their role in defence mechanisms	K1 & K2
CO3	To acquire knowledge on the generation novel plant varieties by genetic manipulation strategies	K3, K4 & K5
CO4	Exposing towards the application of secondary metabolites in drug development and value added products	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	INTRODUCTION: Plant tissue culture history, Laboratory organization sterilization methods, types of media, media preparation, plant growth regulators. Applications of crop improvement in agriculture, horticulture and forestry.	12
II	PLANT TISSUE CULTURE TECHNIQUES: Micropropagation, Callus induction. Cell culture techniques, Protoplast culture and fusion. Organogenesis and somatic embryogenesis. Haploid production of plants (Anther, Pollen and embryo cultures).	12
Ш	PLANT SECONDARY METABOLITES: Basic biosynthesis pathway of auxins and cytokinins. Role of secondary metabolites in plant defence. Plant genome organization (Chloroplast and mitochondria), Agrobacterium mediated gene transfer (Ti plasmid and Ri plasmids) methods in plants.	18
IV	GENETIC ENGINEERING IN PLANTS: Selectable markers, Reporter genes and promoters used in plant vectors Genetic engineering & crop improvement, herbicide resistance, insect resistance, virus resistance, plants as bioreactors. Production of antibodies.	18
V	APPLICATIONS OF PLANT SECONDARY METABOLITES: isolation and characterization - drug development. Production of Biopesticides and Biofertilizers. Development of value added plant products (Saline tolerance & Delayed fruit ripening). Organic food-Production,types and Identification of organic foods.	15

- 1. Plant Biotechnology: An introduction to genetic engineering by Adrian Slater, Nigel W. Scott, Mark R. Fowler. Oxford University, Press, 2008.
- 2. Biochemistry and Molecular Biology of Plants. Bod Buchananm Wilhelm Gruissem, Russell Jones. John Wiley & Sons, 2002.
- 3. Molecular Biotechnology by Glick, B.R. and J.J. Pasternak. Scond Edition, ASM press, Washington, 1998.
- 4. Plant propagation by tissue culture: volume 1 & 2. E.F George. Exegetics Limited,1999.
- 5. Natural products: A laboratory Guide by Raphael Ikan, Academic press, 1991.
- 6. Chemistry of Natural products by sujatha V. Bhat, Bhimsen A. Nagasampagi, meenakshi Sivakumar. Birkhausr, 2005.
- 7. An introduction to plant tissue culture by MK Razdan. M.K. 2003. Oxford & IBH Publishing Co, New Delhi, 2003.
- 8. Plant tissue culture by Bhojwani, S.S and Razdan, M.K. 2004.
- 9. Phytochemical Methods: A guide to Modern Techniques of Plant Analysis by J.B. Harborne. Springer, 1998.
- 10. Plant cell culture, A practical approach, 2nd Edition, Edited by R.A. Dixon and R.A. Gonzales.

MODEL QUESTION PAPER (PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: PLANT	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	20U5BTC06	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS										
1. Who is the father	of tiss	ue cult	ure?							
a. Bonner	b.Ha	berlan	dt	С	Laibach	b. Gautheret		utheret		
2.The growth of plan	t tissu	ies in a	rtificial m	nedia is cal	lled		•			
a. Gene expression			b. Transg			c. Plant tissue culture			d. Cell hybridization	
3.Ais a	n exc	ised pic	ece of lear	f or stem ti	ssue used	in micropro	pagatio	n.		
a.Microshoot			o.Medium			c.Explant			d.Scion	
4.Cellular totipotenc	y is th	e prop	erty of							
a. Plant		b. Ani	mal		c. Bac	teria			d. All of these	
5. In plant tissue cult	ure, v	what is	the term (ORGANO	GENESIS	means?				
a. Formation of cal	llus cu	ılture	b. Formation of root & c. Genesis of organshoot from callus culture		ın	d. None of the above				
6. In a cell, protoplas	st con	sists th	e followir	ng EXCEP	Т					
a. Cell wall			b. Cell membrane		c. Nucleus		d.	d. Cytoplasm		
7.In a callus culture						1				
a. Increasing level of cytokinin to a callus induces shoot formation and increasing level of auxin promote root formation		on	b. Increasing level of auxin to a callus induces shoot formation and increasing level of cytokinin promote root formation c. Auxins and cytokinins are not required			Only auxin is required for root and shoot formation				
	8.The phenomenon of the reversion of mature cells to the meristematic state leading to the formation of callus is known as									
a. Redifferentiati	on	b	. Dediffe	rentiation	c.	either (a) or	(b)		d. none of these	
9. T-DNA transfer ar	9. T-DNA transfer and processing into plant genome requires products of which of the following genes?									
a. vir A,B b. vir G,C c.vir D,E d. All of these					of these					
10. Which of the foll	10. Which of the following are used as selection marker for the cells transformed with <i>Agrobacterium</i> ?									
a. Neomycin phosphotransferase			b. Streptomycin phosphotransferase c. Hygromycin d. Any of above		d. Any of the above					
11. Which technique	is use	ed to in	troduce g	genes into o	dicots?					

a. Electroporation	b. Particle acceleration	n c. Mi	croinjection	d. Ti	plasmid infection	
12. Genome is						
a. Genes on nuclear DNA b. Nuclear DNA + mitochondrial c. Nuclear DNA + chloroplast DNA					Nuclear DNA + Mitochondrial DNA + Chloroplast DNA	
13. The process of expres	sion of foreign genes in a p	plant is calle	ed			
a. Gene expression	b. Transgenesis c	Genetic t	ransformation	d. Ce	ell hybridization	
14. Which of the followin	g is considered as a visual	marker?		'		
a. Antibiotic marker	b. Resistance marker	c. Selec	ctable marker	d. Sc	reenable marker	
15. Name the first transge	nic virus resistant plant?					
a. Rice	b. Cotton	c. Toba	acco	d.	Tomato	
16. Which of the followin	g is supplemented with vi	tamin A in c	order to impro	ve its nut	ritional quality?	
a. Cotton	b. Potato		c. Tom	ato	d. rice	
17. Which of the following	g is NOT the class of seco	ondary meta	bolite?			
a. Amino acid	b. Terpenes		c. Phen	olics	d. alkaloids	
	condary metabolites which	is character	rized by the pr	resence of	the hydroxyl	
group with an aromatic ri	-					
a. Glycosides	b. Phenolics	c. A	Alkaloids	d.	Terpenes	
19. Azolla is used as biofe	ertilizer as it has					
a. Rhizobium	b. Cyanobacteria	c. M	Iycorrhiza		d. Large quantity of humus	
20. Which sterility is expl	oited in hybrid seed produ	ction?				
a.Male genetic sterility	b. Cytoplasmic genetic sterility is found	c male	le c. Cytoplasmic d. Ger		d. Genetic	
	$-B (5 \times 5 = 25 \text{ MARKS})$) ANSWEI	R ALL THE			
21. A) List out the typ B) Mention about				(OR	2)	
22. A) Write note on callus induction. (OR) B) Explain embryo culture.					2)	
23. A) Briefly discuss particle bombardment. (OR)					3)	
B) Biosynthesis pathway of cytokine-explain.						
	24. A) What is called selectable marker? Explain with two examples. B) Write note on virus resistance. (OR)					
25. A) Explain about salin				(OR	3)	
	Cytoplasmic male sterility	y.		`	,	

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. Illustrate on the application of crop improvement in agriculture, horticulture and forestry.
27. Explain protoplast isolation, culturing and fusion.
28. Draw and explain agrobacterium mediated gene transfer.
29. Write note on genetic engineering in plants.
30. Describe about isolation and characterization of secondary metabolites.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN IMMUNOLOGY

Paper : Core Practical V **Total Hours** : 75 Hours/Week : 5 Exam Hours : 03 Credit : 3 Internal : 40 Paper Code : 20U5BTCP05 External : 60

PREAMBLE

To make students on practical exposure towards immunological techniques in-terms of handling of laboratory animals, qualitative and quantitative estimation of antigen - antibody specificity.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Gaining knowledge on handling of laboratory animals	K1 & K2
CO2	Knowing about the methods of immunization of bleeding and separation serum and plasma from blood	K2, K3 & K4
CO3	Analysis of qualitative and quantitative estimation of antigen and antibody interaction	K4, K5 & K6
CO4	To know about the basic principles of blotting techniques in terms of practical approach	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	M	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Handling of laboratory animals	5
2	Methods of bleeding and routes of immunization	10
3	Preparation of Serum and plasma	5
4	ABO Blood grouping (Rh typing) (Agglutination)	5
5	WIDAL test (Agglutination)	5
6	ASO test (Agglutination)	5
7	Pregnancy test (Agglutination inhibition)	5
8	Radial immune diffusion test (Precipitation test)	5
9	Rocket Immuno electrophoresis test (Precipitation)	5

10	1 \	ODD)	5
	(Precipitation)		
11	Counter current immunoelectrophoresis (CIE) (Precipitation)		5
12	DOT ELISA test		5
13	Western Blotting- Demonstration		10

MODEL QUESTION PAPER (LAB IN IMMUNOLOGY)

	COURSE CODE:	DURATION: 6 Hrs
IMMUNOLOGY	20U5BTCP05	
MAX MARKS: 60		

MAJOR EXPERIMEN	Ĭ T					
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS			
1. (i) Identify the Blood group for the given sample (A) and display the results for observation						
			(OR)			
(ii) Perform Radial	immune electrophoresis	for the given serum and	anti-serum sample (A) (OR)			
(iii) Perform WIDA	L test for the given plant	t sample (A)				
MINOR EXPERIMEN	T					
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS			
2. (i) Prepare Serum/	Plasma from the given b	lood sample (B). Displa	y the results for			
observation			(OR)			
* *	ELISA for the given se	rum sample (B)). Displ	•			
observation			(OR)			
(iii) Perform ASC Observation	O test from the given blo	od sample (B)). Display	the results for			
SPOTTERS		(5 X	4 = 20 MARKS)			
3. Identify the given	spotters C, D, E, F & G	and comment on them				
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $						
VIVA-VOCE		5 MARKS				
TOTAL 60 MARKS			60 MARKS			

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

LAB IN PLANT BIOTECHNOLOGY

Paper : Core Practical VI **Total Hours** : 75 Hours/Week : 5 Exam Hours : 03 Credit Internal : 40 : 3 Paper Code : 20U5BTCP06 External : 60

PREAMBLE

To make students familiar on basic plant tissue culture techniques and isolating plant pigment by chromatographic technique

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know about basic aseptic conditions to be followed in plant tissue culture laboratory and preparing various tissue culture media	K1, K2 & K3
CO2	Micropropagation of explant for shooting and rooting and to isolate protoplast from plant cells	K4, K5, & K6
CO3	Extraction of plant pigments by column chromatography	K4 & K5
CO4	Exposing them in preparing synthetic seeds and its preservation	K4 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
1	Isolation of Plant genomic DNA	5
2	Sterilization of performance of aseptic condition in plant tissue culture lab	5
3	Preparation of MS media	10
4	Establishment of seed germination from carrot seeds	5
5	Establishment of shoot tip culture using MS media	10

6	Establishment and maintenance of callus culture	10
7	Micro propagation of callus culture (Shoot & Root systems)	10
8	Isolation of protoplast (Enzymatic method)	5
9	Extraction & separation of Plant pigments (Chlorophyll A & B) Column Chromatography	10
10	Preparation of synthetic seeds	5

MODEL QUESTION PAPER (LAB IN PLANT BIOTECHNOLOGY)

NAME OF THE COURSE: LAB IN PLANT BIOTECHNOLOGY	COURSE CODE: 20U5BTCP06	DURATION: 6 Hrs
MAX MARKS: 60		

MAJOR EXPERIMEN	T		
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS
1. (i) Isolate plant g	enomic DNA from the g	iven plant sample (A)	(OR)
(ii) Perform shoot ti	p culture from the given	explant sample (A)	(OR)
(iii) Perform callus	induction from the giver	explant (A)	
MINOR EXPERIMEN	T		
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS
2. (i) Isolate protopl	ast from the given plant	mesophyll tissue sample	e(B) (OR)
(ii) Prepare synth	etic seeds from the give	n plant seed sample (B)	(OR)
(iii) Separate chlo	prophyll pigments from	the plant leaf extract sam	ple (B) by appropriate
Method			
SPOTTERS		(5 X	4 = 20 MARKS)
3. Identify the given	spotters C, D, E, F & G	and comment on them	
RECORD		(1 x 5	5 = 5 MARKS
VIVA-VOCE			5 MARKS
TOTAL			60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE - I

PHARMACEUTICAL BIOTECHNOLOGY

: Elective I **Total Hours** Paper : 75 Hours/Week : 4 Exam Hours : 03 : 3 Credit Internal : 25 Paper Code : 20U5BTE01 External : 75

PREAMBLE

This paper encodes information on pharmacology, drug designing, sources and applications of drug discovery. Students also understand the basic and applications of pharmacology and sources of drug. Also enables them to understand the concepts of rDNA technology in drug designing.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the principles of pharmacology and its development History	K1 & K2
CO2	To understand principles of action of drugs and mechanism of action to wards various diseases	K2, K3 & K4
CO3	To understand the concepts of developing therapeutic agents through genetic engineering principles	K4, K5 & K6
CO4	To explore the applications of pharmaceutical chemistry and its Development	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	S	S	S	S	S
CO3	M	S	S	M	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction to pharmacology : History & development in pharmacology. Principles of pharmacology. – Pharmacology in the 20 th century – Drugs – Sources, dosage forms and routes of administration	15
II	Drug names & Classification systems: General Principles of Drug action	15

	Pharmacokinetics, Pharmacodynamics, measurement of drug action.	
	Diagnosis and Chemotherapy: Prenatal diagnosis: Invasive Techniques-	
III	Amniocentesis, Fetoscopy, Non Invasive Techniques – Ultra Sonography.	15
	Diagnosis using protein & enzymes markers, DNA/RNA based diagnostics.	
	Therapeutic drugs – Protein synthesis inhibitors, Antibacterial, antifungal,	
	anti protozoal, antiviral, anti helmithic, anticancer, anti-inflammatory drugs.	
	Introduction to r-DNA technology: production of biological: Human	
IV	Insulin, HGH, GRF, Erythropoietins, IFN, TNF, Interleukins, Clotting factor	15
	VIII. Synthetic therapy: Synthetic DNA, therapeutic ribozymes, synthetic	
	drugs	
V	Production and applications: Probiotics, anticancer and anti-inflammatory	15
•	agents. Biochips, biofilms and biosurfactants. Tissue Engineering,	15
	Recombinant vaccines and Cell adhesion based therapy	

- 1. A Text Book of Biotechnology. R.C. Dubey. S.Chand& Co Ltd, New Delhi.
- 2. Pharmacology H.P. Rang, M.M. Pale, J.M. Moore, and Churchill Livingston.
- 3. Basic Pharmacology Foxter Cox. Butterworth"s 1980
- 4. Pharmacology and Pharmacotherapeutics R.S.Satoskar, S.D. Bhandhakam and S.S. Alinapure
- 5. Pharmaceutical Biotechnology S.S. Purohit, Kaknani, Saleja
- 6. Pharmacology Mary J. Myuk, Richard A.Hoarey, Pamala Lippinwitt, Williams Edition.
- 7. Integrated pharmacology Page, Curtis, Sulter, Walker, Halfman. Mosby Publishing Co.

${\bf MODEL\ QUESTION\ PAPER\ (PHARMACEUTICAL\ BIOTECHNOLOGY)}$

NAME OF THE COURSE:	COURSE CODE:	DURATION: 3 Hrs
PHARMACEUTICAL BIOTECHNOLOGY	20U5BTE01	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
Clinical pharmacology was established by?						
a. Schwann b. Robert Hooke c. William Witherin			William Withering		d. William Wroth	
2. The most wi	idely use	ed drug classification	ı syste	ems are?		
a. ATC		b. ADP		c. AKT		d. ATP
3. The drugs th	nat are ta	aken though nasal ro	ute is	called		
a. Subcutaneous		b. Ear drops		c. Inhaler		d. Intraosseous
4. Parenteral	adminis	tration can be perfor	med b	y?		
a. Injection		b. Oral		c. Tablet		d. Powder
5. The action of	of drugs	on the human body i	s calle	ed as?		
a. Pharmacodynan	nics	b. Pharmacokinetic	:S	c. Drug action		d. Transporter protein
6. What the b	ody doe	es with the drug is ca	lled as	?		1
a. Drug action b. Pharmacodynamics c. Pharmacokinetics d. Transporter protein			ansporter protein			
7. Initial conse	quence	of drug-receptor cor	nbinat	tion is called	-	
a. Pharmacody	namics	b. Drug action	n	c. Drug Effect d	. Phar	macokinetics
8. Biochemical	l and ph	ysiological changes	that o	ecur as a consequence	e of dr	rug action called
a. Drug action		b. Drug Effect		c. Pharmacodynam	ics	d. Pharmacokinetics
9. A group of r	naterial	s that fight against p	athoge	enic bacteria?		
a. Antibacterial age	ents	b. Antiviral agents		c. Antifungal agent	S	d. Anticancer agents
10. Anti-inflan	nmatory	drugs make up abou	ıt half	of?		
a. Analgesics		b. Prostaglandins		c. Paracetamol		d. Aspirin
11. Abnormal cell growth called as?						
a. Cancer	a. Cancer b. Viral c. Cell growth		d. Tissues			
12. Fungal cell wall synthesis inhibition as?						
a. Nystatin		b. Caspofungir	1	c. Azoles d. Naftifine		d. Naftifine
13. Insulin hor	mone p	roduced by?				
a. Pancreas		b. Liver		c. Mitochondria d. Kidney		

14. Erythropoietin is a hormone produced primarily by?				
a. Liver	b. Kidney	c. Pancreas	d. Mitochondria	
15. Factor VIII is an e	ssential blood-clotting prot	ein, also known as?		
a. Anti-hemophilic factor	b. Coagulation	c. Glycoprotein	d. Embolism	
16. Erythropoietin also	o known as			
a. Hematopoietin	b. Glycoprotein cytokine	c. Erythropoiesis	d. Hypoxia	
17. Probiotics are ofte	n called as ?			
a. Helpful" Bacteria b. Helpless" Bacteria c. Helpful Virus		c. Helpful Virus	d. Helpless Virus	
18i	s the property of a substance	e or treatment that reduces	inflammation?	
a. Anti-cancer	b. Anti-inflammatory	c. Inflammatory	d. Cancer	
19are a collective of one or more types of microorganisms that can grow on many different surfaces?				
a. Biofilms b. Anti-inflammatory c. Biochips d. Anti-cancer			d. Anti-cancer	
20. Bio surfactants are also called as				
a. Microbial surfactants	b. Bacterial surfactants	c. Viral surfactant	d. Biochips	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QU	ESTIONS
21. A) Explain the history and development of pharmacology.	(OR)
B) Explain the various routes of administration of drug.	
22. A) Explain about pharmaco kinetics	(OR)
B) Write brief notes on the measurement of drug action	
23. A) Write shortly about Anticancer drugs	(OR)
B) Write short notes on antibacterial drugs	
24. A) Write short notes on Erythropoietins	(OR)
B) Write short notes on Interleukins?	
25. A) What is probiotics? Explain in brief	(OR)
B) Write short notes on Biochips	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Write the essay on pharmacology?
27. Explain in detail on the general principle of drug action?
28. Write an essay on therapeutic drugs?
29. Write an essay on r-DNA technology?
30. Explain in detail about the production and application of drugs?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE I

ENZYMOLOGY AND ENZYME TECHNOLOGY

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 20U5BTE02	External	: 75

PREAMBLE

This paper concisely presenting the fundamentals of enzymes, enzyme kinetics and industrial applications of enzymes

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To familiarize the basics of enzyme classification, its unit	K1 & K2
	measurement and extraction	
CO2	To explore to the usage of enzymes at molecular level such as active	K3 & K4
	site, isoenzymes and their biochemical fundamentals	
CO3	To explore the enzyme kinetics and its mechanism of inhibitions	K4
CO4	To explore the industrial and clinical applications of commercial	K5 & K6
	Enzymes	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT	HOUR
		S
	Enzymes : Introduction, Definition, History, Classification and Nomenclature of enzymes. Intracellular localization of enzymes, Extraction and purification of enzymes. Enzyme units. Substrate specificity.	15
11	Active site: Salient features, Theories of ES complex formation – Lock and Key, Induced fit and Substrate strain theory. Structure and functions of coenzymes, Isoenzymes and their separation rates. Collision and transition state	15
	theories. Factors affecting enzyme activity	

III	Enzyme kinetics: Order of reaction, Activation energy, Kinetics of enzyme catalyzed reactions – Steady state kinetics – Michaelis Menten equation, and its transformation. Bi – substrate reaction – random, ordered and ping pong mechanisms. Enzyme - Enzyme interaction. Protein ligand binding	15
IV	Enzyme inhibition: Reversible and irreversible inhibitors. Mechanism of catalysis – acid base, electrostatic, covalent, metal ion and enzyme catalysis, electrostatic proximity and orientation effects. Mechanism and action of chymotrypsin, lysozyme and carboxy peptidase. Isoenzymes– multiple forms of Isoenzymes	15
V	Immobilization of enzymes: Methods and application. Clinical and Industrial application of enzymes, Enzyme engineering – site directed mutagenesis. Methods for protein sequencing. Methods for analysis of secondary and tertiary structures of enzymes.	15

SUGGESTED READINGS

- 1. Enzymes: Biochemistry, Biotechnology, Clinical chemistry Trevor Palmer, East West Press Edition, New Delhi, 2004.
- 2. Fundamentals of Enzymology Nicholas C. Price Lewis Stevens, 2nd edition, Oxford University Press, Newyork, 1998.
- 3. Biochemistry U.Satyanarayana & U.Chakrapani, Books and Allied (P) Ltd, Kolkata, 2008.
- 4. Lehninger Principles of Biochemistry David L. Nelson and Michael M.Cox, W.H Freeman and Company, New York, 2007.
- 5. Biochemistry Lubert Stryer, Jeremy M. Berg, John L.Tymoczko, V edition, W.H.Freeman & Company, Newyork, 2001.
- 6. Enzyme Technology Ashok Pandey, Colin Webb, Calos Ricardo Soccl, Christian Larroche, Asiatech publishers Inc, New Delhi, 2005.

MODEL QUESTION PAPER (ENZYMOLOGY AND ENZYME TECHNOLOGY)

NAME OF THE COURSE: ENZYMOLOGY AND ENZYME TECHNOLOGY	COURSE CODE: 20U5BTE02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
Enzymes are broadly classified intotypes							
a. 4	b. 5	5	c. 6			d. T	7
2. The function of isomerases is							
a. Geometrical changes b. Isomeric changes c. Steric changes d. Super numeric changes					meric changes		
3. Enzyme activity of	leper	nds on					
a. Substrate conc.		b. Substrate availability		bstrate inding site		d. A	ll the above
4. Which of the follo	owin	g method is used in sep	parating spe	ecific enzym	es from	its cr	ude sample?
a. Dialysis	b	o. Native PAGE	c. 2D	PAGE		d. Iso	pelectric focusing
5. Which of the folloactive site of enz		g concept model descri	ibes the co	nformational	change	s occi	urring at the
a. Lock & Key model	b. Iı	nduced fit hypothesis	c. Substra	ate strain coi	ncept	d. No	one of the above
6. Michealis – Ment	on e	quation describes			•		
a. Rate of enzyme activi	ty	b. Rate of substrate a	activity	c. ES form	ation		d. All the above
7. Bi substrate react	ions	indirectly describes the	concept o	f			
a. Lock & Key concept	b	. Induced fit hypothesis	s c. Subs	trate binding	g theory	d. I	None of the above
8. Which of the follo	owin	g physical factor affect	s the enzyr	ne activity?			
a. Enzyme conc.		b. Substrate Conc.	c. Bi	nding site		d. pł	H
9. Which of the follo	owin	g is an example for iso	enzyme?				
a. ACTH		b. GH	c. LD	PΗ		d. F	SH
10. Activation energ	gy is	the energy required for	·		'		
a. Activating enzyme b. Activating substrate c. Activating co factors d. Activating physical factors							
11. The kinetics of enzyme – catalysed reactions can be analysed in terms of steady state models if the substrate concentrations are							
a. More than an order b. Less than an order of c. More than the rate d. Less than the rate of							
of magnitude				_	nitude lower than		
higher than the enzyme level		the enzyme level	_	er than the me level		tne e	enzyme level
12. The reaction between ADP and phosphocreatine works under the principle of							

a.Random mechanism b. Double displacement mechanism c. Ping pong mechanism d. B & C 13. Which of the following type of enzyme inhibition shows an increase in KM value with constant Vmax? a. Competitive b. Non – Competitive c. Un – Competitive d. None of the above 14. Allosteric enzymes displays a sigmoidal curve in contrast to the ———————————————————————————————————									
Allosteric enzymes displays a sigmoidal curve in contrast to the	a.Random mechanism	b. Do	ouble displacem	ent med	chanism	[c.]	Ping pong	mechanism	d. B & C
14. Allosteric enzymes displays a sigmoidal curve in contrast to the displayed by Michealis – Menton enzymes a. Hyperbolic curve b. Parabolic curve c. Quadratic curve d. Transcendental curve 15. Chymotrypsin is an		Vmax?							
A. Hyperbolic curve b. Parabolic curve c. Quadratic curve d. Transcendental curve 15. Chymotrypsin is an	a. Competitive	b. No	on – Competitiv	/e c	. Un – Coi	mpeti	tive	d. None o	of the above
15. Chymotrypsin is an			splays a sigmoi	dal curv	e in contras	st to t	he	displayed b	y Michealis –
a. Cysteine protease b. Serine protease c. Proline protease d. Leucine protease 16. Carboxypeptidase A3 (CPA3) involved in the protein digestion by a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells 17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a.Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Hyperbolic curve	b. Pa	rabolic curve	c. Qu	adratic curv	'e	d. Tra	nscendental o	curve
16. Carboxypeptidase A3 (CPA3) involved in the protein digestion by a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells 17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a.Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	15. Chymotrypsin i	s an							
a. Pancreatic cells b. Liver cells c. Mast cells d. Tumour cells 17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Cysteine protea	se	b. Serine pr	rotease	c. Pr	roline	protease	d. Leuc	ine protease
17. Which of the following method is commonly used in maintaining enzyme activity a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c. Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	16. Carboxypeptida	ise A3	(CPA3) involv	ed in the	e protein dig	gestio	on by		
a. Entrapment method b. Encapsulation c. Immobilization d. All the above 18. Which of the following enzyme is used in leather industries? a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Pancreatic cells	ı	b. Liver	cells	c. Ma	st cel	ls	d. Tumo	ur cells
18. Which of the following enzyme is used in leather industries? a. Amylase	17. Which of the fo	llowin	g method is con	mmonly	used in ma	intair	ning enzyr	ne activity	
a. Amylase b. Lipase c. Protease d. DNAse 19. Which of the following technology is followed for enriching the enzyme activity? a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Entrapment me	thod	b. Encap	sulation	c.	Immo	bilization	d. All	the above
19. Which of the following technology is followed for enriching the enzyme activity? a.Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	18. Which of the fo	llowin	g enzyme is use	ed in lea	ather industr	ries?			
a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above 20. Which of following enzyme is used as deworming agent?	a. Amylase		b. Lipase		c. Pro	tease		d. DNAs	e
20. Which of following enzyme is used as deworming agent?	19. Which of the fo	19. Which of the following technology is followed for enriching the enzyme activity?							
	a. Yeast hybrid analysis b. Site directed mutagenesis c.Feed back inhibition d. None of the above								
a. Tryspin b. Papain c. Amylase d. Protease	20. Which of follow	ving er	nzyme is used a	s dewor	rming agent	?			
	a. Tryspin		b. Papair	n _	c. Am	ıylase	; 	d. Protea	se

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS					
21. A) Explain about enzyme units	(OR)				
B) Explain about substrate specifity					
22. A) Explain about isoenzymes	(OR)				
B) Explain the factors affecting the enzyme activity					
23. A) Explain the steady state kinetics of enzymes	(OR)				
B) Write short notes on the order of the enzyme reaction					
24. A) Explain the mechanism of action of chymotrypsin	(OR)				
B) Write short notes on mechanism of enzyme catalysis					
25. A) Explain the process of site directed mutagenesis	(OR)				
B) Explain about enzyme engineering					

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. Give detailed account on the classification of enzymes
27. Give detailed account on iso-enzymes
28. Give detailed account on MM and LB plot
29. Give detailed account on enzyme inhibition and its types
30. Give detailed account on industrial applications of enzymes

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE I

TISSUE ENGINEERING

Paper	: Elective I	Total Hours	: 75
Hours/Week	: 4	Exam Hours	: 03
Credit	: 3	Internal	: 25
Paper Code	: 20U5BTE03	External	: 75

PREAMBLE

This paper deals with the use of combination of cells, engineering and materials methods, and suitable biochemical and physicochemical factors to improve or replace biological tissues. Tissue engineering involves the use of tissue scaffold for the formation of new viable tissue for a medical purpose.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the key topics in tissue engineering	K1, K2 & K3
CO2	To understand the stem cells and animal cells, processes, and strategies to regenerate or repair damaged tissues	K3 & K4
CO3	To develop students ability to identify, formulate and adapt engineering solutions to unmet biological needs	K4 & K5
CO4	To give students a knowledge of how the biomedical industry is regulated and the route to market of for tissue engineered products	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT						
I	Introduction to tissue engineering: Basic definition; current scope of development; use in therapeutics, cells as therapeutic agents. Measurement of tissue characteristics, appearance, cellular component, ECM component, and physical properties.	15					
II	Tissue types and Tissue components, Tissue repair, Engineering wound healing and sequence of events. Basic wound healing Applications of growth factors: VEGF/angiogenesis, Basic properties, Cell-Matrix & Cell-Cell Interactions, telomeres and Self renewal, Control of cell migration in tissue	15					

		engineering.	
]	Ш	Biomaterials: Properties of biomaterials, Surface, bulk, mechanical and biological properties. Scaffolds & tissue engineering, Types of biomaterials, biological and synthetic materials, Biopolymers, Applications of biomaterials, Modifications of Biomaterials, Role of Nanotechnology.	15
	IV	Stem Cells: Introduction, hematopoietic differentiation pathway Potency and plasticity of stem cells, sources, embryonic stem cells, hematopoietic and mesenchymal stem cells, Stem Cell markers. Stem cell systems - Liver, neuronal stem cells with characteristics: embryonic, adult, haematopoietic, fetal, cord blood, placenta, bone marrow, primordial germ cells, cancer stem cells and induced pluripotent stem cells.	15
	V	Stem cell therapy, Molecular therapy, <i>in-vitro</i> organogenesis, Neurodegenerative diseases, spinal cord injury, heart disease and muscular dystrophy. Stem cells and Gene therapy: Physiological models, tissue engineered therapies, product characterization. Preservation of stem cells: freezing and drying. Patent protection and regulation of tissue engineered products and ethical issues.	15

SUGGESTED READINGS

- 1. Bernhard O.Palsson, Sangeeta N.Bhatia, "Tissue Engineering", Pearson Publishers 2009.
- 2. Raphael Gorodetsky, Richard Schäfer. "Stem cell based tissue repair", Cambridge: RSC Publishing, c2011.
- 3. John P. Fischer, Antonios G. Mikos, Joseph D. Bronzino. "Tissue Engineering", CRC Press, 2012.
- 4. Larry L. Hench, Julian R. Jones. "Biomaterials, Artificial Organs and Tissue Engineering", CRC Press, 2005.
- 5. C. S. Potten, "Stem Cells", Academic Press, 1997.

MODEL QUESTION PAPER (TISSUE ENGINEERING)

NAME OF THE COURSE: TISSUE ENGINEEING	COURSE 20U5BTE03	CODE:	DURATION: 3 Hrs
MAX MARKS: 75			

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS						
1. The formation of b	plood vessel from the p	ore-ex	xisting blood ves	sel is k	nown a	ıs
a. Angiogenesis	b. Vascularization	Vascularization c. Osteoger		S		d. Phagocytosis
	mpatibility Complexe					
a. Signaling molecules	b. Growth factors	c. Ce	ell surface marke	rs	d. Cell	adhesion molecules
3. Bone Morphogenic Protein (BMP) is a						
a. Cell surface marker	b. Growth fa			one		d. Neurotransmitter
4. Polyglycolic Acid	(PGA) scaffold is					
a. Biotolerant	b. Bioactive		c. Bioinert			d. Biodegradable
5. In tissue engineering	ng, harvested cells are	froze	en away and stor	ed in		
	b. Liquid nitrogen		c. Liquid heliur	n		d. Autoclave
6. Cell signaling com	pounds cytokines are	a gro	oup of			
a. Proteins and peptides	b. Fats and triglyce	erides	c. Carbohyd	rates	d. H	formones and steroids
7. c-AMP and c-GMI	P functions as	-			I	
a. Hormone	b. Receptor		c. Second me	ssenger	•	d. Ligand
8. The signals which	affect only cells of the	sam	e cell type as the	emittii	ng cell	are
a. Endocrine	b. Autocrine		c. Paracrine	2		d. none of these
9. Carbon nanotubes	are used for tissue eng	ginee	ring scaffolds as	they ar	e	
a. Biocompatible	b. Biodegradabl	e	c. Biopolyn	ners		d. none of these
10. PLA degrades with	thin the body to form					
a. Amino acid	b. Glycolic acid	c.	. Lactic acid		d. Ph	osphoric acid.
11. An example of Ca	AM is	•				
a. Cadherin	b. Protease		c. Growth horm	none	d.	Serine
12. For skin grafting	the scaffold used shou	ıld be)			
a. Biodegradable	b. Bioactive	c.	Biocompatible			d. Both (a) and (c)
13. Endocrine signaling is performed by						
a. Enzymes b. Hormones c. Cytokines d. Carbohydrates						
14. Programmed Cell death is also known as						
a. Apoptois b. Lysis c. Degeneration d. Deformation						
15. The protein of cel	Il that binds to a specif	fic m	olecules is know	n as		
a. Ligand b. Receptor c. Hormone d. Cytokine						
16. Notch is a cell sur	16. Notch is a cell surface protein that functions as a					

a. Receptor	b. Hormone	Hormone c. Protein-A			d. Cytokine.		
17. Solid Free Forming is	17. Solid Free Forming is a fabrication technique for						
a. 2D scaffold b.	a. 2D scaffold b. 3D scaffold c. Micro scaffold d. Nano-patterned scaffo				nno-patterned scaffold		
18. Hydrogels can also be	18. Hydrogels can also be used as scaffolds for						
a. Cell growth b. Cell	a. Cell growth b. Cell delivery c. Cell growth and cell delivery d. None of the			d. None of these			
19. GABA is a							
a. Neurotransmitter	b. Neuro inhibite	or	c.Contact inhi	bitor	d. Contact excitator		
20. The family of receptors that play an important role in cell adhesion is							
a. Somatostatin b. Interleukins c. Integrins d. Interferons				d. Interferons			

SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS	
21. A) What are the different types of tissues in the mammalian body?	(OR)
B) Classify tissue based on their structure and function	
22. A) Briefly explain the different types of stem cells	(OR)
B) Briefly explain the process of cell placement on scaffold	
23. A) Describe different kinds of matrix materials used in tissue engineering	(OR)
B) Mention the importance of growth factors in the field of tissue engineering	
24. A) With the help of sketch, explain the process of differentiation of stem cells into cell lines	(OR)
B) What are the different risk factors involved with skin grafting?	
25. A) Mention the basic clinical goals and fundamental challenges of tissue engineering	(OR)
B) What are the basic criteria of a scaffold used for tissue reconstruction?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. With the help of a flow-chart, explain the different processes involved in wound healing 27. Describe the signalling pathway for cell's response to the ligand 28. Describe the engineering materials used in scaffold fabrication. Mention the parameters for scaffold selection. 29. With the neat sketch, explain the mechanism of adhesion between leukocytes and endothelial cells 30. Demonstrate bioreactor for achieving nutrient transport in an engineered tissue construct

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - III

LAB IN BIOINFORMATICS

Paper : SBEC III **Total Hours** : 30 Hours/Week : 2 **Exam Hours** : 03 Credit : 2 Internal : 25 Paper Code : 17U5BTS07 External : 75

PREAMBLE

To make students on understanding basic principles of biological soft wares and their usage for generating molecular and genetic databases of living organisms

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the basic concepts of functional and computational genomics and proteomics	K2, K3, K5 & K6
CO2	To acquire knowledge on the usage of biological software on generating databases both online/offline	K2, K3, K5 & K6
CO3	To understand the existence of globally available online soft wares and databases for nucleic sequence retrieval	K2, K3, K5 & K6
CO4	To understand the usage and deposition of sequences in to globally available structural databases	K2, K3, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

Exp. No	TITLE	HOURS
1	Biological Databases with reference to Expasy and NCBI	2
2	Query finding based on biological databases	2
3	Sequence similarity searching using BLAST	3
4	Pairwise alignment	2
5	Multiple Sequence and Phylogenetic Analysis	3
6	Gene Prediction	3
7	Protein Structure prediction (Secondary and tertiary)	3

8	Homology Modeling Using Modeller	3
9	Protein- Ligand docking	2
10	Program to store a DNA sequence in NCBI : Bankit	3
11	Program to convert DNA to RNA/Protein	2
12	Program to find ORF	2

MODEL QUESTION PAPER (LAB IN BIOINFORMATICS)

NAME OF THE COURSE: LAB IN BIOINFOMATICS	COURSE CODE: 17U5BTS07	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT					
Exp: 10	Obs: 5	Res: 5	Total 20 MARKS		
1. (i) Retr	(OR)				
(ii) Fin	d out the given query sequ	uence (A) by BLAST and	alysis (OR)		
(iii) Fir	nd out ORF in the given so	equence sample (A)			
MINOR EXPERIMENT					
Exp: 8	Obs: 4	Res: 3	Total: 15 MARKS		
2. (i) Retrieve the protein structure of haemoglobin (B) (OR)			(OR)		
(ii) Perform Phylogenetic Analysis for the given organism (A) (OR)					
(iii) Fir	nd out the RNA sequence	from the given DNA seq	uence (B)		
SPOTTERS			(5 X 4 = 25 MARKS)		
3. Identify	the given spotters C, D, E	E, F & G and comment or	n them		
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $					
VIVA-VOCE 5 MARKS					
TOTAL 60 MARKS					

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - III

BIOSAFTEY, BIOETHICS & IPR

Paper : SBEC III **Total Hours** : 30 Hours/Week Exam Hours : 2 : 03 Credit : 2 Internal : 25 Paper Code : 18U5BTS08 External : 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified Organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting Procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	6
II	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	6
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non-patentable.	6
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	6

	and general requirements of patent law. Patentable subjects and protection in Biotechnology. Patent infringement- meaning, scope, litigation, case studies.	
v	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy. Ethical implications of human genome project and GM crops, biopiracy and biowarfare.	6

SUGGESTED READINGS:

- 1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.
- 2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.
- 3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.
- 4. Sasson A, Biotechnologies and Development, UNESCO Publications.
- 5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY,	COURSE	CODE:	DURATION: 3 Hrs
BIOETHICS AND IPR	18U5BTS08		
MAX MARKS: 75			

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. Bio-related research activities may not involve						
a. Micro organis	sms	b. Animal cells		c. Plant cell	s	d. All
2. A pathogen th	2. A pathogen that is unlikely to cause any di			e in humans or ar	nimals	}
a. Risk group I		. Risk group II		c. Risk group III	-	d. Risk group IV
3. Korean hemorrhagic fever is example for						
a. Risk group II	b	. Risk group III		c. Risk group IV	r	d. Risk group I
4. Physical co	ontainment	t is achieved by		•	l	
a. One type	b	. Two types		c. Three types		d. Four types
5. Which one of	the follow	ving is not relevant	to s	terilization techni	que?	
a. Ethanol	b	. Incinerator		c. Microscope		d. Autoclave
6. Cartagena Profrom	otocol on I	Biosafety to the Co	nven	tion on Biologica	al Div	ersity Effective
a. 11 September	b	. 12 September	c.	11 September		d. 12 September
2003		2003		2004		2004
7. Each Instituti	onal Biosa	fety Committee ha	s a n	ominee for		
a. DST b. DBT c. UGC d. ICAR		d. ICAR				
8. How many R	CGM mee	ting held in 2018?				
a. 7		b. 8		c. 9		d. 6
9. The RCGM s	hall not in	clude the following	g rep	resentative		
a. DBT	b. ICMR	-	c.	UGC	C	l. CSIR
10. GEAC estab	olished und	ler				
a. MoEF & CC	b.	UGC		c. DBT		d. DST
11. Trade name	is otherwi	se called as				
a. Patent	b. 1	Model	С	. Business name		d. Trademark
12i	s any info	rmation of commer	cial	value concerning	produ	action
a. Trade name	b.	Trade Secret		c. Patent	d.	Industrial Design
13. IPR initially	started in	North Italy during	the ·			
a. Renaissance	b	. Renaissance		c. Renaissance		d. Renaissance
era. In 1471		era. In 1472		era. In 1473		era. In 1474
14. Protection of IPR not allow the following						

a. Innovator	. Innovator b. Brand owner c. Teacher d. Copyr					pyright holder	
15. Intellectual property not refers to creations of the mind							
a. Hard work	a. Hard work b. Inventions c. Literary and artistic works d. Names						
16. Which one is	comes under type of	fintelle	ectual property (I	P)?			
a. Copyright	b. Patent		c. Tradem	ark	d.	All the above	
17. Mathematica	algorithms are						
a. Patentable	b. Non patenta	ble	c. Both	d.	None o	f the above	
18. Software is a							
a. Patentable	b. Non patenta	ble	c. Both	d. N	None of	the above	
19. Patentable bi	otechnological inven	tions is	S				
a. Proteins b	DNA sequences	c. Bo	oth of the (a) and	(b) d	l. None	of the above	
20. Early founder	20. Early founders of bioethics put forth four principles which form the framework for moral						
reasoning	reasoning						
a. 4 b. 3 c. 2 d. 1						d. 1	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS
21. A) Explain different levels of biosafety.
B) Explain different types of sterilization methods.
22. A) Explain the role of institutional committee.
B) Explain RCGM and GEAC?
23. A) explain object of Intellectual property law?
B) Explain the importance of IPR?
24. A) Write a note on benefits of patent.
B) Explain patentable and non-patentable biotechnological inventions?
25. A) Define bioethics, explain purpose and scope of bioethics?
B) Explain perspectives and methodology of bioethics?

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. Explain different types of bio-safety measures in laboratory?
27. Explain Cartagena protocol on biosafety.
28. What is IPR and explain their different types?
29. Patent - Definition, History and Law
30. Explain framework for making ethical decisions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - III

CANCER BIOLOGY

: SBEC III **Total Hours** : 30 Paper Hours/Week : 2 Exam Hours : 03 Credit : 2 Internal : 25 Paper Code : 18U5BTS09 External : 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The students also gain added knowledge on ethical, legal and social considerations on implementing/marketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts of cancer biology and types of tumour	K1 & K2
CO2	Understand the mechanisms of cancer development and chemical involved in carcinogenesis	K1 & K2
CO3	Understand molecular mechanisms and genetic principles of oncogene expression	K3, K4 & K5
CO4	Acquiring the knowledge on developing drug discovery approach in the management and detection of cancer	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Fundamentals of cancer biology: Regulation of Cell cycle, Mutations that cause changes in signal molecules, effects on receptor, signal switches, tumour suppressor genes. Development and causes of cancer, Types of cancer, Benign and malignant tumours.	6
II	Principles of carcinogenesis: Chemical Carcinogenesis, Metabolism of Carcinogenesis, Natural History of Carcinogenesis.	6
III	Principles of molecular biology of cancer: Oncogenesis: Oncogenes, identification of Oncogenes, Retroviruses and Oncogenes, detection of Oncogenes, Growth factors related to transformations.	6

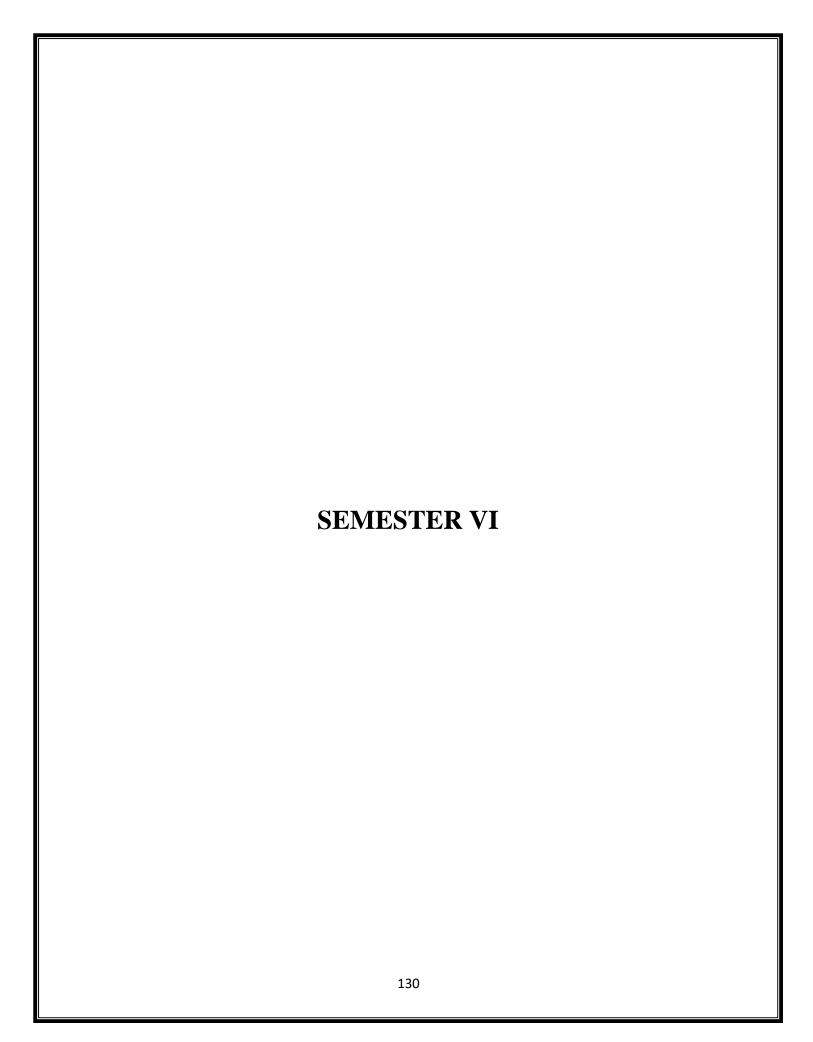
IV	Principles of cancer metastasis: Clinical significances of invasion, heterogeneity of metastatic phenotype, three step theory of invasion, Proteinases and tumor cell invasion.	6
V	New molecules for cancer therapy: Different forms of therapy, Chemotherapy, Radiation Therapy, Detection of Cancers, Prediction of aggressiveness of Cancer, Advances in Cancer detection.	6

SUGGESTED READINGS:

- 1. King R.J.B., Cancer Biology, Addision Wesley Longmann Ltd, U.K., 1996.
- 2. Maly B.W.J., Virology a practical approach, IRL press, Oxford, 1987.
- 3. Dunmock.N.J and Primrose S.B., Introduction to modern Virology, Blackwell Scientific Publications.
- 4. Ruddon.R.W., Cancer Biology, Oxford University Press, Oxford, 1995.

MODEL QUESTION PAPER (CANCER BIOLOGY)

NAME	OF	THE	COURSE:	CANCER	COURSE	CODE:	DURATION: 3 Hrs
BIOLOG	ζY				18U5BTS09		
MAX MA	ARKS	: 75					


SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS										
1. Cell cycle is r	egulate	d by								
a. Kinase	b.	CDI	Ks	(c. Cycli	ns			d. cAMP	
2. Which of the	followi	ng is	tumour suppresso	or ge	ene?			1		
a. MAP		b. E0	GF	C	. RB		d. p	53		
3. Which of the following is an example for malignant tumour?										
a. Skin cancer	b. Hyp	erchi	omic macrocytic	ana	emia	c. Lung can	cer		d. Liver can	cer
4. Which of the	followi	ng is	not a process of a	neta	stasis?				II.	
a. Attachment & Det			b. Invasion			ngiogenesis		d. T	Tissue degener	ration
5. Which of the	followi	ng ch	emical causes ce	rvica	al cance	er?				
a. Asbestos	b.	Benz	zapyrene	C	. Ethidi	ium bromide		d	. Acrylamide	
6. Continuous ex	xposure	e to as	bestos causes					'		
a. Intestinal cancer		b. L	ung cancer		c. Liver cancer d. All the a			the above		
7. Development formation of			a specific site by	the	formati	on active tum	our p	olyp	s is induced b	y the
a. Blood vessels		b. Blo	ood venous		c. Blo	od capillaries			d. None of the	e above
8. Metastatic m	node ca	ncer s	preading is main	ly ac	chieved	by	syste	m		
a. Respiratory		b.	Nervous	c. Circulatory d. Excretory						
9. Development	of bloo	od car	cer is induced by	wh	ich of tl	ne following	facto	r?		
a. Epithelial		b.	Endothelial		c. C	hristmas		d	l. Vascular	growth
growth facto	r		growth factor	factor			factor		Ü	
10. Oncogenes a	ire expi	essec	from	·			I			
a. RB gene	b	. Prot	ogenes	с. Т	Cumor s	supressor gene	es	Ċ	l. Proto oncog	enes
11. Which of the	11. Which of the following gene is responsible for cancer development by retroviruses?									
a. RTase b. DNase c					c. Retro transposons d. None of the above			ve		
12. Eye cancer is	s cause	d due	to the mutation i	n	;	gene	•			
a. CAT		. RB		c. R				d. CRISPER		
13. Cancer cells of epithelial origin can even shed their typical qualities and characteristics and adopt a like phenotype										

a.	Parenchyma	b. Cho	olenchyma	c. N	Iesenchyma	d.	All the above	
14.	Interaction between development o			surro	unding stroma is extren	nely im	portant in the	
a.	Vasculogenesis	S	b. Capillary syntl	hesis	c. A & B		d. Angiogenesis	
15. The cell adhesion complex runs from the apical to the basal membranes and composed of								
a.	Tight junctions	3	b. Adherent junc	tions	c. Gap junctions		d. All the above	
16. Which of the following factor is responsible for the development of liver cancer?								
a.	a. EGF b. VGF c. HGF d. EnGF				EnGF			
17.	Treatment of ca	ancer ce	lls by targeting then	n with	cytokines is mode of			
a.	Chemotherapy	b	Radiation therapy	,	c. Immunotherapy	d.	Hormone therapy	
18.	The early stage	of colo	n cancer is detected	due to	the expression of	ge	ne	
a.	dMMR	b.	MACC 1	c. MACC 2			d. dMMR 2	
19.	Prostate cancer	aggress	iveness can be conv	enient	ly detected by			
a.	MALDI		b. ESR		c.pCaP	d.	NMR	
20.	. Mammary glan	d tumoi	ır is detected accura	tely by	<i>I</i>	L		
a.	Fluorescence in technique	maging	b. Electrical impedance scanning		c. Digital mammography Computer aid detection system		d. Nanotechnology based detection	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL TI	HE QUESTIONS
21. A) Explain the regulation of cell cycle	(OR)
B) Write short notes on signal switches	
22. A) Write short notes on chemical carcinogenesis	(OR)
B) Write briefly on the metabolic consequences of carcinogenesis	
23. A) How will you identify oncogenes	(OR)
B) Write shortly about the growth factors involved in the transforma	tion of normal cell in to cancer
cell	
24. A) Write briefly on the clinical significances of invasion	(OR)
B) Write about three step theory of invasion	
25. A) Explain the different forms of cancer therapy	(OR)
B) Write short notes on radiation cancer therapy	

	SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. Give	detailed account on tumour suppressor gene
27. Give	detailed account on metabolism of carcinogenesis
28. Write	an essay on retroviral oncogenes
29. Expla	n the basic principles of cancer metastasis
30. Write	elaborately on the detection and prediction of cancer

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

BIOPROCESS TECHNOLOGY

: Core VII **Total Hours** : 75 Paper Hours/Week : 5 Exam Hours : 03 Credit : 5 Internal : 25 Paper Code : 20U6BTC07 External : 75

PREAMBLE

To make students on understanding basic principles of fermentation techniques and applying them in the production value added products such as antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of fermentation principles and its scope in	K1 & K2
	downstream processing	
CO2	Understand the concepts of designing fermentor both in laboratory and pilot scale and its mode of operation	K1, K2 & K3
CO3	Gaining added information on the production of value added products from microorganisms	K4, K5 & K6
CO4	Propagate mass production of agriculturally important value added Products	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	M	S	S
CO2	S	S	S	M	S
CO3	S	S	S	M	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	BASICS OF BIOPROCESS TECHNOLOGY: Introduction,	
	Definition, Scope and applications of Bioprocess. Introduction to	
	fermentation and downstream processing technology. Isolation and screening of industrially important microorganism. Strain improvement, preservation of microorganisms.	15

II	DESIGN OF FEDMENTOD. Formantation types Design of					
11	DESIGN OF FERMENTOR: Fermentation types. Design of					
	fermentor – parts and its functions. Types of Bioreactors (Air lift,					
	cyclone, column, packed tower) Mixed bioreactor systems.	14				
	Monitoring and controlling Bioreactors (pH, temperature and dissolved oxygen). Instrumentation for process control - Heat and					
	dissolved oxygen), Instrumentation for process control - Heat and					
	mass transfer, oxygen transfer mechanism. Principles of upstream					
	processing – Media preparation, Inocula development and					
	sterilization.					
III	DOWN STREAM PROCESSING: Basic principles of Down-					
	stream processing – microbial cell disruption methods					
	(Centrifugation, filtration fermentation broths). Cell separation					
	techniques (Ultra filtration, Liquid-Liquid extraction)	15				
	Chromatographic techniques: (Column & Ion exchange), Physical					
	methods (Distillation, Fluid extraction and Electro dialysis).					
	Bioprocess measurement and control system with special reference to					
	computer aided process control.					
IV	INDUSTRIAL BIOTECHNOLOGY: Microbial synthesis and					
	applications - organic acids (Citric acid & acetic acid), Enzymes	16				
	(Amylase), Antibiotics (Penicillin & Streptomycin), Vitamins	16				
	(ascorbic acid & B12) an amino acids (Lysine & Aspartic acid).					
V	PRODUCTION OF AGRICULTURAL PRODUCTS: Importance					
,	of micro algae and its cultivation (Spirullina & Chlorella). Mass					
	production of Biofertilizer (<i>Rhizobium & Azolla</i>). Mushroom	15				
	cultivation (Milk and button mushroom). Production and applications					
	of Biopesticide (<i>Bacillus thuringiensis</i>).					
	of Diopesticide (Ductitus inutingtensis).					

SUGGESTED READINGS:

- 1. Peppler H.J. and Perlman D. 2006. Microbial Technology: Microbial Processes, 2nd Edition, Vol I, Academic Press
- 2. Stanbury F, Whittaker A and Hall J.S. 1997. Principles of Fermentation Technology, Adithya Books, New Delhi.
- 3. Jogdand S.N. 2000. Medical Biotechnology, Himalayan Publishing House.
- 4. Jayanto A. 2006. Fermentation Biotechnology, Dominant Publishers and Distributors, New Delhi.
- 5. Cassida J.R. 2005. Industrial Biotechnology, New Age International (P) Ltd, New Delhi.
- 6. Juan A and Senjo A. 2007. Separation Process Biotechnology, Taylor & Francis group.
- 7. Patel A.H. 1997. Industrial Microbiology, Macmillan India limited.
- 8. Glazer A.N. and Nikaido, H. 2007. Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd Edition, Cambridge University Press.
- 9. Prescott C and Dunn G. 2006. Industrial Microbiology, Agrobios (India).
- 10. Purohit S.S. Saluja A.K. and Kakrani H.N. 2004. Pharmaceutical Biotechnology. 1st Edition, Agrobios (India).

MODEL QUESTION PAPER (BIOPROCESS TECHNOLOGY)

NAME OF THE COURSE: BIOPROCESS TECHNOLOGY	COURSE CODE: 20U6BTC07	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS								
1. Fed batch proces	s belong to							
a. Closed system	b. Continuous system		c. Intermediate fed batch system				d. Discontinuous system	
2. Soyameal, pepto	ne and tryptone are us	sed a	s the	e source of				
a. Carbon	b. Carbon & nitrog	•		c. Mineral	-		d. Nitrogen	
3. Batch sterilizatio	n cycle time consists	of						
a. Two phases	b. Three phases		C	. Four phases		d. Fi	ve phases	
4. Protected fermen	tation uses which of t	the gi	iven	below	-			
a. Sterilized media	b. Pasteurized	c.		steurized media		d. Uı	nsterilized media	
media with low pH 5. A spray dryer works on the principle of								
a. Contact drying	b. Sublimation	JI		. Lyophilisation	n	д	. Adiabatic drying	
6. Which is not a fruit or a vegetable based fermented product?					. Halabatic drying			
6. Which is not a fr	uit or a vegetable base	ed fe	rme	nted product?				
a. Wine	b. Beer			c. Vinegar			d. Sauerkraut	
7. Which of the foll	owing is an upstream	proc	cess	?		•		
a. Product	b. Product			c. Media			d. Cell lysis	
recovery	purification			formulati	on			
	er is related to							
a. Endotoxin	b. O-polysacchar	ride	c. Peptidoglycan				e. Teichoic acid	
9. Which one is do	wn steaming process?)				•		
a. Product recovery	b. Screening	c. N	I edi	a formulation	d	Steri	ilization of media	
10. Which is the following	llowing is not a physi	cal m	neth	od for the cells	rupturi	ng?		
a. Milling b. H	omogenization	c. Uli	tra s	onication	d.	Enz	zymatic digestion	
11. Ethanol fermentation is carried by								
a. <i>Lactobacillus</i>	b. E.coli	c. S	Sacc	charomyces cer	evisiae		d. Bacillus sp.	
12. What is the perc	centage range of varia	ation	in r	ecovery costs?				
a. 50-55%	b. 0-20%		c. 5-7%				d. 15-75%	
13. Cell lysis becomes an important operation if the product is								

a. Extra cellular	b. Heat labile	c. Toxic	d. Intra cellular	
14 Bacillus thuringiensis is used as				
a. Insecticide	b. Fungicide	c. Microbicidal agent	d. Rodenticide	
15. Yeast cells are	good sources of			
a. Vitamin A&B	b. Vitamin A&	&D c. Vitamin B&D	d. All the above	
16. The sugar conc	entration of molasses	used in fermentation ranges between	ween	
a. 10-18%	b. 20-30%	c. 4-5%	d. 30-38%	
17. The protein fou	nd in milk is			
a. Rennin	b. Pepsin	c. Casein	d. Trypsin	
18. Spirullina is a				
a. Edible fungus	b. Bio fertilizer	c. Biopesticidal	d. Single cell protein	
19. What is the scientific name of mushroom?				
a. Funaria sp.	b. <i>Dryopteris</i> sp.	c. Agaricus campestris	d. Fergus sp.	
20. Agar-Agar is ol	otained from			
a. Diatoms	b. Gracilaria	c. Fomes	d. Laminaria	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUI	ESTIONS
21. A) State the scope and application of bioprocess technology	(OR)
B) Write notes on strain improvements	
22. A) Explain about airlift bioreactors	(OR)
B) Illustrate the packed tower bioreactor with its uses.	
23. A) Briefly mention the principles and uses of centrifugation	(OR)
B) Elaborate on cell separation techniques	
24. A) List out the application of amylases	(OR)
B) Explicate the production and applications of lysine	
25. A) Highlight the importance of bio fertilizers	(OR)
B) What are mushrooms? Explain its cultivation methods	• /

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. How will you develop an improved strain through recombination technique?
27. Illustrate the criteria for design of fermenters and specify its functions.
28. Explain basic principles of down streaming process
29. Explain the large scale production of penicillin and state its uses.
30. Describe the production and application of <i>Bacillus thuringiensis</i> .

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ANIMAL BIOTECHNOLOGY

: Core VIII **Total Hours** Paper : 75 Hours/Week : 5 **Exam Hours** : 03 Credit : 5 Internal : 25 Paper Code : 20U6BTC08 : 75 External

PREAMBLE

To make students on understanding the concepts of biotechnological approaches in animals so as to produce therapeutically products from animal systems.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome		
CO1	Understanding the development of animal cell culture techniques and basic concepts of cell lines		
CO2	Gain knowledge on cell culture, animal cell growth dynamics		
CO3	Manipulating animal cell for genetic improvement by modern recombinant techniques	K3 & K4	
CO4	Knowing about the principles of ethical, legal and public issues on using genetically animals in producing value added products		

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Introduction and history of animal cell culture development. Types of cell culture methods (Primary & secondary). Animal Cell lines (Primary & Continuous cell lines). Suspension culture and organ culture. Culturing of lymphocytes, epithelial cells & stem cells.	15
п	Basics of cell culture: Different types of animal cell culture media, growth supplements serum free media, Balanced salt solutions. Behaviour of cells in culture cell division, Cell growth kinetics, Metabolism and estimation of cell number.	15

ш	Gene transfer methods in animals: Microinjection, Embryonic stem cell gene transfer, Retroviral gene transfer. Transgenic animals (Production of transgenic Mice, Cow and Sheep). Animal viral vectors (SV40 virus and Retro virus). Baculo virus expression system. Improvement of silk production and quality.	15
IV	Animal Propagation and health care: Artificial insemination, Embryo transfer techniques. Gene therapy and its types, vectors in gene therapy. Production and development of animal vaccines for FMD, BTD, Rabies and anthrax.	15
V	Public aspects if Animal Biotechnology: Ethical issues in Animal Biotechnology, Management aspects of Biotechnology and Genetic Engineering. Manipulation of animal growth using hormones and probiotics. Manipulating lactation and wool growth in sheep and Rabbits.	15

SUGGESTED READINGS:

- 1. Portner R. Animal Cell Biotechnology: Methods and Protocols, Second Edition, Humana Press, 2007.
- 2. Babink L.A. and Philips J.P. Animal Biotechnology, Comprehensive Biotehcnology First Supplement, Pregamon press, Oxford, 1989.
- 3. Rossant J. and Pederson R.A. Experimental approaches to Mammalian Embryonic Development, Cambdrige University Press, Cambridge, 1996.
- 4. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.
- 5. Lewis R. Human Genetics: Concept and applications. McGraw Hill Company, 2003.
- 6. Barrer JSF, Hammond K, McClintok AE, Eds., Future Developments in the Genetic improvements of Animals. Academic Press, 1992.
- 7. Freshney R.L. Animal Cell culture A practical approach, IRL press, 1992.
- 8. Freshney R.L. Culture of animal cells: A manual of basic technique and specialized applications. 6th Edition, Wiley and Blackwell publications, 2010.
- 9. Ian Gordon. Reproductive Technologies in farm animals, first edition, CABI Inter., 2004.

MODEL QUESTION PAPER (ANIMAL BIOTECHNOLOGY)

NAME OF THE COURSE: ANIMAL BIOTECHNOLOGY	COURSE CODE: 20U6BTC08	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS									
1. The grov	vth of a	anima	ıl cells i	n vitro	in a su	itable	culture medium	is ca	lled?
a. LB mediu	m	t	o. MS m	nedium		c. N	ITCH"s medium		d. MEM medium
2. Who intro	duced	HAT	' mediui	m?	I			1	
a. Littlefield			b. H	Iam		c.	Amold	(d. Rous and Jones
3. Name the organism				ch is pr	epared	l by in	oculating directly	y fro	m the tissue of an
a. Primary cell cu	ılture	t	. Secon	dary ce	ll cultı	ıre	c. Cell lines		d. Transformed cell culture
4. What is co	ell line	?							
a. Multilayer culture	b.	Tran	sforme	d cells	c. I	Multip cells	le growth of	d.	Sub culturing of primary culture
5. Which of	the fol	lowin	g is NC	T the p	art of	growtl	h medium for ani	mal	culture?
a. Starch	b.	. Seru	ım		c. C	arbon	source		d. Inorganic salts
6. Which of	the fol	lowin	g is NC	OT the r	najor f	unctio	on of the serum?		
a. Promotion			b	. Stimu		11	c. Enhance		d. Provide
and bulb formation		tion		growth			cell attachm	ont	transport proteins
7. For cultur	ing, pl	asma	from th	e adult	chicke	n is p			n plasma because
a. It forms a	clear a	ınd	b	. It is to	oo opa	que	c. It doesn't		d. It forms a
solid coa	_	even			•	•	produce		semi solid
after dilu							solid clo	ots	coagulum
8. Disaggreg	gating (of cel	ls can b	e achiev	ved by				
a. Physical		b.	Enzyma		c		ing with chelatin	g	d. All the
disruptio		2	digest			age			above
9. The techn	ique of	forga	ın cultui	re may	be divi	ded of	n the basis of em	ploy	ing
a. solid medi	ium	ł	o. liquid	mediu	m	c. se	mi-solid medium	1	d. both (a) and (b)
10. What are	the m	ain c	onstitue	ents of c	ulture	for an	imal cell growth	?	
a. Glucose a	nd Glu	tamir	ne	b. Grov	vth fac	tors	c. Cytokines	d	l. All of the above
11. In anima	l cell c	ulture	e, partic	ularly r	namm	alian c	ell culture, transf	form	ation means:

a Hatalya of marry an		la Dla our o trymis		a la atla (a)	d Dalassa of	
a. Uptake of new ge material	eneuc	b. Phenotypic	ons of cells	c. both (a)	d. Release of	
Illaterial		in culture		and (b)	genetic information	
		in culture			imormation	
12. During the g	growth	of animal cells in	culture, it is	s noticed that the	cells do not look very	
					actic acid in the culture	
fluid. What	is prob	oably wrong with t	his culture?	?		
a) Ethyl alcoho	ol is	b) The cells hav	re too	c) Glycolysis is	d) The cells do	
being produced	in	much oxyge	n	being inhibite	ed not have enough	
excess					oxygen	
13. Sometimes	cell lin	es can be cultured	for such a	long time that the	y apparently develop the	
		-cultured indefinit				
a) established	cell	b) primary	cell lines	c) secondar	y d) propagated	
lines				cell lines	cell lines	
14. Higher disso	olved o	<u> </u> xvgen concentrati	on in the cu	ılture media are to	xic and leads to	
a) DNA degradation		lipid per oxidation		f metabolism is greate		
a) DIVA degradation		ilpid per oxidation		consumption	d) all of the above	
15 Which of th	e follo	wing is the techni		•	ure?	
a) Organ cultures on		b) Organ cultures on		c) Whole	d) All of these	
plasma clots		agar		embryo culture	S	
16. The major i	16. The major problem associated with the isolation of free cells and cell aggregates from					
organs is tha						
a) releasing the cells fr		b) inhibiting the ce		c) disintegrating th	e d) none of the above	
their supporting ma	trix	their supporting	matrix	cells from their		
17 The technic	vo of o		ha dividad d	supporting matri		
_		rgan culture may l				
a) solid medium		quid medium	, and the second	(a) and (b)	d) semi-solidmedium	
18. An establish	ned cell	line can be called		as been sub-cultur	red at least?	
a) 70 times at an interva		b) 40 times at an in		c) 70 times at an	d) 50 times at an	
days between subcu	ıltures	days between su	ıbcultures	interval of 1 day	_	
				between subcultures	between subcultures	
19. In animal ce	ell cultu	ıre, particularly m	ammalian c			
material		modifications	of cells in	1) 1111 (1)	information	
20. Which of the	e follo	wing is not the exp	olant techni	que?		
a) Slide culture	b) Car	rrelflask culture	c) Roller t	test tube culture	d) Adherent primary	
a) Shac culture	o, ca	TOTTIMON CUITUIC		contact canal	culture	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS	
21. A) Write notes about primary cell culture techniques.	(OR)
B) Explain the techniques and application in organ culture.	
22. A) Write a detailed account on different types of media used in animal cell culture.	(OR)
B) Explain the behaviour of cell division and cell kinetics.	

23. A) Explain the principle and methodology of PCR Techniques	(OR)
B) Give detailed account of the mechanism application of Microinjection	
24. A) Explain the principle, methodology and application of embryo transfer technology	(OR)
B) Write detailed about production and development of animal vaccines.	
25. A) Explain various strategies of ethical issues in Animal Biotechnology. B) Discuss about a special features and applications of Stem cell culture.	(OR)

	SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26.	Write a detailed account on Animal cell culture Steps and maintenance?
27.	Explained in detail about the Animal cell culture Media and Balanced salt solutions?
28.	Describe about the Gene Transfer Techniques in Detail?
29.	Production and development of Animal vaccines with Good examples?
30.	Explain about cancer Gene therapy and Stem cell in detail?

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY

Paper	: Core Practical VII	Total Hours	: 75
Hours/Week	: 5	Exam Hours	: 03
Credit	: 5	Internal	: 40
Paper Code	: 20U6BTCP07	External	: 60

PREAMBLE

To make students on exposing to practical principles of fermentation techniques and applying them in the production value added products such antibiotic, vitamins and organic acids. The students also gain added knowledge on the production of agrobased products for human welfare. To make students on exposing to practical principles of tissue culture media preparation, cell viability, subculturing and viability assay techniques

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic concepts on the production of alcohol, organic acid and SCP production. Prepare animal cell media and its sterilization techniques.	K1, K2 & K3
CO2	Understand in determining the microbial growth. To filter sterilize the sensitive media ingredients and filtration technique.	K1 & K2
CO3	Estimating the production of single cell protein by biochemical method. Prepare suspension culture and cultivating viruses in embryonated egg.	K2, K4 & K5
CO4	Analysing milk qualitatively and separating aflatoxin fungal species by chromatographic method. Observation of different types of animal cell lines.	K2, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	M	S	S
CO3	M	S	S	S	S
CO4	M	S	M	S	S

UNIT	CONTENT	HOURS
1	Enumeration of microorganisms from bread	5
2	Production of alcohol from grapes	
3	Production and estimation of citric acid from Aspergillus species	10
4	Estimation of alcohol from grapes	10

5	Production and estimation single cell protein from <i>Azolla</i> and <i>Spirullina</i> by Lowry"s method	10
6	Immobilization of amylase by entrapment method	
7	Determination of bacterial growth by growth curve method	10
8	Determination of Thermal Death point (TDP) of the bacterial sample	10
9	Quality analysis of milk	
	a. MBRT test and	10
	b. Rezasurin test	10
10	Analysis of fungal aflatoxin by TLC	
11	Enumeration of microorganisms from bread	5
12	Production of alcohol from grapes	
13	Production and estimation of citric acid from Aspergillus species	_
14	Estimation of alcohol from grapes	5
15	Production and estimation single cell protein from Azolla and Spirullina by	
	Lowry"s method	5
16	Immobilization of amylase by entrapment method	
17	Determination of bacterial growth by growth curve method	10
18	Determination of Thermal Death point (TDP) of the bacterial sample	10
19	Quality analysis of milk	
	c. MBRT test and	_
	d. Rezasurin test	5
20	Analysis of fungal aflatoxin by TLC	

$\begin{array}{c} \textbf{MODEL QUESTION PAPER (LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL} \\ \textbf{BIOTECHNOLOGY)} \end{array}$

NAME OF THE COURSE: LAB IN BIOPROCESS TECHNOLOGY AND ANIMAL BIOTECHNOLOGY	COURSE CODE: 20U6BTCP07	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPE	RIMENT		
Exp: 12	Obs: 5	Res: 3	Total: 20 MARKS
1. (i) Estimat	e the amount of alcoho	l from the given fruit sar	nple (A) /Isolate genimice
DNA from	m the given animal tiss	ue sample (A)	(OR)
		acid from the given bat	
Perform single co	ell suspension culture f	rom the given animal ce	ll sample (A) (OR)
(iii) Estin	nation single cell protei	in from the given sample	e (A) by Lowry's method/
Perform viability	test of the given anima	al cell suspension (A) sa	mple
MINOR EXPERIMENT			
Exp: 6	Obs: 2	Res: 2	Total: 15 MARKS
2. (i) Perform	2. (i) Perform immobilization of the given enzyme sample (B)/ Inoculate the given		B)/ Inoculate the given
infectiou	s sample in the embryo	nated egg sample (B)	(OR)
(ii) Determine thermal Death point (TDP) of the bacterial sample (B)/ Perform			
monolayer culture from the given chick embryo fibroblast cells (B)(OR)			
(iii) Dete	(iii) Determine the quality of the given milk sample (B) by MBRT/Resazurin test/		by MBRT/Resazurin test/
Disintegrate the given monolayer culture (B) by appropriate method			
SPOTTERS $(5 \times 4 = 20 \text{ MARKS})$			
3. Identify th	e given spotters C, D, I	E, F & G and comment of	n them
RECORD			$(1 \times 5 = 5 \mathbf{MARKS})$
VIVA-VOCE			5 MARKS
TOTAL			60 MARKS

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

GENOMICS AND PROTEOMICS

Paper : Elective II **Total Hours** : 75 Hours/Week : 5 **Exam Hours** : 03 Credit : 4 Internal : 25 Paper Code : 20U6BTE04 External : 75

PREAMBLE

This paper deals with the basic principles of genome and its manipulating strategies end up with the development of novel candidate gene.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the basic structure of genome map in prokaryotic and eukaryotic organisms	K2 & K3
CO2	To understand the mapping of different regions of DNA and its amplification protocols	K2 & K3
CO3	To acquire knowledge on different tools used in the fields of Proteomics	K2, K3 & K4
CO4	To explore with the different application of proteomics in terms of protein mapping	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT			
I	Genomics -Overview of Genome anatomies. Prokaryotic Genome Organization: operons. Eukaryotic Genomes, Nuclear Genomes and gene families, Organelle genomes: origin, Repetitive DNA contents, Tandem repeats, Transposons and transposable elements.	15		
II	DNA sequencing methods : Shot gun sequencing – Contig assembly. Techniques for gene location: ORF findings, Northern Hybridization, RT-PCR, RACE, S1 nuclease mapping, exon trapping. Transcriptome analysis: SAGE and Microarray technology	15		
III	Genome Mapping: Genetic Mapping: RFLP, SSLP, SNP-Physical	15		

	Mapping, Restriction site Mapping: FISH, STS mapping. Human genome organization. Gene therapy for inherited disorders and infectious diseases and ethics.		
IV	Tools of Proteomics : The proteome – the life cycle of protein-analytical techniques. Protein separation: 1D PAGE, 2D-PAGE, RPHPLC, Protein digestion techniques: peptide analysis- MALDI-TOF-ESI, Tandem Mass analyzers, Peptide Mass finger printing.	15	
V	Applications of Proteomics: Protein mining, SALSA algorithm for mining specific features. Protein expression profiling. Identifying protein protein interactions. Mapping of protein modifications.	15	=

SUGGESTED READINGS

- 1. Terence A Brown.(2002) Genomes, 2nd Edition, Bios Scientific Publishers.
- 2. Tom Strachan and Andrew P Read (1999) Human Molecular Genetics, 2nd edition, Bios Scientific Publishers.
- 3. Daniel C. Liebler (2002) Introduction to Proteomics, tools for the New biology- Humana press. Totowa, NJ.
- 4. Pennington.S, M. Dunn (2001) Proteomics: From Protein Sequence to Function 1 edition Bios Scientific Publishers.

MODEL QUESTION PAPER (GENOMICS AND PROTEOMICS)

NAME OF THE COURSE: GENOMICS AND PROTEOMICS	COURSE CODE: 20U6BTE04	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION –	$A (1 \times 20 = 20 \text{ MARF})$	KS) A	ANSWER ALL THE	QU	ESTIONS
1. The study of full cor	1. The study of full complement of proteins expressed by a genome is called				
a. Proteome	b. Proteomics		c. Genomics		d. Protein formation
2. The effects of protei	n on an entire organism	n is c	described in		
71	o. Cellular function		Molecular function	d. S	Structural genomics
3. The precise biochem		in is			
a. Structural genomics	o. Molecular function		c. Cellular function	- •	d. Phenotypic function
4. The network of inter	actions engaged in by	prote	ein at cellular level is	des	cribed in
e. Molecular function	F. Phenotypic function	n g	g. Structural genomic	S	h. Cellular function
5. The goal of structura	d proteomics project is	s to			
a. Crystallize and determine the structure	b. Identify and sequence of all th	e	c. Introduce new genes to human		d. Remove disease causing genes from
of proteins	genes present in the		beings		humans
6 C 1 1	human body				
6. Conserved gene orde			T		
a. Ortholog	b. Synteny c. Paralog d. Microarray				
7. Sequencing of genor	nic DNA is included in	n			
a. Structural genomics	a. Structural genomics b. Molecular function c. Cellular function d. Phenotypic function		Phenotypic function		
8. Genes of different sp other are	pecies, possessing a cle	ear se	equence and function	al re	lationship to each
a. Ortholog	b. Synteny		c. Paralog		d. Microarray
9. <i>Rawolfia serpentina</i> techniques is usefu		er th	e threat of extinction,	wh	ich of the following
a. Genetic engineering	o. In vitro culture	c. DN	NA fingerprinting	d. F	Hybridoma technology
10. Transgenic organis	ms are generally				
	aturally occurring and	c.	Produced by plant	d.	Produced by gene
	ndemic		breeding technique		transfer technology
11. Genes of same spec	<u> </u>	o eac			
	o. Ortholog		c. Microarray		d. Synteny
12. Dolly, the first anim	<u> </u>	ıg is			
a. Cow	b. Sheep		c. Rat		d. Dog

13. Collection of microscopic DNA spots attached to solid surface are?				
a. Ortholog	b. Microarray c. Synteny d. Paralog			
14. Gene therapy is	a technique preferred to cure	inherited diseases by		
a.Repairing the faulty gene	b. Introducing the correct copy of the gene	c. Adding new cells to the body d. PCI		
15. Which of the fo	llowing is a repressible operor	n?		
a. Lac	b. Trp	c. Gal	d. glu	
16. Explant can be a	1			
a. Cut part of the plant used in tissue culture		c. Source of growth regulators added to media	d. Solidifying agent	
17. Which of the following is used to transfer genes in plants?				
a. Ti plasmid	b. pBR 322	c. EcoR 1 d. pUC 18		
18. Which of the fo	llowing bacterium is used for	gene transfer in plants?		
a. Agrobacterium	b. Azotobacter	c. Rhizobium	d. E.coli	
19. Which of the following is an inducible operon?				
a. Glu	Glu b. Lac c. Gal d. trp		d. trp	
20. Integrated state	of DNA from other organisms	s in host DNA is termed a	as	
a. Plasmids	b. Phasmids	c. Episomes	d. cosmids	

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUES	STIONS
21. A) Elaborate on the mechanism of DNA Gyrase in nucleic acid replication (OR)	
B) What are lampbrush chromosomes? State its special features.	
22. A) How DNA sequencing is achieved by shot gun method?	(OR)
B) Write notes on Pharmacogenomics.	
23. A) Enlist the inherited disorders and its treatment by gene therapy	(OR)
B) Derive the protocol for human pedigree analysis.	
24. A) State the features of MALDI proteome analysis.	(OR)
B) Briefly write about peptide mass finger printing.	
25. A) State the applications of Global Biochemical Network.	(OR)
B) Affirm about the micro array techniques for proteins.	·

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Illustrate the different levels of packaging of DNA in eukaryotes.
27. State the mechanism of gene expression using RT-PCR technique.
28. Describe the implication of Human Genome Project.
29. Explain the principle, process and applications of 2-D gel electrophoresis.
30. Elucidate the principle and mechanism of mass spectroscopy in the analysis of metabolomics.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE II

BIOPHYSICS AND BIOINSTRUMENTATION

Total Hours Paper : Elective II : 75 Hours/Week Exam Hours : 03 : 5 Credit : 4 Internal : 25 Paper Code : 20U6BTE05 External : 75

PREAMBLE

This paper deals with the basic instrumental principles leading to biological research outputs. It also describes the biophysical concepts of different biomolecules.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Explores student towards the biophysical properties of nucleic acids Proteins	K1 & K2
CO2	Acquiring knowledge with the basic concepts of chromatographic Techniques	K1, K2 & K3
CO3	Acquiring knowledge with the basic concepts of spectroscopic Techniques	K3, K4 & K5
CO4	Exploring towards the use of radiation principles in the field of biomedical science	K3, K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	M	M
CO3	S	S	M	S	S
CO4	S	S	S	S	M

UNIT	CONTENT	HOURS
I	Biophysics Of Nucleic Acids: Transitional angles and their ranges. The pseudo-rotation cycle, syn – anti orientation of glycosyl bond. Geometries of Watson- Crick and Hoogsteen base pairs.	10
II	Biophysics Of Proteins: Amino acids – Conformations. Phi and Psi angles. Ramachandran plot. Peptide bond isomerisation. Disulphide bonds, electrostatic forces, van der waals interaction and hydrogen bonds.	12

III	Analytical techniques: Principles and applications of Chromatography (Paper, thin-layer, column, GC-MS, GLC, Ion exchange chromatography, HPLC). Principles and applications of spectroscopy. (UV- Vis, NMR, Raman spectroscopy, AAS and X-ray crystallography).	13	
IV	Separation techniques: Introduction to electrophoresis. Starch-gel, polyacrylamide gel (native and SDS-PAGE), agarose-gel electrophoresis, pulse field gel electrophoresis, immuno- electrophoresis, isoelectric focusing, Western blotting	13	
V	Radiation Biophysics: Basic concepts of radiography. Measurement of radioactivity: GM counter, Liquid and solid scintillation counter. Advantage and disadvantage of radio active compounds.	10	

SUGGESTED READINGS

- 1. Narayanan, P (2000) Essentials of Biophysics, New Age Int. Pub. New Delhi
- 2. Roy R.N. (1999) A Text Book of Biophysics New Central Book Agency. Biophyscial chemistry principles and Techniques- Upadhyay, Upadhyay Nath. 1997
- 3. Biophysical chemistry Cantor and Schinmel. 2002
- 4. Biophysical chemistry principles and Techniques- Upadhyay, Upadhyay Nath.1997
- 5. Biophysics Arora, First edition, Himalaya Publications, New Delhi
- 6. Palanivelu, P (2001). Analytical Biochemistry, and separation techniques, Tulsi Book Centre. Madurai.

${\bf MODEL\ QUESTION\ PAPER\ (BIOPHYSICS\ AND\ BIOINSTRUMENTATION)}$

NAME OF THE COURSE: BIOPHYSICS AND BIOINSTRUMENTATION	COURSE CODE: 20U6BTE05	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION –	A (1 X 20 = 20 MARK)	(S) ANSWER ALL THE	QUESTIONS		
1. The right handed double helix of DNA containsbase pairs per turn					
a. 9.5	b. 10.5	c. 11.5	d. 12.5		
2. Which of the follow to the other in the		s considered as a rotation	n of one base with respect		
	L	c. Propeller	d. Stagger		
3. The twisting degree	of B form of DNA is at	oout			
a. 60°	b. 90°	c. 120°	d. 360°		
4. When the ends of a the strands are		d helical DNA are joined	I so that it forms a circle		
a. Topologically	b. Geometrically	c. Physically	d. Isometrically		
5. A typical stability	of a protein domain rang	ge from kcal	l/mol		
a. 2, 5 b. 3,		c. 3, 7	d. 2, 6		
6 spectrosc molten globule-lik		inding by apo lipoprotein	ns is mediated via the		
a. NMR	b. CD	c. AAS	d. Raman		
7. The most common	type of protein folding is	s described by the princi	ple of		
a. Tunnel landscape	b. Folding funnel	c. Realistic landscape	d. Levinthal paradox		
8. Which of the follow	ing angle of proteins fol	lding is essentially flat a	nd fixed to 180°?		
a. Alpha	b. Beta	c. Gamma	d. Omega		
a. Alpha9. Retention factor is a		c. Gamma	d. Omega		
9. Retention factor is a a. PC	related tob. TLC c.	. a & b	d. GC		
9. Retention factor is a a. PC 10. The sample prepar	related tob. TLC c.	. a & b mn in the form of gas so	d. GC		
9. Retention factor is a a. PC 10. The sample prepar	b. TLC c. ed is sent in to the colur rmined. Which of the fo	. a & b mn in the form of gas so	d. GC that ionic species are		
9. Retention factor is a a. PC 10. The sample prepar quantitatively dete a. MS b. C	b. TLC c. ed is sent in to the colur rmined. Which of the fo	. a & b mn in the form of gas so bllowing chromatographi c. AAS	d. GC that ionic species are to technique is employed?		
9. Retention factor is a a. PC 10. The sample prepar quantitatively dete a. MS b. C 11. Elemental species a. TLC	b. TLC c. red is sent in to the colur rmined. Which of the for GC of the given sample is deb. GLC	. a & b mn in the form of gas so bllowing chromatographi c. AAS letermined by c. GC-MS	d. GC that ionic species are to technique is employed?		
9. Retention factor is a a. PC 10. The sample prepar quantitatively dete a. MS b. C 11. Elemental species a. TLC	b. TLC c. ed is sent in to the colur rmined. Which of the fo	. a & b mn in the form of gas so bllowing chromatographi c. AAS letermined by c. GC-MS	d. GC that ionic species are technique is employed? d. Ion exchange		
9. Retention factor is a a. PC 10. The sample prepar quantitatively dete a. MS b. C 11. Elemental species a. TLC	b. TLC c. ed is sent in to the colur rmined. Which of the fo	. a & b mn in the form of gas so bllowing chromatographi c. AAS letermined by c. GC-MS	d. GC that ionic species are technique is employed? d. Ion exchange		
9. Retention factor is a a. PC 10. The sample prepare quantitatively dete a. MS b. C 11. Elemental species a. TLC 12. Cationic and anion a. PC	related to b. TLC c. red is sent in to the colur rmined. Which of the for GC of the given sample is deb. GLC tic resins are used in b. TLC	. a & b mn in the form of gas so ollowing chromatographi c. AAS letermined by c. GC-MS	d. GC that ionic species are to technique is employed? d. Ion exchange d. AAS d. IEC		

14. Sweep generator is used in					
a. NMR	b. X-ray			ectroscopy	
15. Nickel oxide is used as monochromator in					
a. X-ray crystallography	b. Raman spectros	сору	c. U	JV-VIS	d. XRD
16. Activation energy	of a given system	can be co	nveniently	determined b	y
a. XRD	b. NMR		c. AAS		d. UV-VIS
17. Becquerel is a un	it of measurement of	of			
a. Fossil age b. Radioactivity c. Carbon dating d. None of the		d. None of the above			
18. Which of the foll	owing particle has i	nedium e	energy?	•	
a. Alpha	b. Beta		c. Gamr	na	d. Omega
19. GM counter is used for measuring					
a. Radiation frequency b. Ionizing radiation c. Effect of radiation d. Gamma radiation			d. Gamma radiation		
20. The main substance used for nuclear imaging in cardiology is					
a. Thallium isotop	e b. Boron isoto	pe	c. Uraniu	ım isotope	d. Tritiated water

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUE	STIONS	
21. A) Write shots notes on syn – anti orientation of glycosyl bond (OR)		
B) Write short notes on transition angles of nucleic acids		
22. A) Write shot notes on peptide bond isomerization	(OR)	
B) Write notes on electrostatic forces involved in protein stability		
23. A) Explain the applications of Thin layer chromatography	(OR)	
B) Explain the principle of HPLC		
24. A) Explain the instrumentation of Raman spectroscopy	(OR)	
B) List out the applications of atomic absorption of spectroscopy		
25. A) Explain the working principle of solid and liquid scintillation cou	unter (OR)	
B) Briefly explain the disadvantages of radio active compounds		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on the geometrics of Watson & Crick model.
27. Give detailed account on Ramachandran plot
28. Write an essay on the working principle, instrumentation, applications, advantages and disadvantages of GC-MS
29. Give a detailed account on NMR. Add a note on its applications in the fields of medicine and defence
30. Write an essay on GM counter

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

ELECTIVE II ENVIRONMENTAL BIOTECHNOLOGY

Paper : Elective II **Total Hours** : 75 Hours/Week : 5 **Exam Hours** : 03 Credit : 4 Internal : 25 Paper Code : 20U6BTE06 External : 75

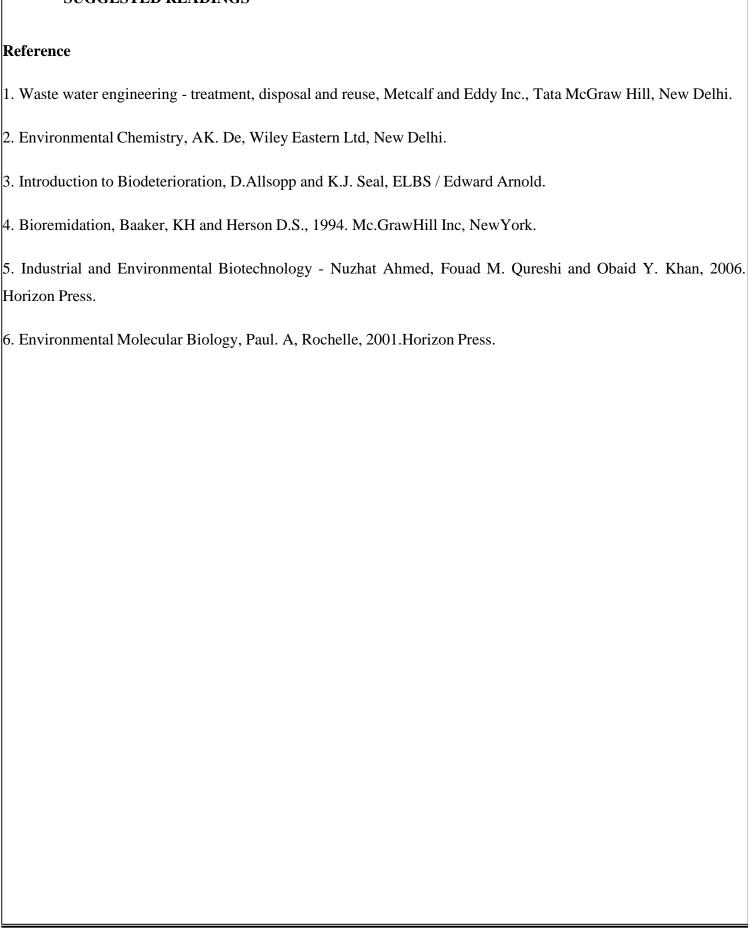
PREAMBLE

This paper provides insight into environmental issues, relevant biotechnological concepts for facing environmental issues, available biotechnological applications in environmental issues, relevant policies. The course also tries to impart knowledge and skill in environmental biotechnology for sustainable development

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To provide knowledge in environmental impacts in biotechnology	K1 & K2
CO2	To understand the concepts in various bioremediation techniques related environmental aspects	K2 & K3
CO3	To impart new thoughts about biotechnological applications on environmental issues	K3 & K4
CO4	To create awareness regarding the environmental policies for the improvement of environmental safety	K3, K4 & K5


MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	M
CO2	S	S	S	S	S
CO3	S	S	S	S	M
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Environment - basic concepts and issues, global environmental problems - ozone depletion, UV-B, greenhouse effect and acid rain due to anthropogenic activities, their impact and biotechnological approaches for management.	15
	An overview of atmosphere, hydrosphere, lithosphere and anthrosphere - environmental problems. Environmental pollution - types of pollution, sources of pollution, measurement of pollution, methods of measurement of pollution, fate of pollutants in the environment, Bioconcentration, bio/geomagnification.	

III	Microbiology of waste water treatment, aerobic process - activated sludge, oxidation ponds, trickling filter, towers, rotating discs, rotating drums, oxidation ditch. Anaerobic process - anaerobic digestion, anaerobic filters, upflow anaerobic sludge blanket reactors. Treatment schemes for waste waters of dairy, distillery, tannery, sugar and antibiotic industries	15
IV	Xenobiotic compounds - organic (chlorinated hydrocarbons, substituted simple aromatic compounds, polyaromatic hydrocarbons, pesticides, surfactants) and inorganic (metals, radionuclides, phosphates, nitrates). Bioremediation of xenobiotics in environment - ecological consideration, decay behavior and degradative plasmids, molecular techniques in bioremediation	15
V	Role of immobilized cells/enzymes in treatment of toxic compounds. Biopesticides, bioreactors, bioleaching, biomining, biosensors, biotechniques for air pollution abatement and odour control. Environmental significance of genetically modified microbes, plants and animals.	

SUGGESTED READINGS

${\bf MODEL\ QUESTION\ PAPER\ (ENVIRONMENTAL\ BIOTECHNOLOGY)}$

NAME OF THE COURSE: ENVIRONMENTAL BIOTECHNOLOGY	COURSE CODE: 18U6BTE06	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS							
1. Phytoplanktons pr	ovide	food to					
a. Whales		b. Shrimp		c. S	Snails		d. All the above
2. The term biodive World	2. The term biodiversity hotspot specifically refers to biologically rich areas around the World						
a. 15	b. 25			35		d.	. 45
3. The upper reaches	of the	Himalayas form	ing	part of	the	·	
a. Indomalaya ecozo	ne	b. Palearctic eco	ozor	ne	c. Indo-Burma	a	d. Sundaland
4. Endangered (EN	1), as c	ategorized by					
a. LC	b. II			c. VU			d. CR
5. Approximately earmarked for ex		per cent of the e in situ conserva					
a. 4.7	b. 7.7	7		c. 5.	.7		d. 6.7
6. New policy on see	d deve	elopment was for	mul	ated by	the ministry	of	
a. Science and techn	٠,						None of the above
7. The Convention o	f biodi	versity was open	ed f	or sign	ature at the Ea	rth s	summit in
a. 5 th June 1992	b. 5	th August 1992		c. 5 th .	June 1995		d. 5 th August 1995
8. The Cartagena Prowas adopted in -		-	ne C	Convent	ion, also knov	vn as	s the Biosafety Protocol,
a. January 2000						d. June 2000	
9. Arsenic contamin	ation i	n soil is recovered	d by	·			•
a. Bioleaching b	. Phyt	toremediation	c. E	Biorem	ediation	d.	. Bio feasability
10. Heavy metal tox Systems	city in	creases the produ	ıctic	on of	thereb	y dec	creasing the antioxidant
a. ROS b	Hydro	ogen ions	(c. Orga	nic nutrients		d. Oxygen
11is defined as the removal of metal or metalloid species, compounds and particulates from a solution by low cost biological materials							
a. Bioleaching b. Bioremediation c. Biosorption d. Phytoremediation							
12. Algae are of special interest in search for and the development of new biosorbents materials							
due to their and their ready availability in practically unlimited quantities in the seas							
and oceans							T
a.High filtration	_	gh reflection	C		Adsorption		d. High sorption
capacity	capa	ICITY		cap	acity		capacity

14. Laggons are also called	13. The bacteria pres	sent in the pond decomp	ose the biodegradable organic	e matter and release
a. Aerobic ponds b. Oxidation ponds c. Facultative ponds d. Aerated ponds 15. The activated sludge process is a type of wastewater treatment process treating sewage or industrial wastewaters using aeration and a biological floc composed bacteria and			c. Nitrate	d. All the above
15. The activated sludge process is a type of wastewater treatment process treating sewage or industrial wastewaters using aeration and a biological floc composed bacteria and	14. Laggons are also	called		
treating sewage or industrial wastewaters using aeration and a biological floc composed bacteria and	a. Aerobic ponds	b. Oxidation ponds	c. Facultative ponds	d. Aerated ponds
16. Research performed at the Division of Environmental Microbiology has over the last years resulted in the isolation of	treating sewage	or industrial wastewate	- I	
resulted in the isolation of	a. Viruses	b. Fungi	c. Helminthes	d. Protozoa
denitrificans denitrificans hydrophila	resulted in the is	olation ofwith	efficient nutrient removal pro	perties
technical, and operation costs, high moisture content in the waste, and high percentage of inerts? a. Incineration	denitrificans	denitrificans	hydrophila	d. All the above
18. Which of the following is NOT a component of bio compost? a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is a. Eisenia foetida Lumbricus terrestris Lumbricus rubellus 20. The most common worms used in composting systems _d , red worms feed most rapidly at temperatures of a. 10–25 °C b. 15–20 °C c. 15–25 °C d. 10–20 °C SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity (OR) B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment B) Write short notes on percolating filters 25. A) Write short notes on composting systems (OR) B) Write short notes on composting systems (OR) B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	technical, and op inerts?	peration costs, high mois	sture content in the waste, and	
a. Carbon b. Nitrogen c. Oxygen d. Hydrogen 19. The most common eath worm used for vermicomposting is a. Eisenia foetida Lumbricus terrestris Lumbricus rubellus 20. The most common worms used in composting systems d, red worms feed most rapidly at temperatures of a. 10–25 °C b. 15–20 °C c. 15–25 °C d. 10–20 °C SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity (OR) B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment (OR) B) Write short notes on percolating filters 25. A) Write short notes on composting systems B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India		_		d. Composting
19. The most common eath worm used for vermicomposting is	18. Which of the following	lowing is NOT a compo	onent of bio compost?	
a. Eisenia foetida Lumbricus terrestris Lumbricus rubellus 20. The most common worms used in composting systems _d , red worms feed most rapidly at temperatures of a. 10–25 °C b. 15–20 °C c. 15–25 °C d. 10–20 °C SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity (OR) B) Write short notes on endangered and threatened species 22. A) Write short notes on Eiodiversity Conservation (OR) B) Write short notes on Bioleaching of heavy metals (OR) B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment (OR) B) Write short notes on percolating filters 25. A) Write short notes on composting systems (OR) B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	a. Carbon	b. Nitrogen	c. Oxygen	d. Hydrogen
a. Eisenia foetida Lumbricus terrestris Lumbricus rubellus 20. The most common worms used in composting systems _d , red worms feed most rapidly at temperatures of a. 10–25 °C b. 15–20 °C c. 15–25 °C d. 10–20 °C SECTION – B. (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity (OR) B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation (OR) B) Write short notes on Bioleaching of heavy metals B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment B) Write short notes on percolating filters 25. A) Write short notes on composting systems (OR) B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	19. The most commo	on eath worm used for v	vermicomposting is	
a. 10–25 °C b. 15–20 °C c. 15–25 °C d. 10–20 °C SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity (OR) B) Write short notes on endangered and threatened species 22. A) Write short notes on cryopreservation (OR) B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR) B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment (OR) B) Write short notes on percolating filters 25. A) Write short notes on composting systems (OR) B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India			tris Lumbricus	Perionyx excavatus
a. 10–25 °C b. 15–20 °C c. 15–25 °C d. 10–20 °C SECTION – B (5 X 5 = 25 MARKS) ANSWER ALL THE QUESTIONS 21. A) Write short notes on hot spots of Biodiversity (OR) B) Write short notes on endangered and threatened species 22. A) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment B) Write short notes on percolating filters 25. A) Write short notes on composting systems B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India			osting systems d , red worms fee	ed most rapidly at
21. A) Write short notes on hot spots of Biodiversity (OR) B) Write short notes on endangered and threatened species 22. A) Write short notes on cryopreservation (OR) B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals (OR) B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment (OR) B) Write short notes on percolating filters 25. A) Write short notes on composting systems (OR) B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	-		c. 15–25 °C	d. 10–20 °C
B) Write short notes on endangered and threatened species 22. A) Write short notes on cryopreservation B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment B) Write short notes on percolating filters 25. A) Write short notes on composting systems B) Write short notes on vermicomposting SECTION - C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	SECTIO	N - B (5 X 5 = 25 MAR	KS) ANSWER ALL THE QU	JESTIONS
22. A) Write short notes on cryopreservation B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment B) Write short notes on percolating filters 25. A) Write short notes on composting systems COR) B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	21. A) Write sh	ort notes on hot spots of	f Biodiversity	(OR)
B) Write short notes on Biodiversity Conservation 23. A) Write short notes on Bioleaching of heavy metals B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment B) Write short notes on percolating filters 25. A) Write short notes on composting systems B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	B) Write sho	ort notes on endangered	and threatened species	
23. A) Write short notes on Bioleaching of heavy metals B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment B) Write short notes on percolating filters 25. A) Write short notes on composting systems B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	· ·	• •		(OR)
B) Write short notes on Commercial biosorbents 24. A) Write short notes on activated sludge treatment (OR) B) Write short notes on percolating filters 25. A) Write short notes on composting systems (OR) B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	, i	•		
24. A) Write short notes on activated sludge treatment B) Write short notes on percolating filters 25. A) Write short notes on composting systems B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	,		•	(OR)
B) Write short notes on percolating filters 25. A) Write short notes on composting systems B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India				(OD)
25. A) Write short notes on composting systems B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	1		•	(OR)
B) Write short notes on vermicomposting SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India				(OP)
SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS 26. Give a detailed account on Aquatic common flora and fauna in India	1		•	(OK)
26. Give a detailed account on Aquatic common flora and fauna in India				HESTIONS
		•	,	
07 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-		
27. Give a detailed account on tissue culture and artificial seed technology	27. Give a detai	led account on tissue cu	ulture and artificial seed techno	ology

- 28. Give a detailed account on Bioremediation
- 29. Give a detailed account on Waste water Treatment
- 30. Give a detailed account on sewage treatment

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	

SBEC - IV

LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS10	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Develop the practical concepts of mushroom, spirullina, sericulture	K3, K4, K5 & K6
CO2	Develop the practical concepts of apiculture, aquaculture and vermicomposting technology	K3, K4, K5 & K6
CO3	Develop the practical concepts of wine production and sauerkraut production	K3, K4, K5 & K6
CO4	Develop the practical concepts of biogas production	K3, K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	M	S
CO2	M	S	S	M	S
CO3	M	S	S	M	S
CO4	M	S	S	M	L

Ex.no	CONTENT	HOURS
1.	Mushroom cultivation	4
2.	Azolla cultivation	4
3.	Spirullina cultivation	4
4.	Sericulture	4
5.	Epiculture	4
6.	Aquaculture (Fish/Prawn/Pearl)	4

7.	Vermicomposting	4
8.	Biogas production	4
9.	Sauerkraut production	4
10.	Wine production	4

${\bf MODEL\ QUESTION\ PAPER\ (LAB\ IN\ ENTREPRENEURSHIP\ IN\ BIOTECHNOLOGY)}$

NAME OF THE COURSE: LAB IN ENTREPRENEURSHIP IN BIOTECHNOLOGY	COURSE CODE: 18U6BTS10	DURATION: 6Hrs
MAX MARKS: 60		

MAJOR EXPERIMENT						
Exp: 12	o: 12 Obs: 5 Res: 3 Total 20 MAR					
1. (i) Perform Azo	<i>lla</i> cultivation using the	given sample (A)	(OR)			
(ii) Perform Spi	<i>rullina</i> cultivation using	the given sample (A)	(OR)			
(iii) Peform ver	mi composting using the	e given earth worm samp	le (A)			
MINOR EXPERIME	NT					
Exp: 6	Obs: 2	Res: 2	Total: 10 MARKS			
2. (i) Perform wine production using the given fruit sample (B) (OR)						
(ii) Perform bio	gas production using the	e given raw sample mate	rial (B) (OR)			
(iii) Perform sa	uerkraut production usin	g the given cabbage sam	ple (B)			
SPOTTERS		(5 Σ	X 4 = 20 MARKS			
3. Identify the give	n spotters C, D, E, F & C	G and comment on them				
RECORD $ (1 \times 5 = 5 \text{ MARKS}) $						
VIVA-VOCE 5 MARKS						
TOTAL			60 MARKS			

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - IV

NANOBIOTECHNOLOGY

Paper : SBEC IV **Total Hours** : 40 Hours/Week : 2 Exam Hours : 03 : 2 : 25 Credit Internal Paper Code : 18U6BTS11 External : 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Know basic concepts of nanotechnology and nano materials	K1, K2 & K3
CO2	Know the concepts of fabrication of bio molecular structures	K3 & K4
CO3	Develop miniaturized nano elements	K3 & K4
CO4	Understand various applications of nanotechnology in the field	K4, K5 & K6
	medicine, health care and drug discovery	

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	S	S
CO2	M	S	S	S	S
CO3	S	S	S	S	S
CO4	M	S	S	S	S

UNIT	CONTENT	HOURS		
I	Nanobiotechnology: Definition, prospects and challenges; Topology of DNA, protein and lipids and self-assembly from Natural to artificial structures. Top up and bottom down approaches in nanomaterial fabrication.			
II	Nanomaterials and its properties: Carbon nanotubes and nanorods, Quantom dots, metal based nanostructures (Iron oxide nanoparticles), nanowires, polymer based nanostructures (dendrimers), Gold nanostructures (nanorods, nanocages, nanoshells), nanocomposites.			
III	Fabrication and Analysis of biomolecular nanostuructures: Atomic Force Microscopy, Scanning Probe Electron Microscopy and	8		

	Lithography. Nanoscale detection: Lab on a Chip. Fabrication of bionanochip & microarray technology.		
IV	Miniaturized devices in nanobiotechnology: Types and applications; Nanobiosensors: different classes, molecular recognition elements (MRE), transducing elements, applications of MRE in nanosensing of different analytes.	8	
V	Applications of Nanobiotechnology: Nanomedicine, Diagnosis and treatment of infectious diseases, cancer research and therapy, tissue engineering and regenerative therapy; Nanostructures in drug discovery & drug delivery.	8	

SUGGESTED READINGS:

- 1. Nanobiotechnoogy: concepts, applications and perspectives. Christ of M. Niemayer, chad A. Mirkin, Wiley VCH publishers 2004.
- 2. Bionanotechnology: Lessons from Nature, David. S. Goodshell, Jhonwiley 2006.
- 3. Buddy, D.R. Allan, S.H. Frederick, J.S. and Jack, E.L. Biomaterials Sciences: An Introduction to Materials in Medicine. 2nd edition.
- 4. David, L.N. and Michael, M.C. (2006). Lehninger"s principles of Biochemistry. 4th edition.
- 5. David, S. and Goodshell, J. (2006). Bionanotechnology: Lessons from Nature.
- 6. Molecular Design and Synthesis of Biomaterials. (2005). Biological Engineering Division, MIT Open Course Ware.

${\bf MODEL\ QUESTION\ PAPER\ (NANOBIOTECHNOLOGY)}$

NAME OF THE COURSE: NANO BIOTECHNOLOGY	COURSE CODE: 18U6BTS11	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. Who first used the term nano biotechnology?						
a. Norio taniquchi	b. Richard Feynman		er d. Sumio			
2. 10 nm =m						
a. 10 ⁻⁸	b. 10 ⁻⁹	c. 10 ⁻⁷	d. 10 ⁻¹⁰			
3. The size of the nano particles range fromnm						
a. 100 to 1000	b. 0.1 to 10	c. 1 to 10	d. 1 to 100			
4. Nano science can b	e studied with the help o	f	,			
a. Quantum mechanics	b. Newtonian mechanism	c. Macro dynamic	d. Geophysics			
5. The size of <i>E.coli</i>	bacteria is	nm				
a. 2000	b. 5000	c. 50	d. 90			
6. What does "F" stan	ds for in AFM?					
a. Fine	b. Force	c. Flux	d. Front			
7. The two important	properties of nano substa	ances are				
a. Pressure and friction	b. Sticking and temperature	c. Sticking and friction	d. Temperature and friction			
8. 1 nanometer is =	cm		·			
a. 10 ⁻⁹	b. 10 ⁻⁸	c. 10 ⁻⁷	d. 10 ⁻⁶			
9. Protein-coding ger	nes can be identified by_		,			
a. Transposons tagging	b. ORF scanning	c. Zoo -blotting	d. Northern analysis			
10. Nano particles tar	get the	causing cells and rem	nove them from blood			
a. Tumor	b. Fever	c. Infection	d. Cold			
11. The	to the ceramics a	re superior coating				
a. Nano particles	b. Nano power	c. Nano crystal coding	d. Nano materials			
12. Which one is used	12. Which one is used in electron microscope?					
a. Electron beams	b. Magnetic fields	c. Light waves	d. Electron beams and magnetic fields			

13. Electron i	nicrosco	pe can give a	magnific	ation up	to		
a. 400,000x		b. 100	000x	c.	15000x		d. 100x
14. Which of these biosensors use the principle of heat released or absorbed by a reaction?							
a. Potention biosensor	etric	b. Opti bios	cal ensor	e.	Piezo-electric biosensors		f. Calorimetric biosensors
15. Biosenson	made u	p of			<u> </u>		
a. A probe and a surface	l	b. A sensi and a tr	ng layer ansducer	C.	Transfer the p molecule	robe	
				d.	of		
					thes		
16. Which ma	nterials a	re suitable fo	or electrica	ıl signal	transducing?	1	
a. PDMS		b. Silli	con	c.	Glass		d. Polyethylene
17. Which or	ne is anti	-cancerous a	gent?	_			
a. Paclitaxo	-	b. Insulin	c.	Polyeth	ylene glycol	d.	Poly glutamic acid
18. Which of	the follo	wing co-solv	ents are u	sed to in	ncrease the solu	ıbility	of a drug?
a. Ethanol		b. Sort	oitol	c.	Glycerin		d. All of these
19.The size o	f the RB	Cis		_nm			
a. 50		b. 90		c.	20000		d. 5000
20. The wid	th of a ty	pical DNA	nolecule i	S	r	ım	
a. 1		b. 2		c.	5		d. 10
					VER ALL THE ano biotechnology	_	STIONS
		ote on nano i				<i>9</i> 5y:	
22. A) Explain				ies			
B) Write s 23. A) Explair		es on quantu					
		canning prob		ope			
24. A) Write s		0 1		-			
		lecular recog		nents (N	MRE)		
25. A) What is	drug? F	Explain its dis	scovery?				
SECT	TON – C	$C(3 \times 10 = 3)$	0 MARKS	S) ANSV	WER ALL THI	E QUI	ESTIONS
26. Write the	essay on	topology of	DNA				
27. Explain the	e structu	re and functi	on nano tu	ibes nan	owires		
28. Write an e	ssay on 1	micro array to	echnology	and its	applications		
29. Write an e	ssay on 1	mode action	of biosens	ors and	application of b	oiosen	sors
30. Explain ab	out cand	er research a	nd cancer	therapy			

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

SBEC - IV

BIOFARMING

Paper	: SBEC IV	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 18U6BTS12	External	: 75

PREAMBLE

To make students in understanding the basic concepts of developing entrepreneurship quality, so as to produce biologically generated value added products for the development of human welfare.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the principles of conventional cropping systems and natural	K1 & K2
	Farming	
CO2	Manipulate integrated pest management fo the development of pesticide	K2 & K3
	free plant products	
CO3	Develop the concepts of organic farming	K4 & K5
CO4	Understand the concepts of organic agricultural policy and GMOs	K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	M	S	S	L	L
CO2	S	S	S	M	M
CO3	S	S	S	M	M
CO4	S	S	S	M	S

UNIT	CONTENT	HOURS
I	Agro-ecological zones and geographical distribution of crop plants in Tamil Nadu. Cropping systems - different types and their importance in food production- Package and practices followed for major crops and cropping systems in Tamil Nadu.	8
II	Green revolution in India - After effects - Definitions of Natural Farming, Traditional farming - Their concepts and scope - Natural Farming - Institutions- their activities and role.	8
III	Pest - Definition - categories of pests-pest control - natural, artificial-pest management IPM. Store grain pest management. Pesticides consumption and hazards. Role of biopesticides and biofertilizers in IPM.	8
IV	Organic farming - concept and relevance in the agriculture - problems and	8

		remedies - Encouragement and dissemination for effective practicing of organic farming. Production and marketing of Organic products.		
-	V	Organic agriculture policy, Genetically Modified Organisms as organic regulation	8	

SUGGESTED READINGS:

- 1. Basu, D.N. and Guha, G.S. (1996). Agroclimatic regional planning in India, ARPU, Ahmedabad
- 2. Krishna, K. R., (2010). Agroecosystems of south India, Brownwalker press, Florida
- 3. John H. Perkins, *Geopolitics and the Green Revolution: Wheat, Genes, and the Cold War*, Oxford University Press, 1997.
- 4. Lester R. Brown, *Seeds of Change: The Green Revolution and Development in the 1970's*, 1970, Praeger Publishers, New York.
- 5. Kogan, M 1998. Integrated Pest Management: Historical Perspectives and Contemporary Developments, Annual Review of Entomology Vol. 43: 243-270 (Volume publication date January 1998)
- 6. Dharam P. Abrol (Editor), Uma Shankar 2013. Integrated Pest Management: Principles and Practice Amazon text book store
- 7. NPCS Board of Consultants & Engineers, (2008). The complete book on organic farming and production of organic compost, Asia Pacific Business Press Inc.
- 8. Shalini Suri, APH, (2012). Organic farming Vedams books from India.

MODEL QUESTION PAPER (BIOFARMING)

NAME OF THE COURSE: BIOFARMING	COURSE CODE: 18U6BTS12	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. Agro ecological zoning can be used as the basis of a methodology for						
a. Calculating maximur	n b. Natural source	:	c. Land resourc	e appraisal	d. Land use	
yield	analysis				planning	
2. Some of the nutrie	ents contained in the dea	ad tissues	are made availab	le to crops du	ring	
	educing the need of	inp	outs			
a. Forage leaves	b. Fertilizer	c. Che	mical fertilizer	d. Soil organ	ic matter	
3. World geographic larger region of I	al scheme for recording	plant dis	stributions (WGSI	RPD) is include	ded within the	
a. Fauna of India	b. Flora of India	c. Faur	na of Tamilnadu	d. Flora o	f Tamilnadu	
4. In Tamilnadu, Coi	imbatore receives an av	erage rai	nfall from North e	ast Monsoon	of	
a. 444.3mm	b. 443.4 mm		34.4 mm	d. 344.4	mm	
5. Natural farming is	an ecological farming	establish	ed by			
a. Yamamoto Komba	i b. Masanobu Fukt	uoka c	. Shizen noho	d. Yoshikazı	ı Kawaguchi	
6. Cop rotation and Out	companion planting are	e the met	hods adopted whe	enfa	rming is carried	
a. Traditional	b. Organic		c. Mixed crop	d. N	atural	
7. Green revolution i	n India refers to a perio	d when -				
a. Indian agriculture	b. Indian agricult	ure c. Ir	ndian agriculture	d. Indian	agriculture was	
was converted into	was converted in	nto	was converted	convert	ed into industrial	
revenue generating	waste manageme	ent	into renewable	system		
system	system		resource system			
	cally can be applied onl	ly in a laı	nd with assured			
 a. Fertilizer supply 	b. Soil supply		c. Water supply	d. So	eed supply	
	nd Ray F. Smith receive		World Food		couraging IPM	
a. 1995	b. 1996	c. 1997		d. 1998		
10. The most important insect damaging pulses in field and storage are referred as						
a. Bruchids b. Weevils c. Beetles d. None of the above						
11. Biopesticides are important tools in integrated pest management programs for conserving the natural enemies and maintaining environmental health was described in						
a. 2014	b. 2015	IIIICIItai I	c. 2016	d. 20		
	owing pesticide is response	onsible fo		u. 20	<i>O11</i>	
a. Carcinogen b.	Susceptibility to fungal infection	C	. Egg shell thinnin	_	ine in juvenile	
13. Which of the following is NOT the advantage of organic farming?						

a.Maintains environment	b.Helps in	c.E	nsures optimum	d.E	Enhances crop
by reducing pollution	keeping	utilization of natural		p	roduction by tillage
level	agriculture at a	re	esources for short term	utilization and forage	
	sustainable level	be	enefit	cropping system	
14. Which of the follow	ring state first received	the o	rganic certification in I	ndiaʻ	?
a. Madhya Pradesh	b. Rajasthan	c. Maharashtra		d. Uttar Pradesh	
15. NPOF stands for					
a. National project on	b. National Project of	n (c. National Project on	d	. National project on
organic farmers	organic farming	_		organic forages	
16. Indian agricultural p	policy was framed and	drafte	ed by	•	
a. ICAR	b. IARI	c. CSIR		d. ICAS	
17. The genetically eng	ineered seeds were int	roduc	ed in		
a. 1994	b. 1995	c. 1996		d. 1997	
18. "Round-up ready cr	ops" is a common nan	ne of -			
a. Pesticide crops b. I	Herbicide crops	c. Saline resistant crops		d. Drought resistant crops	
19. The use of toxic and pervasive pesticides and petroleum based fertilizers is not allowed in the production of					
a. Organic farm products	b. Biopesticides	c. Bioinsecticides		d. I	Bt - Cotton
20. Organic food production act (OFPA) was amended in					
a. 1990	b. 1991		c. 1992		d. 1993

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS				
21. A) Write shot notes on the different types of cropping systems (C	OR)			
B) List out the packages and practice methods followed for majo	r crops			
22. A) Briefly write about green revolution (OR)				
B) Explain the benefits of natural farming				
23. A) Explain about store gain pest management (OR)				
B) Explain the role of biopesticides in IPM				
24. A) Explain in brief about Organic farming	(OR)			
B) Explain the marketing of organic products				
25. A) List out the organic agriculture policies (OR)				
B) Explain the use of organic policies in the development of forage products				

SECTION – C (3 X $10 = 30$ MARKS) ANSWER ALL THE QUESTIONS
26. Write an essay on different types and their importance of cropping system
27. Give a detailed account on natural farming
28. Write an essay in Integrated Pest Management (IPM)
29. Give a detailed account on organic farming, their production and marketing
30. Write elaborately on the role genetically modified organisms in framing the organic farming policies

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

$\underline{NMEC-I}$

BIOSAFTEY, BIOETHICS & IPR

Paper	: NMEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U5BTN01	External	: 75

PREAMBLE

To make students on understanding basic principles of biosafety guidelines and to understand concepts of intellectual property right and its types. The student also gain added knowledge on ethical, legal and social considerations on implementing/maketing biotechnological products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	Understand the concepts of basic biosafety and biosafety levels	K1 & K2
CO2	Understand biosafety guidelines and role genetically modified Organisms	K1, K2 & K4
CO3	Understand the basic principles of IPR, its types and patenting Procedures	K4, K5 & K6
CO4	Understand the concepts of ethical, legal considerations on the release of genetically modified organisms	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Bio safety: Introduction – bio safety issues in biotechnology - historical background. Biosafety Levels - Levels of Specific Microorganisms, Infectious Agents and Infected Animals.	8
II	Biosafety Guidelines: Guidelines and regulations (Cartegana Protocol). Definition of GMOs & LMOs. Roles of Institutional Biosafety Committee, RCGM, GEAC.	8
III	Intellectual Property Rights: Introduction to IPR, Types of IP - Patents, Trademarks, Copyright & Related Rights, Importance of IPR – patentable and non patentables.	8
IV	Patents and Patent Laws: Objectives of the patent system - Basic, principles	8

	and general requirements of patent law. Patentable subjects and protection in Biotechnology.	
V	Bioethics: Introduction to ethics and bioethics, framework for ethical decision making. Ethical, legal and socioeconomic aspects of gene therapy.	8
	Ethical implications of GM crops, biopiracy and biowarfare.	

- 1. Beier F.K, Crespi R.S and Straus T. Biotechnology and Patent protection, Oxford and IBH Publishing Co. New Delhi.
- 2. Jeffrey M. Gimble, Academia to Biotechnology, Elsevier Academic Press.
- 3. Rajmohan Joshi (Ed.). 2006. Biosafety and Bioethics. Isha Books, Delhi.
- 4. Sasson A, Biotechnologies and Development, UNESCO Publications.
- 5. Senthil Kumar Sadasivam and Mohammed Jaabir M. S. (2008). IPR, Biosafety and Biotechnology Management, Jasen Publications, India.

MODEL QUESTION PAPER (BIOSAFETY, BIOETHICS AND IPR)

NAME OF THE COURSE: BIOSAFETY , BIOETHICS AND IPR	COURSE 17U5BTN01	CODE:	DURATION: 3 Hrs
MAX MARKS: 75			

SECTION – A	$A (1 \times 20 = 20 \text{ MARKS})$) ANSWER ALL THE	QUESTIONS	
1. Bio-related researc	ch activities may not inv	olve		
a. Micro organisms	b. Animal cell	s c. Plant cells	d. All	
2. A pathogen that is	unlikely to cause any di	sease in humans or anim	nals	
a. Risk group I	b. Risk group II	c. Risk group III	d. Risk group IV	
3. Korean hemorrhag	gic fever is example for			
a. Risk group II	b. Risk group III	c. Risk group IV	d. Risk group I	
4. Physical contain	ment is achieved by			
a. One type	b. Two types	c. Three types	d. Four types	
5. Which one of the f	following is not relevant	to sterilization techniqu	e?	
a. Ethanol	b. Incinerator	c. Microscope	d. Autoclave	
6. Cartagena Protoco effect from		nvention on Biological I	Diversity came with	
a. 11 September	b. 12 September	c. 11 September	d. 12 September	
2003	2003	2004	2004	
7. Each Institutional	Biosafety Committee ha	s a nominee for	-	
a. DST	b. DBT	c. UGC	d. ICAR	
8. How many RCGM	I meeting held in 2018?			
a. 7	b. 8	c. 9	d. 6	
	not include the following			
a. DBT b. Io	CMR	c. UGC	d. CSIR	
10. GEAC establishe	d under			
a. MoEF &	b. UGC	c. DBT	d. DST	
11. Trade name is oth	nerwise called as			
a. Patent	b. Model	c. Business name	d. Trademark	
12is any information of commercial value concerning production				
a. Trade	b. Trade Secret	c. Patent	d. Industrial Design	
13. IPR initially start	ed in North Italy during	the		
a. Renaissanc	b. Renaissance	c. Renaissance	d. Renaissance	
e era. In	era. In 1472 not allow the following	era. In 1473	era. In 1474	

a. Innovator	b. Brand owner	c. Teacher	d. Co	opyright holder		
15. Intellectual prop	15. Intellectual property not refers to creations of the mind					
a. Hard	a. Hard b. Inventions c. Literary and artistic works d. Names					
16. Which one is co	mes under type of inte	llectual property (IP)	?			
a. Copyright	b. Patent	c. Trademar	·k d.	All the above		
17. Mathematical al	gorithms are		-			
a. Patenta	b. Non patentable	c. Both	d. None	of the above		
18. Software is a						
a. Patenta	b. Non patentable	c. Both	d. None of	f the above		
19. Patentable biote	chnological inventions	is				
a. Prote b. I	a. Prote b. DNA sequences c. Both of the (a) and (b) d. None of the above					
20. Early founders	20. Early founders of bioethics put forth four principles which form the framework for moral					
reasoning						
a. 4	b. 3	c. 2		d. 1		

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTI	ONS
21. A) Explain different levels of biosafety.	(OR)
B) explain different types of sterilization methods.	
22. A) What is institutional committe and their roles?	(OR)
B) Explain RCGM and GEAC?	
23. A) explain object of Intellectual property law?	(OR)
B) Explain the importance of IPR?	
24. A) Write a note on benefits of patent.	(OR)
B) explain patentable and non-patentable biotechnological inventions?	
25. A) define bioethics, explain purpose and scope of bioethics?	(OR)
B) Explain perspectives and methodology of bioethics?	

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Explain different types of bio-safety measures in laboratory?
27. Explain Cartagena protocol on biosafety.
28. What is IPR and explain their different types?
29. Patent - Definition, History and Law
30. Explain framework for making ethical decisions.

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

$\underline{NMEC-I}$

BIOINFORMATICS

Paper	: NMEC I	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U5BTN02	External	: 75

PREAMBLE

To make students on understanding the basic concepts biological soft wares and their applicability in enhancing the need based quality of living systems

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of nucleic acid sequence databases	K1, K2 & K3
CO2	To understand the concepts of specialized databases	K2, K3 & K4
CO3	To understand the basic concepts of sequence analysis and sequence Alignment	K2, K3 & K4
CO4	To understand the concepts of gene prediction methods through <i>insilico</i> approaches	K4 & K5

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Bioinformatics – Biological Databases – Nucleic acid sequence databases – GenBank/NCBI, EMBL, and DDBJ. Protein sequence databases – UniprotKB and PIR, Structure databases – PDB, CATH and SCOP.	8
II	Specialized Databases – BLOCKS, PRINTS and Pfam, Microarrays- Microarray data analysis, Proteomic data Analysis.	8
III	Sequence Analysis- sequence alignment, Dot plot, pairwise Sequence Alignment- Local alignment and Global alignments- Dynamic programming algorithm for sequence alignment, Scoring matrices, gap penalties.	8
IV	Multiple sequence alignment- scoring methods-clustal W- Phylogenetic	8

	Analysis- tree construction methods- Maximum likelihood and maximum parsimony- distance methods- Database similarity search- Basic Local		
	Alignment search tool (BLAST).		
	Gene prediction methods – ORF finder, Restriction site analysis. Protein		
V	secondary structure prediction - Comparative Modeling - Drug Designing -	8	
	- Molecular Docking		

- 1. Bioinformatics: Sequence, Structure and Databanks: A Practical Approach (The Practical Approach Series, 236), Des Higgins (Editor), Willie Taylor. 1st edition, October 2000, Oxford University Press. ISBN: 978-0199637904.
- 2. Bioinformatics: Sequence and Genome Analysis, David W. Mount. 2nd edition, June 2004, Cold spring harbor laboratory press. ISBN: 978-0879697129
- 3. David, H. M. 2005. Bioinformatics. Second edn. CBS Publishers, New Delhi.
- 4. David, R., Westhead, J., Howard, P. and Richard, M., and Twyman. Instant Notes-Bioinformatics Viva Books Private Limted, Chennai.
- 5. Gribskov, M., Devereux, J. 1989. Sequence analysis primer. Stockton Press.
- 6. Introduction to Bioinformatics, Teresa Attwood, David Parry-Smith, 1st edition, May 2001, Pearson Education. ISBN: 978-8178085074
- 7. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Second Edition, Andreas D. Baxevanis, B. F. Francis Ouellette. 3nd edition, October 2004, A John Wiley & Sons, Inc., Publication. ISBN: 978-0471478782.
- 8. Seizberg, S. L., Searls, D. B. and Kasif, S. 1998. Computational methods in Molecular biology now comprehensive Biochemistry. Elsevier.

MODEL QUESTION PAPER (BIOINFORMATICS)

NAME OF THE COURSE: BIOINFORMATICS	COURSE CODE: 17U5BTN02	DURATION: 3 Hrs
MAX MARKS: 75		

SECTION – A (1 X 20 = 20 MARKS) ANSWER ALL THE QUESTIONS					
1. A single piece of information in a database is called					
a. File	b. Field	c. Re	ecord	d.	. Data set
2. Which of the follo	owing is a nucleotide sec	quence da	tabase?		
a. EMBL	b. SWISPOT	c. PF	ROSITE	d.	. TREMBL
3. BLAST Programm	me is used for				
a. DNA Sequence	b. Protein sequence	C	barcoding		d. Sequence analysis
4. The BLAST prog	gram was developed on	'	_		
a. 1992	b. 1995	c. 19	990	19	991
5. Phylogenetic anal	ysis is a				
a. Dendrogram	b. Genbank		ata retrieval Fool	d.	. Data Searching tool
6. Which of the follo	owing is a part of the sta	tistical tes	st of sequences	s?	
a. An optimal alignment between two chosen sequences is obtained at the end	b. Unrelated sequences of the same length are then generated through a randomization process	of the are the throug	nization	len thr	lated sequences of the same agth are then generated ough a randomization occess
7. Clustal W is a					
a. Multiple sequence alignment tool	b. Protein secondar structure predic	•	b. Data retriev tool	val	c. ORF finder
	align many sequences si				
a. Multiple sequence alignment	b. Pairwise alignment	C.	Global alignment		d. Local alignment
9. Which one is specially made for protein data base?					
a. DDBJ	b. EMBL	C	e. PIR		d. Genbank
10. Genbank maintained by					
a. DDBJ	b. EMBL		c. Swissport		d. NCBI
11. Submission of se	equences to genbank thre	ough		I	

a. Bankit	b. Sequin	b. A & b	c. None of the above		
_	12. The final step involves pairwise alignment by extending from the words in both directions while counting theusing the same substitution matrix				
a. Dock score	a. Dock score b. Alignment score c. Both a & b d. None of the above				
13. Which of the fol	lowing is not a variant of	of BLAST?			
a. BLAST N	b. BLAST P	c. BLAST X	d. TBLAST X		
	the study of the evolution esent of these	onary history of living o organisms	rganisms using treelike		
a. Distance matrix	b. Maximum li	kelihood c. Ped	igree d. Maximum parsimony		
		o different proteins, to p	preserve the same		
•	eir closehave t				
a. Solubility and Polarity	b. Proximity and interaction	c. Bond length and Bond energy	d. "N" and,,C" terminals		
	lowing is not true regard	_			
a. Search Tool for the Retrieval of Interacting Genes/Proteins	b. Functional association include only the direct protein-protein interactions		kage, predicts gene and protein functional		
similarity betwe sequences must	en the two sequences have derived from a con	nmon evolutionary origi	mly, meaning that the two		
a. Unlikely	b. Possible	c. Likely	d. Relevant		
		rding sequence homolog			
a. Two sequences can homologous relationship even if have do not have common origin	b. It is an important concept in sequence analysis	When two sequences are descended from a common evolutionary origin, they are said to have a homologous relationship	d. When two sequences are descended from a common evolutionary origin, they are said to share homology		
19. Which of the giv	en statements is incorre	ect about Microarray (or	microchip) analysis?		
a. It is a new technology in which all of the genes of an organism are represented by oligonucleotide sequences spread out in an 80 x 80 array on microscope slides	b. The oligonucleotide sequences cannot be synthesized directly on the slide	c. The oligonucleotides are collectively hybridized to a labeled cDNA library prepared by reverse-transcribing mRNA from cells	d. The amount of label binding to each oligonucleotide spot reflects the amount of mRNA in the cell		
	20. Other types of evidence for a relationship between two genes are also given that are not dependent in sequence similarity. These include				
a. Genes are closely linked on the same chromosomes	b. Genes are transcribed from the same DNA strand	c. Gene fusions are observed between otherwise separate	d. Phylogenetic profiles show the genes are not that commonly present in organisms		

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS	
21. A) Write an short Biological Database	(OR)
B) Explain the NCBI data base	
22. A) Give an account on BLOCKS, PRINTS	(OR)
B) Explain the application of Pfam	
23. A) Write short note on sequence alignment	(OR)
B) Briefly define Scoring matrices	
24. A) Write short notes on Phylogenetic Analysis	(OR)
B) Write about database similarity search	
25. A) Explain ORF finder	(OR)
B) Explain the steps involved in Restriction site analysis	

	SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. G	Give a detailed account on Biological databases
27. E	Explain elaborately about the types of Biological data bases
28. G	Give a detailed account on BLAST
29. L	ist out the difference between Local alignment and Global alignments
30. G	Give a detailed account on Molecular Docking

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

NMEC – II

CONCEPTS OF BIOTECHNOLOGY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17 U3BTN03	External	: 75

PREAMBLE

To make non major life science students in understanding basic and applied principles of biotechnology and its technical approach in society in generating value added, reliable and reproducible products.

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand the scope and application of biotechnology	K1, K2 & K4
CO2	Use of enzymes in generating basic recombinant DNA concepts	K2, K3 & K4
CO3	Use of plasmid vectors in experimenting and designing cloning Strategies	K3, K4 & K5
CO4	Use molecular techniques of the identification of positive recombinant clones	K4, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT			
I	Scope of Biotechnology: History of Biotechnology; Conventional and modern Biotechnology – Biotech industries. Biotechnology tree. Strategies for gene cloning.	8		
II	Tools used in gene cloning – Restriction endonucleases – Types – Features. Ligases – linkers, adaptors and homopolymer tailing. Modifying Enzymes			
III	Vectors-properties of good vector. Constructed plasmids-pBR 322. Cosmid vectors, Animal vectors-SV40. Plant vectors – Ti derivatives	8		
IV	Introduction of genes – vector mode – transformation and transfection. Vector less mode – Biolistics, Electroporation, Microinjection	8		

V	Selection of recombinants, Markers – PCR, RFLP, RAPD and blotting	8	
·	techniques	, o	

- 1. Principles of gene manipulations. Old and Primrose (1989), 3rd edition.
- 2. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 3. Biotechnology and genomics, Gupta PK (2004). Rastogi publications.
- 4. Gene cloning and DNA analysis. Brown TA. (1996). Blackwell science, Osney Mead, Oxford.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- 6. Biotechnology, Singh BD (2004). Kalyani Publications. New Delhi.

MODEL QUESTION PAPER (CONCEPTS OF BIOTECHNOLOGY)

NAME OF THE COURSE: CONCEPTS OF	COURSE CODE:	DURATION: 3 Hrs
BIOTECHNOLOGY	17 U3BTN03	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS						
1. The following is not a branch of Biotechnology						
a. Genetic b. Tissue c. Physiology d. Microbiology engineering culture						
2. Cell theory was p	proposed by					
a. Schleiden and Schwann	b. Robert Hooke	c. Leeuwen Hooke	d. Beetle and Tatum			
3. DNA recombinar	nt technology is also calle	d as				
a. Gene manipulatio	b. Totipotency	c. Splicing	d. Gene cloning			
4. The PCR techni	que was developed by					
a. Karry mullis	b. Kohler	c. Milstein	d.Altman			
5. Gene cloning me	ans	,				
a. Production of mutated genes	b. Production of wild genes	c. Production of dominant genes	d. Production of large population of desired DNA fragment			
6. A small circular I	NA present in bacterial c					
a. Enzyme	b. Ribosomes	c. Plasmids	d. Vector			
7. For cloning, DNA	samples are taken from -					
a. Same individual	b. Different individual	c. Different species	d. None of the above			
8. The function of R	estriction enzyme is to					
a. Cut the DNA	b. Join the DNA	c. Amplify the DNA	d. None of the above			
9. Who discovered t	he restriction enzymes?					
a. Natham & Arber and smith	b. Watson & Crick	c. Boyer & Col	nen d. Paul & Berg			
10. Which organism	has the highest number of	f vectors?	-			
a. Yeast	b. Mammalian cells	c. E.coli	d. Fungi			
11. Boliver and Rod	riguez constructed which	vectors				
a. P ^{uc8}	b. Y ^{1p7}	c. P ^{BR322}	d. M ¹³			
12. How many set o	f antibiotics resistance do	es the plasmids PBR32	22 carry?			
a. 1	b. 2	c.3	c. Nothing			
13. Cosmids vectors	are used for					

	a. Cloning a single fragments	mall	b. Clon fragr	ing a lar	ge	c. Clonii proka	_	d. Cloning eukaryotes
	14. Single stranded vectors are useful							
a. For sequencing of cloned DNA			b. For oligo nucleotide c. For directed mutagenesis pre		r probe paration	d. All the above		
	15. Chemicals	used for	gene transfer	r method				·
	a. Polyethyler	ne	b. Dext	ran	c. Ca	lcium chlo	ride	d. All the above
	16. Polymerase	used fo	or PCR is extr	acted fro	om?		l	
	a. E.coli	b. B	Pacillus sp	c. T	hermos	aquaticus	d. Sacch	aromyces cerevisiae
	17. At which te	emperatu	ire does the D	NA is d	enature	d during PC	R?	
a. 60°C			b. 54°C		c.74°C		C	1.94°C
	18. Molecular i	markers	include					
	RAPD		b.AI	FLP		c.AFLP	d. All	of these
	19. Western blo	otting is	the technique	es for the	detecti	on of		
a.	Specific RNA i a sample	I .	Specific DN a sample	A in	-	ific protein sample	d. Sp samp	pecific glycolipids in a
	20. What is probe?							
a.	Chemically synthesized DN		Purified DN	IA c.	Fragm duplex	ented DNA	syı	ther purified or anthesized single anded DNA

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS
21. A) Write history of biotechnology
B) Write a short note on biotechnology tree
22. A) Explain ligases enzymes
B) Notes on homopolymer tailing
23. A) Explain the properties of good vectors
B) Explain cosmid vectors
24. A) Write notes on bio plastics
B) Explain microinjection methods
25. A) Write notes on RFLP
B) Application on RAPD

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS	
26. Write the essay strategies of gene cloning	
27. Explain the types and functions restriction enzymes	
28. Write the essay P ^{BR322} and uses of this vector	
29. Write a essay on gene transfer methods	
30. Explain PCR principle methodology and applications	

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY		
AUTHORISED BY		

NMEC - II

BIOTECHNOLOGY FOR SOCIETY

Paper	: NMEC II	Total Hours	: 40
Hours/Week	: 2	Exam Hours	: 03
Credit	: 2	Internal	: 25
Paper Code	: 17U3BTN04	External	: 75

PREAMBLE

To make students on understanding the applied part of biotechnology to non-major and non-life science back ground students

COURSE OUTCOMES

On successful completion of the course, students will be able to,

COs	Outcome	CPD
CO1	To understand basic knowledge of silk worm, earth worm cultivation and its applications	K3, K5 & K6
CO2	To understand the concepts of bio fertilizers, bio plastics and Bioweapons	K3, K5 & K6
CO3	To understand the basic concepts of biodegradation of xenobiotic Compounds	K3, K5 & K6
CO4	To understand the concepts of generating genetically modified/transgenic organisms	K3, K5 & K6

MAPPING WITH PROGRAMME OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S

UNIT	CONTENT	HOURS
I	Seri culture, Aquaculture, Apiculture, Vermi culture and Mushroom Technology	8
II	Biofertilizers, Biopesticides, Bio repellents, Pest control and management, Biomass (SCP), Bioplastics, Bioweapons.	8
III	Bio dyes, Bio fuels – Biodiesel & Biogas, Bio indicators, Biodegradation – Role of genetically modifies organisms	8
IV	Production of penicillin, Recombinant Vaccines (HBV), Recombinant Insulin, Plantibodies, Vaccines in animal cells, Gene therapy.	8
V	Transgenic animals and their applications. Mice, Sheep and Fish. Transgenic plants and their applications – BT cotton, Flavr-Savr tomato and golden rice	8

- 1. Animal Biotechnology, Ranga MM (2000). Agrobios
- 2. Introduction to Plant Biotechnology. Chawla (2003).2nd edition. Oxford and IBH publications.
- 3. Biotechnology, Sathyanarayana U (2008), Books and Allied (p) ltd.
- 4. Industrial Microbiology Patel AH (2005). Mac Millan Publishers.
- 5. A text book of Biotechnology, Dubey RC (2007). S.Chand & Company Ltd, New Delhi.
- 6. Environmental Biotechnology, Chatterji AK, 3rd edition, PHI Learning Pvt Ltd, Newdelhi.

MODEL QUESTION PAPER (BIOTECHNOLOGY FOR SOCIETY)

NAME OF THE COURSE: BIOTECHNOLOGY	COURSE CODE:	DURATION: 3 Hrs
FOR SOCIETY	17U3BTN04	
MAX MARKS: 75		

SECTION – A (1 X $20 = 20$ MARKS) ANSWER ALL THE QUESTIONS					
1. Sericulture is a rearing of					
a. Silk worm	b. Lac insect	(c. Honey bee		d. Fish
2. Aquaculture is a r	earing of			•	
a. Silk worm	b. Lac insect		c. Honey bee		d. Fish
3. Which of the follo	owing is used as food to	o feed	Bombyx mori?		
a. Hibiscus leaves	b. Mulberry leav	es	c. Palm leav	res	d. Nome of the above
4. The seeds used fo	r mushroom cultivation	n is cal	led as		
a. Callus	b. Bed		c. Spawı	n	d. Altman
5. Which of the follo	owing can be used as bi	ioweap	ons?	•	
a. Bacillus	b. Escherichia	(c. Streptococcus	S	d. Clostridium
	owing is used as SCP to				
a. Azolla	b. Spirullina		e. Mushroom		d. Yeast
7. Which of th follow	wing is an example for	biopla	stic?		
a. PBH	b. PVC	(e. PCC		d. PCV
8. Bacillus thuringie	ensis is used as	-			
a. Biofertilizer	b. Biopesticide		e. Bioplastic		d. Biorepellent
9. The chemical fund	9. The chemical functional group that gives color to the substance is called as				
a. Iodophore	b. Basophore	c. (Chromophore		d. None of the above
10. Which organism	produces biodiesel?			•	
a. Chrococcus	b. Botrycoccus		c. Scenede.	smus	d. Both b & c
11. Biogas is produc	ed by certain bacteria l	by the j	process of		
a. Acetogenesis	b. Chlorogensis	(c. Methanogene	esis	d. Nitrification
12. Petroleum hydro	carbons are greatly deg	graded	by		
a. Serratia	b. Bacillus		c. Proteus		d. Pseudomonas
13. Recombinant va	ccines are produced by				
a. Cutting	b. Grafting		c. Harvesti	ing	d. Cloning
14. Hepatitis is commonly caused by					
a. Bacteria	b. Fungi		c. Virus	3	d. Protozoa
15. Penicillin is prod					
a. Bacteria	b. Fungi		c. Virus		d. Protozoa
16. Insulin is pancreatic hormone composed ofpeptide chains					
a. 1 b. 2				d. 4	
17. Which of the following product is produced from animals systems through transgenic technology?					

	a. Fibrin	b. Antithrombin	c. Insulin	d. Interferon
18. Recombinant proteins (RPs) are extensively produced by using one of the following cell line				
a. MCF b. CHO		c. HeLa	d. MG-63	
19. BT cotton is generated for the purpose of				
a.	Controlling cotton production	b. Controlling Honey b population	c. Controlling butte propagation	erfly d. Controlling cotton pests
20. Transgenic tomato was produced by recombinant DNA technology for the purpose of				
	a. Increasing CHO content	b. Increasing vitamin content	c. Increasing lipid content	d. Increasing protein content

SECTION – B (5 X $5 = 25$ MARKS) ANSWER ALL THE QUESTIONS		
21. A) Write shot notes on the rearing of silkworm	(OR)	
B) Write a short note on the applications of vermin compost		
22. A) Explain the uses of SCP.	(OR)	
B) List out the hazardous consequences of bioweapons		
23. A) List out the composition of biogas	(OR)	
B) Write short notes on pest control management		
24. A) Write short notes on plantibodies	(OR)	
B) Write short notes on gene therapy		
25. A) How will you produce golden rice?	(OR)	
B) Briefly write about uses of Flavr-Savr Tomato		

SECTION – C (3 X 10 = 30 MARKS) ANSWER ALL THE QUESTIONS
26. Give a detailed account on mushroom cultivation technology
27. Give a detailed account on biopesticide production
28. Give a detailed account on bio diesel production
29. Give a detailed account on penicillin production
30. Give a detailed account on the production of transgenic mice

	NAME	SIGNATURE
PREPARED BY		
COMPILED BY	Dr. M. Balasubramanian	
AUTHORISED BY	Dr. M. Ram Mohan	
