# VIVEKANANDHA

COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2008 Certified Institution, Affiliated to Periyar University, Salem, (Approved by AICTE and Re-Accredited with 'A' Grade by NAAC, Recognized Under 2(f) and 12(b) of UGC Act, 1956). Elayampalayam, Tiruchengode - 637 205, Namakkal Dt., Tamilnadu, INDIA.

# **DEPARTMENT OF CHEMISTRY**

# MASTER OF SCIENCE (M.Sc.)



CHEMISTRY

# M.Sc., CHEMISTRY REGULATIONS AND SYLLABUS

# [FOR CANDIDATES ADMITTED FROM 2020-21 ONWARDS UNDER AUTONOMOUS – OBE & CBCS PATTERN]



SPONSORED BY ANGAMMAL EDUCATIONAL TRUST

Elayampalayam – 637 205, Tiruchengode Tk., Namakkal Dt., Tamil Nadu. Veerachipalayam - 637 303, Sankari Tk., Salem Dt., Tamil Nadu. Tel. : 04288 234670 (4 lines), Mobile : 64437 34670, Fax : 04288 234894 Website : www.vivekanandha.ac.in email : vivekaadmission@gmail.com

# About the College

Vivekanandha College of Arts and Sciences for Women (Autonomous) was established and hailed into Women's Educational Service in the Year 1995. Angammal Educational Trust Chaired by the great Educationalist 'Vidhya Rathna' Prof. Dr. M. KARUNANITHI, B.Pharm., M.S., Ph.D., D.Litt., sponsors this college and other institutions under the name of the great Saint Vivekanandha. Our institutions are situated on either side of TiruchengodeNamakkal Main Road at Elayampalayam, 6 kms away from Tiruchengode. This is biggest women's college in India with more than 7500 girl students and more than 18 departments. The strength of the college was just 65 at the time of its establishment. With the dedication, work, sacrifice and long vision of the chairman, this institution has grown into a Himalaya stage. As a result of which UGC, New Delhi, awarded 2f and 12b, extended Autonomous status for second cycle. The National Assessment and Accreditation Council reaccredited with grade 'A' for its successful performance.

As an Autonomous Institution, academic professionals of the college framed Curriculum and Syllabi in consultation with all its stakeholders to cater the needs of the young women to fulfill the women empowerment and present Industrial needs to the local benefits. The students are empowering with confidence and required skills to face the society.

# **Quality Policy**

To provide professional training by establishing a high level center of learning that provides quality education at par with the international standards and Provide excellence education with well equipped infrastructure to all the rural women.

# **Our Vision**

To be an academic institution exclusively for women, in dynamic equilibrium with the social and economic environment, strive continuously for excellence in education, research and technological service to the nation.

# **Our Mission**

The mission of our institution is to discover, teach and apply knowledge for the intellectual, cultural, ethical, social and economic growth of women students.

| S. No. | TOPICS                    |    |  |  |  |  |  |  |
|--------|---------------------------|----|--|--|--|--|--|--|
|        | REGULATIONS               |    |  |  |  |  |  |  |
| 1      | SCOPE OF THE COURSE       | IV |  |  |  |  |  |  |
| 2      | SALIENT FEATURES          | IV |  |  |  |  |  |  |
| 3      | OBJECTIVES                | V  |  |  |  |  |  |  |
| 4      | ELIGIBILITY FOR ADMISSION | V  |  |  |  |  |  |  |

| 5  | DURATION OF THE COURSE                                     | V    |
|----|------------------------------------------------------------|------|
| 6  | ASSESSMENT                                                 | VI   |
| 7  | PASSING MINIMUM                                            | VIII |
| 8  | CLASSIFICATION OF SUCCESSFUL CANDIDATES                    | VIII |
| 9  | ELIGIBILITY FOR AWARD OF THE DEGREE                        | VIII |
| 10 | PROCEDURE IN THE EVENT OF FAILURE                          | IX   |
| 11 | COMMENCEMENT OF THESE REGULATIONS                          | IX   |
| 12 | COURSE PATTERN                                             | Х    |
| 13 | BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN                  | XII  |
|    | SYLLABUS FOR YEAR I (Semester I)                           |      |
|    | COURSE PATTERN WITH PAPERS                                 |      |
| 1  | Core I – Concepts of Organic Chemistry and Stereochemistry |      |
| 2  | Core II – Transition metal and Nuclear Chemistry           |      |
| 3  | Core III – Group theory, Kinetics and Surface Chemistry    |      |
| 4  | Elective                                                   |      |
|    | SYLLABUS FOR YEAR I (Semester II)                          |      |
|    | COURSE PATTERN WITH PAPERS                                 |      |
| 1  | Core IV – Organic Reaction Mechanism                       |      |
| 2  | Core V – Chemical Bonding and Coordination Chemistry       |      |
| 3  | Elective                                                   |      |
| 4  | Core Practical I – Organic Chemistry Practical-I           |      |
| 5  | Core Practical II – Inorganic Chemistry Practical-I        |      |
| 6  | Core Practical III – Physical Chemistry Practical-I        |      |
|    | SYLLABUS FOR YEAR II (Semester III)                        |      |
|    | COURSE PATTERN WITH PAPERS                                 |      |
| 1  | Core V – Organic Chemistry-III                             |      |
| 2  | Core IV – Inorganic Chemistry-III                          |      |
| 3  | Core VII – Physical Chemistry-II                           |      |
| 4  | EDC – Solar Energy                                         |      |
| 5  | Human Rights                                               |      |
|    | SYLLABUS FOR YEAR II (Semester IV)                         |      |
|    | COURSE PATTERN WITH PAPERS                                 |      |
| 1  | Core IX – Physical Chemistry-III                           |      |
| 2  | Elective                                                   |      |
| 3  | Core Practical-IV – Organic Chemistry Practical-II         |      |
| 4  | Core Practical V – Inorganic Chemistry-Practical-II        |      |
| 5  | Core Practical VI – Physical Chemistry-Practical-II        |      |
| 6  | Project Work – Project                                     |      |

# REGULATIONS

# I. SCOPE OF THE COURSE

The uniqueness of the M.Sc. (Chemistry) program is its content and topic coverage, the teaching methodology and the faculty. The program expects a serious commitment of the students to take up challenging study schedules and assignments. The course involves a blend of theoretical education and practical training which run concurrently for a period of three years and equips a student with knowledge, ability, skills and other qualities.

The teaching methodologies include classroom lectures, industrial visits, orientation and internship. The new syllabus may help the students to understand the newer aspects of chemistry and apply the same to the real life situations. Thus the students turn more relevant and resourceful to the society. It may enable the young minds think differently and forms a link between old ideas and new ideas in chemistry and gives comprehensive approaches to the very learning process and the learners. To have academic flexibility we have chosen and implemented Choice Based Credit System (CBCS) in our syllabus. To enhance the quality of students from 2018-2019, we have implemented Outcome Based Education (OBE) education system for I PG students. The OBE pattern will be extended for the II PG students in forth coming years.

## **II. SALIENT FEATURES**

- Course is specially designed for a higher level career placement.
- Special guest lecturers from Industrialists will be arranged.
- Exclusively caters to students interested in pursuing higher studies.
- Special industry orientations and training are parts of the degree course.
- Project work is included in the syllabus to enhance conceptual, analytical and deductive skills.

#### III. OBJECTIVES

The new syllabus throws light on the recent and emerging areas of chemistry.

 Enable the students to understand chemistry and make them more relevant to the society.

- Develop the analytical ability in students so that they prepared themselves in solving problems.
- ✓ Help the students to learn practical skills in a better way.
- ✓ Inculcate research aptitude in students.
- ✓ Enable the students to go to higher levels of learning chemistry.
- ✓ Improve the employability of the students.
- ✓ To inspire the students to apply their knowledge gained for the development of society in general.

### IV. ELIGIBILITY FOR ADMISSION

Candidates seeking admission to the first year PG Degree course (M.Sc. chemistry) shall be required to have passed B.Sc., (Chemistry) B.Sc., (Applied chemistry) and B.Sc., (Industrial chemistry).

### V. DURATION OF THE COURSE

- The course shall extend over a period of two academic years consisting of four semesters. Each academic year will be divided into two semesters. The first semester will consist of the period from July to November and the second semester from December to April.
- The subjects of the study shall be in accordance with the syllabus prescribed from time to time by the Board of Studies of Vivekanandha College of Arts and Sciences for Women with the approval of Periyar University.
- Each subject will have 5 or 4 hours of lecture per week apart from practical training at the end of academic year.

#### VI. ASSESSMENT

Assessment of the students would be made through Continuous Internal Assessment (CIA) and External Assessment (EA) for passing each subject both theory and practical papers.

A candidate would be permitted to appear for the External Examination only on earning 75 % of attendance and only when her conduct has been satisfactory. It shall be open to grant exemption to a candidate for valid reasons subject to conditions prescribed.

# A. CONTINUOUS INTERNAL ASSESSMENT (CIA)

The performance of the students will be assessed continuously and the Internal Assessment Marks will be as under:

| 1. Average of two CIA test and Mo | odel exam - 1 | 0 Marks    |
|-----------------------------------|---------------|------------|
| 2. Seminar                        |               | - 05 Marks |
| 3. Assignment                     |               | - 05 Marks |
| 3. Attendance                     |               | - 05 Marks |
|                                   |               |            |
|                                   | Total         | =25 Marks  |
|                                   |               |            |

Distribution of attendance mark

|        |            | Marks  |           |  |  |  |
|--------|------------|--------|-----------|--|--|--|
| S. No. | Percentage | Theory | Practical |  |  |  |
| 1      | 76-80      | 1      | 2         |  |  |  |
| 2      | 81-85      | 2      | 4         |  |  |  |
| 3      | 86-90      | 3      | 6         |  |  |  |
| 4      | 91-95      | 4      | 8         |  |  |  |
| 5      | 96-100     | 5      | 10        |  |  |  |

# **B. EXTERNAL ASSESSMENT (EA)**

The performance of the students would be assessed by examination at the end of each semester with a written test for theory for three hours and practical examination at the end of

even semesters for six hours. Question papers would be set by the selected external examiners in the prescribed format and valuated by the external examiners with the help of the teacher concern.

The pattern of assessment is as follows:

| Section | Activity              |       | Marks<br>(75) | Activity           | Marks<br>(60) |
|---------|-----------------------|-------|---------------|--------------------|---------------|
| А       | One mark (20)         |       | 20            | Record work        | 5             |
| В       | Five m<br>(Either or) | narks | 25            | Viva Voce          | 5             |
| С       | Ten marks (3/5)       |       | 30            | Spotter            | 20            |
|         |                       |       |               | Major(Performance) | 5             |
|         |                       |       |               | Major (Result)     | 5             |
|         |                       |       |               | Major (Writeup)    | 10            |
|         |                       |       |               | Minor(Performance) | 2             |
|         |                       |       |               | Minor (Result)     | 3             |
|         |                       |       |               | Minor (Writeup)    | 5             |
|         | Total                 |       | 75            | Total              | 60            |

Distribution Of Final Assessment Marks (Theory-75, Practicals-60)

#### **VII. PASSING MINIMUM**

#### INTERNAL

There is no passing minimum for CIA

## **EXTERNAL**

In the University Examinations, the passing minimum shall be 50 % out of 75 Marks for theory (38 marks) and 50% out of 60 marks for practical (30 Marks).

### VIII. CLASSIFICATION OF SUCCESSFUL CANDIDATES

Successful candidates passing the examination of Core Courses and elective courses, and securing marks

- a) 75 % and above shall be declared to have passed the examination in first class with Distinction provided they pass all the examinations prescribed for the programme at first appearance itself.
- b) 60% and above shall be declared to have passed the examinations in first class without Distinction.
- c) 50% and above but below 60% shall be declared to have passed the examinations in second class.
- d) Candidates who pass all the examinations prescribed for the programme at the first appearance itself and within a period of two consecutive academic years from the year of admission only will be eligible for University rank.

### IX. ELIGIBILITY FOR AWARD OF THE DEGREE

A candidate shall be eligible for the award of the degree only if she has undergone the above degree for a period of not less than two academic years comprising of four semesters and passed the examinations prescribed and fulfiled such conditions have been prescribed.

### X. PROCEDURE IN THE EVENT OF FAILURE

If a candidate fails in a particular subject, she may reappear for the end semester examination in the concerned subject in subsequent semesters and shall pass the examination.

### XI. COMMENCEMENT OF THESE REGULATIONS

These regulations shall take effect from the academic year 2020-21 (i.e.,) for the students who are to be admitted to the first year of the course during the academic year 2020-21 and thereafter.

### XII. COURSE PATTERN (OBE)

# VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN

#### (AUTONOMOUS)

#### SYLLABUS FRAME WORK

| &<br>Co<br>de<br>Su<br>bj<br>ect                                      | Ho<br>ur<br>Ins/<br>t. W<br>ee<br>k | Cr<br>ed<br>it | Ex<br>a<br>M<br>Ho<br>ur<br>s | Int<br>er<br>nal | Ex<br>ter<br>nal | To<br>tal<br>M<br>ar<br>ks | Su<br>bj<br>ect<br>s                                            | Ho<br>ur<br>Ins/<br>t. W<br>ee<br>k | Cr<br>ed<br>it | Ex<br>a<br>m<br>Ho<br>ur<br>s | Int<br>er<br>nal | Ex<br>ter<br>nal | To<br>tal<br>M<br>ar<br>ks |
|-----------------------------------------------------------------------|-------------------------------------|----------------|-------------------------------|------------------|------------------|----------------------------|-----------------------------------------------------------------|-------------------------------------|----------------|-------------------------------|------------------|------------------|----------------------------|
|                                                                       | YEAR I                              |                |                               |                  |                  |                            |                                                                 |                                     |                |                               |                  |                  |                            |
|                                                                       | Seme                                | ster I         |                               |                  |                  |                            |                                                                 | Sem                                 | ester II       |                               |                  |                  |                            |
| Concepts of Organic<br>Chemistry and<br>Stereochemistry &<br>20P1CH01 | 5                                   | 5              | 3                             | 25               | 75               | 100                        | Organic Reaction<br>Mechanism &<br>20P2CH04                     | 5                                   | 5              | 3                             | 25               | 75               | 100                        |
| Transition metal<br>and Nuclear<br>Chemistry &<br>20P1CH02            | 5                                   | 5              | 3                             | 25               | 75               | 100                        | Chemical Bonding and<br>Coordination<br>Chemistry &<br>20P2CH05 | 5                                   | 5              | 3                             | 25               | 75               | 100                        |
| Group theory,<br>Kinetics and<br>Surface Chemistry<br>& 20P1CH03      | 5                                   | 5              | 3                             | 25               | 75               | 100                        | Elective Course                                                 | 5                                   | 4              | 3                             | 25               | 75               | 100                        |
| Elective Course                                                       | 4                                   | 4              | З                             | 25               | 75               | 100                        | Organic Chemistry<br>Practical-I &<br>20P2CHP01                 | 5                                   | 4              | 6                             | 40               | 60               | 100                        |
| Organic Chemistry<br>Practical-I &<br>20P2CHP01                       | 4                                   | -              | -                             | -                | -                | -                          | Inorganic<br>ChemistryPractical-I &<br>20P2CHP02                | 5                                   | 4              | 6                             | 40               | 60               | 100                        |
| Inorganic<br>ChemistryPractical-I &<br>20P2CHP02                      | 4                                   | -              | -                             | -                | -                | -                          | Physical<br>ChemistryPractical I &<br>20P2CHP03                 | 4                                   | 4              | 6                             | 40               | 60               | 100                        |
| Physical<br>ChemistryPractical-I &<br>20P2CHP03                       | 3                                   | -              | -                             | -                | -                | -                          | Library                                                         | 1                                   | -              | -                             | -                | -                | -                          |
| Library                                                               |                                     | -              | -                             | -                | -                | -                          |                                                                 | -                                   | -              | -                             | -                | -                | -                          |

| Total        | 30 | 19 | 12 | 100 | 300 | 400 | Total | 30 | 26 | 27  | 195 | 405  | 600 |
|--------------|----|----|----|-----|-----|-----|-------|----|----|-----|-----|------|-----|
| I YEAR TOTAL |    |    |    |     |     |     |       | 45 | 39 | 295 | 705 | 1000 |     |

|                                                        | L                           |             |    |     |     | YE  | AR II                                                  |    |    |          |     |      | YEAR II |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------|-----------------------------|-------------|----|-----|-----|-----|--------------------------------------------------------|----|----|----------|-----|------|---------|--|--|--|--|--|--|--|--|--|--|--|
|                                                        |                             | Semester IV |    |     |     |     |                                                        |    |    |          |     |      |         |  |  |  |  |  |  |  |  |  |  |  |
| Organic Chemistry-<br>III & 20P3CH06                   | 5                           | 5           | 3  | 25  | 75  | 100 | Physical<br>Chemistry-III &<br>20P4CH09                | 5  | 5  | 3        | 25  | 75   | 100     |  |  |  |  |  |  |  |  |  |  |  |
| Inorganic<br>Chemistry-III &<br>20P3CH07               | 5                           | 5           | 3  | 25  | 75  | 100 | Elective Course                                        | 5  | 4  | 3        | 25  | 75   | 100     |  |  |  |  |  |  |  |  |  |  |  |
| Physical<br>Chemistry-II &<br>20P3CH08                 | 4                           | 5           | 3  | 25  | 75  | 100 | Organic Chemistry<br>Practical-II &<br>20P4CHP04       | 5  | 4  | 6        | 40  | 60   | 100     |  |  |  |  |  |  |  |  |  |  |  |
| NMEC                                                   | 4                           | 4           | 3  | 25  | 75  | 100 | Inorganic<br>Chemistry-<br>Practical-II &<br>20P4CHP05 | 5  | 4  | 6        | 40  | 60   | 100     |  |  |  |  |  |  |  |  |  |  |  |
| Organic Chemistry<br>Practical-II &<br>20P4CHP04       | 4                           | -           | -  | -   | -   | -   | Physical<br>Chemistry-<br>Practical-II &<br>20P4CHP06  | 4  | 4  | 6        | 40  | 60   | 100     |  |  |  |  |  |  |  |  |  |  |  |
| Inorganic<br>Chemistry-<br>Practical-II &<br>20P4CHP05 | 4                           | -           | -  | -   | -   | -   | Library                                                | 1  | -  | -        | -   | -    | -       |  |  |  |  |  |  |  |  |  |  |  |
| Physical<br>Chemistry-<br>Practical-II &<br>20P4CHP06  | 3                           | -           | -  | -   | -   | -   | Project Work                                           | 5  | 4  | -        | 40  | 60   | 100     |  |  |  |  |  |  |  |  |  |  |  |
| Human Rights &<br>20P3HR01                             | 1                           | 1           | 3  | 25  | 75  | 100 |                                                        |    |    |          |     |      |         |  |  |  |  |  |  |  |  |  |  |  |
| Total                                                  | 30                          | 20          | 15 | 125 | 375 | 500 | Total                                                  | 30 | 25 | 24       | 210 | 390  | 600     |  |  |  |  |  |  |  |  |  |  |  |
|                                                        | II YEAR TOTAL 45 3          |             |    |     |     |     |                                                        |    |    | 39<br>68 | 335 | 765  | 1100    |  |  |  |  |  |  |  |  |  |  |  |
|                                                        | TOTAL CREDIT FOR THE COURSE |             |    |     |     |     |                                                        |    |    |          | 630 | 1470 | 2100    |  |  |  |  |  |  |  |  |  |  |  |

#### **ELECTIVE COURSES**

| 6        | Catagory | Course code | Course title                        | Contact hrs per | Credits |     |
|----------|----------|-------------|-------------------------------------|-----------------|---------|-----|
| Semester | Category |             | Course title                        | week            | Min     | Max |
|          | Elective | 20P1CHE01   | Nanoscience and Nanotechnology      | 4               | 4       | 4   |
|          | Elective | 20P1CHE02   | Instrumental Methods of Analysis    | 4               | 4       | 4   |
| II       | Elective | 20P2CHE03   | Electrochemistry and Photochemistry | 4               | 4       | 4   |

|    | Elective | 20P2CHE04 | Organic Spectroscopy      | 4 | 4 | 4 |
|----|----------|-----------|---------------------------|---|---|---|
|    | Elective | 20P3CHE05 | Applied Polymer Chemistry | 4 | 4 | 4 |
|    | Elective | 20P3CHE06 | Industrial Chemistry      | 4 | 4 | 4 |
|    | Elective | 20P4CHE07 | Environmental Chemistry   | 4 | 4 | 4 |
| IV | Elective | 20P4CHE08 | Food Chemistry            | 4 | 4 | 4 |

# \*EXTRA CREDIT EARNING PROVISION

| Semester | Course code | Course title                                 | Credits |
|----------|-------------|----------------------------------------------|---------|
| I        | 20P1CHEC1   | Online Course                                | 1       |
| I        | 20P1CHEC2   | Water Quality Analysis (Self<br>Study Paper) | 1       |
| I        | 20P1CHEC3   | Dairy Chemistry <b>(Self</b><br>Study Paper) | 1       |
| П        | 20P2CHEC4   | Online Course                                | 1       |
| II       | 20P2CHEC5   | Green Chemistry (Self<br>Study Paper)        | 1       |
| II       | 20P2CHEC6   | Research Methodology (Self<br>Study Paper)   | 1       |
| II       | 20P1CHEC7   | Online Course                                | 1       |

\* Not considered for grand total and CGPA

#### XIII . BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN

K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

### 1. Theory: 75 Marks

(i)Test - I & II and ESE:

| Knowledge<br>Level | Section               | Marks      | Description | Total |
|--------------------|-----------------------|------------|-------------|-------|
| K1                 | A (One Mark)          | 20 x 01=20 | Objective   |       |
| К2                 | B (Either or pattern) | 05 x 05=25 | Descriptive | 75    |
| K3, K4 & K5        | C (Three out of five) | 03 x 10=30 | Detailed    |       |

# Programme Outcomes

| PO 1 | Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.                                                                                    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2 | Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.                                                        |
| PO 3 | Capability to apply analytic thought to a body of knowledge analyse and evaluate<br>evidence arguments claims beliefs on the basis of empirical evidence identify relevant<br>assumptions or implications                                 |
| PO 4 | Capacity to extrapolate from what one has learned and apply their competencies to<br>solve different kinds of non familiar problems rather than replicate curriculum content<br>knowledge and apply ones learning to real life situations |
| PO 5 | Ability to evaluate the reliability and relevance of evidence identify logical flaws and holes in the arguments of others analyse and synthesise data from a variety of sources draw valid Conclusions.                                   |
| PO 6 | A sense of inquiry and capability for asking relevant appropriate questions<br>problematising synthesising and articulating ability to recognise cause and effect<br>relationships define problems formulate hypotheses.                  |
| PO 7 | Ability to work effectively and respectfully with diverse teams facilitate cooperative or coordinated effort on the part of a group and act together as a group in the interests of work efficiently as a member of a team.               |
| PO 8 | Ability to analyse interpret and draw conclusions from quantitative qualitative data<br>and critically evaluate ideas, evidence and experiences from an open minded and<br>reasoned perspective.                                          |
| PO 9 | Critical sensibility to lived experiences with self awareness and reflexivity of both self and society.                                                                                                                                   |

| PO 10 | Capability to use ICT in a variety of learning situations demonstrate ability to access<br>evaluate and use a variety of relevant information sources and use appropriate<br>software for analysis of data. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 11 | Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.                                                                            |
| PO 12 | Possess knowledge of the values and beliefs of multiple cultures and a global perspective.                                                                                                                  |
| PO 13 | Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.                     |
| PO 14 | Capability for mapping out the tasks of a team or an organization and setting direction formulating an inspiring vision building a team who can help achieve the vision motivating.                         |
| PO 15 | Ability to acquire knowledge and skills including learning how to learn that are necessary for participating in learning activities throughout life through self paced.                                     |

### **Programme Specific Outcomes**

**PS01:** To foster a theoretical and practical knowledge on chemistry and its applications and to make responsible citizenships.

**PS02:** To deliver core and advanced courses on the applied chemistry.

**PS03:** To deepen learner-capacity for productive scientific thinking both within and beyond the classroom through extensive programmes.

**PS04:** To cultivate problem solving skills through chemical knowledge to address environmental problems, and to complement and reflect on social needs.

**PS05:** To develop innovative thinking, generate creative ideas towards scientific knowledge through well-structured seminars and assignments.

PS06: To apply modern methods of analysis to chemical systems in a laboratory setting.

| MOREN ENPOYERING     | VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN<br>(AUTONOMOUS)<br>Elayampalayam, Tiruchengode-637 205.                                                                                                                               |                                                                                                                                                                                         |                 |       |        |                   |               |          |                 |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|--------|-------------------|---------------|----------|-----------------|
| Programme            | M.Sc                                                                                                                                                                                                                                      | Programme Code                                                                                                                                                                          |                 |       | PO     | CH                | Regulati      | ons      | 2020-2022       |
| Department           | Cł                                                                                                                                                                                                                                        | emistry                                                                                                                                                                                 |                 |       |        | Semester          | •             |          | 3               |
| Course Code          | Cou                                                                                                                                                                                                                                       |                                                                                                                                                                                         | rioc<br>We<br>T |       | Credit |                   |               | m Marks  |                 |
| 20P3CH06             | CORE PAPER<br>Natural Product<br>reactions and R                                                                                                                                                                                          | s, Pericyclic                                                                                                                                                                           | 5               | 1     | г      | 05                | CA<br>25      | ES<br>7: |                 |
| Course<br>Objectives | pericyclic reaction                                                                                                                                                                                                                       | nt to learn about the clons. To learn the relation the basic principles a                                                                                                               | n bet           | veer  | n the  | structure and     |               |          |                 |
| POs                  |                                                                                                                                                                                                                                           | PROG                                                                                                                                                                                    | RAM             | ME    | E OI   | UTCOME            |               |          |                 |
| PO 1                 |                                                                                                                                                                                                                                           | strating comprehensive k                                                                                                                                                                |                 |       | and u  | understanding o   | of one or m   | ore d    | isciplines that |
| PO 2                 | form a part of an undergraduate programme of study.<br>Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself. |                                                                                                                                                                                         |                 |       |        |                   |               |          |                 |
| PO 3                 |                                                                                                                                                                                                                                           | y analytic thought to a b<br>basis of empirical evide                                                                                                                                   |                 |       |        |                   |               |          |                 |
| PO 4                 |                                                                                                                                                                                                                                           | plate from what one has le                                                                                                                                                              |                 |       |        | -                 |               |          |                 |
| PO 5                 | arguments of other                                                                                                                                                                                                                        | e the reliability and rele<br>s analyse and synthesise d                                                                                                                                | ata fro         | mav   | varie  | ty of sources dra | aw valid Co   | nclusi   | ions.           |
| PO 6                 | A sense of inquiry and capability for asking relevant appropriate questions problematising synthesising and articulating ability to recognise cause and effect relationships define problems formulate hypotheses.                        |                                                                                                                                                                                         |                 |       |        |                   |               |          |                 |
| PO 7                 |                                                                                                                                                                                                                                           | ectively and respectfully up and act together as a gr                                                                                                                                   |                 |       |        |                   |               |          |                 |
| PO 8                 | Ability to analyse interpret and draw conclusions from quantitative qualitative data and critically evaluate ideas, evidence and experiences from an open minded and reasoned perspective.                                                |                                                                                                                                                                                         |                 |       |        |                   |               |          |                 |
| PO 9                 | -                                                                                                                                                                                                                                         | to lived experiences with s                                                                                                                                                             |                 |       |        | -                 |               |          | -               |
| PO 10                |                                                                                                                                                                                                                                           | CT in a variety of learnin information sources and u                                                                                                                                    | -               |       |        |                   | -             |          | ate and use a   |
| PO 11                | Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.                                                                                                          |                                                                                                                                                                                         |                 |       |        |                   |               |          |                 |
| PO 12                | Possess knowledge of the values and beliefs of multiple cultures and a global perspective.                                                                                                                                                |                                                                                                                                                                                         |                 |       |        |                   |               |          |                 |
| PO 13                | •                                                                                                                                                                                                                                         | Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work. |                 |       |        |                   |               |          |                 |
| PO 14                | inspiring vision bu                                                                                                                                                                                                                       | pping out the tasks of a t<br>ilding a team who can help                                                                                                                                | o achie         | ve th | e vis  | ion motivating.   | -             |          |                 |
| PO 15                |                                                                                                                                                                                                                                           | knowledge and skills inclues throughout life through                                                                                                                                    |                 |       | ng h   | ow to learn that  | t are necessa | ıry fo   | r participating |

| COs            | COURSE OUTCOME                                                                                                                                                          |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 1           | Students can learn about the chemical properties and structure of organic compounds like terpenoids, alkaloids, steroids and flavones etc derived from plant materials. |
| CO 2           | Students can understand isolation, characterisation and laboratory synthesis of natural products.                                                                       |
| CO 3           | Student can know the concept of HOMO and LUMO, and their influence in bond formation.                                                                                   |
| CO 4           | Students study the nature of double bonded compounds and the possible isomer arrived upon their rearrangement.                                                          |
| CO 5           | Knowledge of student will be enriched with green chemistry and various types of eco-friendly reactions could be conducted on their own.                                 |
| Pre-requisites |                                                                                                                                                                         |

|       | KNOWLEDGE LEVELS                                                                                              |         |        |          |         |      |       |       |              |      |         |       |      |      |      |
|-------|---------------------------------------------------------------------------------------------------------------|---------|--------|----------|---------|------|-------|-------|--------------|------|---------|-------|------|------|------|
| 1.R   | 1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing<br>CO / PO / KL Mapping |         |        |          |         |      |       |       |              |      |         |       |      |      |      |
|       | (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)                                     |         |        |          |         |      |       |       |              |      |         |       |      |      |      |
| Cos   | 8                                                                                                             |         |        | ]        | KLs     |      |       |       | POs          |      |         |       | KI   |      |      |
| СО    | 1                                                                                                             |         |        |          | 2       |      |       |       | PO           |      |         |       | 2    |      |      |
|       |                                                                                                               |         |        |          |         |      |       |       | PO           |      |         |       | 1    |      |      |
| СО    | 2                                                                                                             |         |        |          | 4       |      |       |       | PO           |      |         |       | 5    |      |      |
|       |                                                                                                               |         |        |          |         |      |       |       | PO           |      |         |       | 5    |      |      |
| СО    | 3                                                                                                             |         |        |          | 3       |      |       |       | PO :<br>PO : |      |         |       | 4    |      |      |
|       |                                                                                                               |         |        |          |         |      |       |       | PO           |      |         |       | 2    |      |      |
| CO    | 4                                                                                                             |         |        |          | 5       |      |       |       | PO           |      |         | 4     |      |      |      |
|       |                                                                                                               |         |        |          |         |      | PO 9  |       |              |      | 1       |       |      |      |      |
| СО    | 5                                                                                                             |         | 3      |          |         |      | PO 10 |       |              |      | 3       |       |      |      |      |
| - Dao |                                                                                                               |         | KLs    |          |         |      | PO 11 |       |              |      | 3       |       |      |      |      |
| PSC   | S                                                                                                             |         |        |          |         |      | PO 12 |       |              |      | 2       |       |      |      |      |
| PSO   | 1                                                                                                             |         |        | 3        |         |      |       | PO 13 |              |      |         | 1     |      |      |      |
| PSO   | 2                                                                                                             |         |        |          | 4       |      |       | PO 14 |              |      |         | 6     |      |      |      |
| PSO   | 3                                                                                                             |         |        |          | 1       |      |       | PO 15 |              |      | 3       |       |      |      |      |
|       | ,                                                                                                             |         |        |          |         | CO/P | -     |       |              |      |         |       |      |      |      |
|       | (                                                                                                             | 3/2/1 i | ndicat | es the s | trengtl |      |       |       | _            |      | lium, 1 | -weak | )    |      |      |
| COs   |                                                                                                               |         | 1      | [        |         | r Ì  | gramn | r     | 1            | , ,  |         | 1     | 1    | 1    | 1    |
|       | PO1                                                                                                           | PO2     | PO3    | PO4      | PO5     | PO6  | PO7   | PO8   | PO9          | PO10 | PO11    | PO12  | PO13 | PO14 | PO15 |
| CO1   | 3                                                                                                             | 2       | 1      | 1        | 1       | 1    | 1     | 1     | 2            | 2    | 2       | 3     | 2    | 1    | 2    |
| CO2   | 1                                                                                                             | 1       | 2      | 2        | 3       | 1    | 1     | 3     | 1            | 2    | 2       | 1     | 1    | 1    | 2    |
| CO3   | 2                                                                                                             | 1       | 1      | 1        | 2       | 1    | 2     | 2     | 1            | 3    | 3       | 2     | 1    | 1    | 3    |
| CO4   | 1                                                                                                             | 1       | 3      | 3        | 2       | 2    | 1     | 2     | 1            | 1    | 1       | 1     | 1    | 2    | 1    |
| CO5   | 2                                                                                                             | 1       | 1      | 1        | 2       | 1    | 2     | 2     | 1            | 3    | 3       | 2     | 1    | 1    | 3    |

|      | CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |     |     |     |     |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|--|
| Cas  | Programme Specific Outcome<br>(POs)                                                           |     |     |     |     |  |  |  |  |
| Cos  | CO1                                                                                           | CO2 | CO3 | CO4 | CO5 |  |  |  |  |
| PSO1 | 2                                                                                             | 2   | 3   | 1   | 3   |  |  |  |  |
| PSO2 | 1                                                                                             | 3   | 2   | 2   | 2   |  |  |  |  |
| PSO3 | 2                                                                                             | 1   | 1   | 1   | 1   |  |  |  |  |

| Course Assessment Methods                   |  |  |  |  |
|---------------------------------------------|--|--|--|--|
| Direct                                      |  |  |  |  |
| 1. Continuous Assessment Test I, II & Model |  |  |  |  |
| 2. Assignment                               |  |  |  |  |
| 3. End Semester Examinations                |  |  |  |  |
| Indirect                                    |  |  |  |  |
| 1. Course End Delivery                      |  |  |  |  |

| Content of the Syllabus |                                                                                           |                |              |  |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------|----------------|--------------|--|--|--|--|--|--|
|                         | Terpenoids and Steroids                                                                   | Periods        | 15           |  |  |  |  |  |  |
|                         | Terpenes: classification, general structural elucidation,                                 |                | •            |  |  |  |  |  |  |
| Unit - I                | chemical degradation and synthesis of $\alpha$ -pinene, campl                             |                |              |  |  |  |  |  |  |
|                         | classification, structural elucidation of cholesterol (synthesis                          | · · ·          | •            |  |  |  |  |  |  |
|                         | (synthesis not required), structure and synthetic aspects of es                           | trone and prog | esterone.    |  |  |  |  |  |  |
|                         | Alkaloids and Flavonoids                                                                  | Periods        | 15           |  |  |  |  |  |  |
|                         | Alkaloids: classification, general structural elucidation,                                | structural elu | icidation by |  |  |  |  |  |  |
| Unit - II               | chemical degradation and synthesis of papaverine, quinine, morphine and reserpine.        |                |              |  |  |  |  |  |  |
|                         | Flavones: introduction and Baker-Venkatraman synthesis - Flavanol: synthesis of           |                |              |  |  |  |  |  |  |
|                         | quercetin – Isoflavones: synthesis of daidzein.                                           |                |              |  |  |  |  |  |  |
|                         | Anthocyanins and Vitamins                                                                 | Periods        | 15           |  |  |  |  |  |  |
|                         | Introduction to anthocyanins - synthesis of anthocyanins. structure and biological        |                |              |  |  |  |  |  |  |
| Unit - III              | applications - uric acid, purine derivatives and xanthine bases Vitamins: introduction to |                |              |  |  |  |  |  |  |
|                         | fat and water soluble vitamins, structural elucidation of vit vitamin K                   | amin B6, vitan | nin B12, and |  |  |  |  |  |  |
|                         | Pericyclic Reactions                                                                      | Periods        | 15           |  |  |  |  |  |  |
|                         | Electrocyclic reactions (butadiene-cyclobutene system), cyclo-addition reactions ((4 +2)  |                |              |  |  |  |  |  |  |
| Unit - IV               | and $(2+2)$ ) systems, signatropic and cheletropic reactions, use of frontier molecular   |                |              |  |  |  |  |  |  |
|                         | orbital and correlation diagrams, 1,3 and 1,5 - hyd                                       |                |              |  |  |  |  |  |  |
|                         | rearrangements: Claisen, Cope and oxy-Cope rearrangement                                  | s.             |              |  |  |  |  |  |  |
| Unit - V                | Strategies for Synthesis                                                                  | Periods        | 15           |  |  |  |  |  |  |

|               | Retrosynthetic analysis: synthons and synthetic equivalents, function<br>interconversion - disconnection approach – one group C-X, two group C<br>group C-C disconnections - chemoselectivity, umpolung - protection and d<br>alcohols, carbonyls, carboxylic acids and amino functional groups | C-X and one |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| Total Periods |                                                                                                                                                                                                                                                                                                 |             |  |  |  |

| Text | Books                                                                                                      |
|------|------------------------------------------------------------------------------------------------------------|
| 1    | V.K.Ahluwalia,M.Kidwai,New trends in green chemistry,Second Edition,2007                                   |
| 2    | Arun Bahl and B.S.Bahl, Advaced organic chemistry, S.Chand and company, 2009                               |
| 3    | T.W.Graham salomons, Carig B.Fryhle, Organic chemistry, 9th edition, Wiley. 2011.                          |
| 4    | Singh, Jagadamba and L.D.S .Yadav. Advanced Organic Chemistry.Meerut: Pragati Prakashan, 2010              |
| Refe | rences                                                                                                     |
| 1    | I.L. Finar organic Chemistry, Vol. II, 5th Edition ELBS 1975                                               |
| 2    | O.P.Agarwal, Chemistry of Organic Natural products, Goel publication vol I & II                            |
| 3    | M.G. Arora, Organic Photochemistry and Pericyclic reaction,2008                                            |
| 4    | C.H.Depuy ,O.SChampman Molecular reactions and Photo-chemistry, Prentice Hall, 1975                        |
| 5    | B.B. Grill, M. R. Willis, Pericyclic reactions, Champan & Hall 1974.                                       |
| 6    | Jonathan, Clayden, Nick Greeves, Stuart Warren. Organic Chemistry. New York: Oxford University Press, 2012 |
| E-Re | ferences                                                                                                   |
| 1    | https://articles.mercola.com/sites/articles/archive/2017/08/28/terpenoids.aspx                             |
| 2    | https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/pericycl.htm                                      |
| 3    | https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids                                  |
| 4    | www.essentialchemicalindustry.org/processes/green-chemistry.html                                           |

| NONEN ENPONERNIEN    | VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN<br>(AUTONOMOUS)<br>Elayampalayam, Tiruchengode-637 205.                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |       |                   |               |           |                |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-------|-------------------|---------------|-----------|----------------|
| Programme            | M.Sc Programme Code PCH Regulations 2020-202                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |       |                   |               | 2020-2022 |                |
| Department           | Cł                                                                                                                                                                                                                                        | emistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |       | Semester          |               |           | 3              |
| Course Code          | Cou                                                                                                                                                                                                                                       | rse Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | riod<br>We |       | Credit            | Max           | imun      | n Marks        |
|                      |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L       | Т          | Р     | С                 | CA            | ESI       | E Total        |
| 20P3CH07             | CORE PAPER V<br>Organometallic,<br>Spectroscopy and<br>Chemistry                                                                                                                                                                          | Solid state,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5       |            |       | 05                | 25            | 75        | 100            |
| Course<br>Objectives | the field of solid                                                                                                                                                                                                                        | ge about Boron compo<br>state and bio-inorganic<br>cal tools to deduce crys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c cher  | nistr      | y. T  | o understand      |               |           |                |
| POs                  |                                                                                                                                                                                                                                           | PROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RAM     | ME         | C OI  | UTCOME            |               |           |                |
| PO 1                 |                                                                                                                                                                                                                                           | strating comprehensive k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |            | ınd ı | understanding o   | of one or m   | ore dis   | sciplines that |
| PO 2                 | form a part of an undergraduate programme of study.<br>Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |       |                   |               |           |                |
| PO 3                 |                                                                                                                                                                                                                                           | y analytic thought to a b<br>the basis of empirical evide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |            |       |                   |               |           | ce arguments   |
| PO 4                 |                                                                                                                                                                                                                                           | plate from what one has leaders and the second state of the second |         |            |       | -                 |               |           |                |
| PO 5                 | arguments of other                                                                                                                                                                                                                        | e the reliability and rele<br>s analyse and synthesise d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ata fro | m a v      | varie | ty of sources dra | aw valid Co   | nclusio   | ons.           |
| PO 6                 |                                                                                                                                                                                                                                           | and capability for asking to recognise cause and eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |            | -     |                   |               |           | -              |
| PO 7                 | -                                                                                                                                                                                                                                         | ectively and respectfully up and act together as a gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |            |       |                   | -             |           |                |
| PO 8                 |                                                                                                                                                                                                                                           | interpret and draw conclu<br>l experiences from an oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            | -     | -                 |               | l critic  | cally evaluate |
| PO 9                 | -                                                                                                                                                                                                                                         | to lived experiences with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |            |       |                   |               |           | -              |
| PO 10                |                                                                                                                                                                                                                                           | CT in a variety of learning information sources and u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -       |            |       |                   | -             |           | ate and use a  |
| PO 11                | Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |       |                   |               |           |                |
| PO 12                | -                                                                                                                                                                                                                                         | of the values and beliefs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | -          |       | -                 |               |           |                |
| PO 13                | Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |       |                   |               |           |                |
| PO 14                | inspiring vision bu                                                                                                                                                                                                                       | pping out the tasks of a t<br>ilding a team who can help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o achie | ve th      | e vis | sion motivating.  | _             |           | _              |
| PO 15                | • •                                                                                                                                                                                                                                       | knowledge and skills inclues throughout life through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       |            | ng h  | ow to learn that  | t are necessa | ry for    | participating  |

| COs            | COURSE OUTCOME                                                                                                                                                                                           |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 1           | Students have the knowledge of application and properties of non aqueous solvents and formation of liquid and gaseous molecules.                                                                         |
| CO 2           | Students can able understand the commercial application of Organometallic Chemistry & catalysis.                                                                                                         |
| CO 3           | Students are enable to understand the basic of crystal structure, application of the analytical tools like XRD, AAS and PES tools in elucidating three dimensional structure of the inorganic molecules. |
| CO 4           | Students can know the importance of biologically important materials in our body.                                                                                                                        |
| CO 5           | Students will have enriched knowledge on porphyrin and other bioinorganic molecules.                                                                                                                     |
| Pre-requisites |                                                                                                                                                                                                          |

|                                                                                                             | KNOWLEDGE LEVELS |         |        |           |     |          |       |                |          |       |         |        |      |      |      |
|-------------------------------------------------------------------------------------------------------------|------------------|---------|--------|-----------|-----|----------|-------|----------------|----------|-------|---------|--------|------|------|------|
| 1.R                                                                                                         |                  |         | _      | ndersta   | CC  | ) / PO / | KL N  | lappir         | ng       |       | -       |        |      | ing  |      |
| (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)       Cos     KLs     POs     KLs |                  |         |        |           |     |          |       |                |          |       |         |        |      |      |      |
| Cos                                                                                                         | \$               |         |        |           | KLs |          |       |                |          |       |         |        | 2    |      |      |
| CO                                                                                                          | 1                |         |        |           | 2   |          |       |                | PO<br>PO |       |         |        | 1    |      |      |
|                                                                                                             |                  |         |        |           |     |          |       |                | PO       |       |         |        | 5    |      |      |
| CO                                                                                                          | 2                |         |        |           | 3   |          |       |                | PO       |       |         |        | 5    |      |      |
|                                                                                                             |                  |         |        |           |     |          |       |                | PO       |       |         |        | 4    |      |      |
| CO                                                                                                          | 3                |         |        |           | 2   |          |       |                | PO       |       |         |        | 6    |      |      |
| 60                                                                                                          | 4                |         |        | 2         |     |          |       |                | PO       | 7     |         |        | 2    |      |      |
| CO                                                                                                          | 4                |         | 2      |           |     |          |       | PO 8           |          |       |         | 4      |      |      |      |
| CO                                                                                                          | 5                |         | 2      |           |     |          |       | PO 9           |          |       |         |        | 1    |      |      |
|                                                                                                             | 5                |         |        |           |     |          |       |                | PO 1     |       |         |        | 3    |      |      |
| PSO                                                                                                         | s                |         |        | KLs       |     |          |       | PO 11          |          |       |         |        | 3    |      |      |
|                                                                                                             |                  |         |        |           |     |          |       | PO 12          |          |       |         | 2      |      |      |      |
| PSO                                                                                                         |                  |         |        |           | 3   |          |       | PO 13          |          |       |         | 1 6    |      |      |      |
| PSO<br>PSO                                                                                                  |                  |         | 4      |           |     |          |       | PO 14<br>PO 15 |          |       |         | 3      |      |      |      |
| 130                                                                                                         | 5                |         |        |           |     | CO/P     | O Mai | nning          | rui      | 5     |         |        | 5    |      |      |
|                                                                                                             | (                | 3/2/1 i | ndicat | es the st |     |          | -     |                | trong,   | 2-med | lium, 1 | -weak) | )    |      |      |
|                                                                                                             |                  |         |        |           |     | Prog     | gramn | ne Out         | come     | (POs) |         |        |      |      |      |
| COs                                                                                                         | PO1              | PO2     | PO3    | PO4       | PO5 | PO6      | PO7   | PO8            | r        | 1     | PO11    | PO12   | PO13 | PO14 | PO15 |
| CO1                                                                                                         | 3                | 2       | 1      | 1         | 1   | 1        | 1     | 1              | 2        | 2     | 2       | 3      | 2    | 1    | 2    |
| CO2                                                                                                         | 2                | - 1     | 1      | 1         | 2   | 1        | 2     | 2              | 1        | 3     | 3       | 2      | 1    | 1    | 3    |
| CO3                                                                                                         | 3                | 2       | 1      | 1         | 1   | 1        | 1     | 1              | 2        | 2     | 2       | 3      | 2    | 1    | 2    |
| CO4                                                                                                         | 3                | 2       | 1      | 1         | 1   | 1        | 1     | 1              | 2        | 2     | 2       | 3      | 2    | 1    | 2    |
| C04<br>C05                                                                                                  |                  |         |        |           |     |          |       |                |          |       |         |        |      |      |      |
| 005                                                                                                         | 3                | 2       | 1      | 1         | 1   | 1        | 1     | 1              | 2        | 2     | 2       | 3      | 2    | 1    | 2    |

|                                     | CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |     |     |     |     |  |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|--|--|
| Programme Specific Outcome<br>(POs) |                                                                                               |     |     |     |     |  |  |  |  |  |
| Cos                                 | CO1                                                                                           | CO2 | CO3 | CO4 | CO5 |  |  |  |  |  |
| PSO1                                | 2                                                                                             | 3   | 2   | 2   | 2   |  |  |  |  |  |
| PSO2                                | 1                                                                                             | 2   | 1   | 1   | 1   |  |  |  |  |  |
| PSO3                                | 2                                                                                             | 1   | 2   | 2   | 2   |  |  |  |  |  |

| Course Assessment Methods                   |  |  |  |  |  |  |  |
|---------------------------------------------|--|--|--|--|--|--|--|
| Direct                                      |  |  |  |  |  |  |  |
| 1. Continuous Assessment Test I, II & Model |  |  |  |  |  |  |  |
| 2. Assignment                               |  |  |  |  |  |  |  |
| 3. End Semester Examinations                |  |  |  |  |  |  |  |
| Indirect                                    |  |  |  |  |  |  |  |
| 1. Course End Delivery                      |  |  |  |  |  |  |  |

|                                        | Content of the Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                                                                       |  |  |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                        | Boron compounds and Clusters Boron hydrides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Periods                                                                                                                                      | 15                                                                                                                    |  |  |  |  |  |  |  |
|                                        | Inorganic chains - rings - cages and clusters - catenation - heterocatenation - intercalation chemistry - one dimensional conductor - isopolyanions - heteropolyanions - borazines -                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |                                                                                                                       |  |  |  |  |  |  |  |
| Unit - I                               | phosphazenes - phosphazene polymers - ring compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |                                                                                                                       |  |  |  |  |  |  |  |
|                                        | homocyclic inorganic systems - cages - boron cage compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                              |                                                                                                                       |  |  |  |  |  |  |  |
|                                        | clusters - trinuclear clusters - tetranuclear clusters - hexanuclear clusters - structural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                              |                                                                                                                       |  |  |  |  |  |  |  |
| prediction of organometallic clusters. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |                                                                                                                       |  |  |  |  |  |  |  |
|                                        | Organometallic Chemistry & Catalysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Periods                                                                                                                                      | 15                                                                                                                    |  |  |  |  |  |  |  |
| Unit - II                              | Carbon donors - Alkyls and Aryls-preparation and properties<br>isolobal concept - application to structure of carbonyls<br>Nitrosyls - bridging and terminal nitrosyls, bent and<br>complexes; Chain Carbon donors - Olefins, acetylene and<br>structure and bonding; Cyclic Carbon donors - Metallocer<br>bonding (Ferrocene only).<br>Hydrogenation of olefins (Wilkinsons catalyst); hydroformyl<br>or Rhodium catalysts (oxo process); Oxidation of olefins<br>(Wacker process); polymerization (Zeigler-Natta catalyst)<br>acetylene using Nickel catalyst (Reppe's catalyst); polymer b | (simple and<br>linear nitrosy<br>allyl complexe<br>ne - synthesis,<br>ation of olefine<br>s to aldehydes<br>; Cyclo oligo<br>ound catalysts. | polynuclear);<br>ls; dinitrogen<br>es - synthesis,<br>structure and<br>s using Cobalt<br>and ketones<br>merization of |  |  |  |  |  |  |  |
| Unit - III                             | Solid State Chemistry<br>Space lattice - unit cell- crystal systems- elements of syn<br>indices- crystal analysis- XRD - rotating crystal method- p<br>atoms and ions in solids- Electrical properties of solids – E<br>super conductors, theory of super conductivity – defects in so<br>magnetic properties of solids – dia, para, ferro, antiferro an                                                                                                                                                                                                                                      | bowder method<br>Band theory, se<br>blids - solid stat                                                                                       | l - packing of<br>miconductors,<br>te electrolytes;                                                                   |  |  |  |  |  |  |  |

|              | Optical properties – solid – state lasers and Inorganic phosp<br>and phase transitions – diffusion coefficient, diffusion<br>interstitial diffusions, formation of spinels and inverse spinels                                                                                                                                                                                                                                                                                      | mechanism, | vacancy and |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--|--|--|--|--|--|--|
|              | Atomic absorption, emission spectroscopy and Crystal Studies                                                                                                                                                                                                                                                                                                                                                                                                                        | Periods    | 15          |  |  |  |  |  |  |  |
| Unit - IV    | Atomic absorption spectroscopy and flame emission spectroscopy: Basic principles -<br>flame characteristics - atomizers and burners- interference instrumentation and<br>applications of AAS and FES. PES –theory of XPS, UPES-evaluation of ionization<br>potential-chemical identification of elements – ESCA - Koopmann's theorem-chemical<br>shift - UPES, XPS of N <sub>2</sub> , O <sub>2</sub> , and HCl-evaluation of vibration constants from UPES-spin<br>orbit coupling. |            |             |  |  |  |  |  |  |  |
|              | Bio-inorganic Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Periods    | 15          |  |  |  |  |  |  |  |
| Unit - V     | Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structures and<br>work functions - other oxygen carriers - Cytochromes: Structure and work functions in<br>respiration - Chlorophyll, structure - photo synthetic sequence - Sulphur proteins - (Non                                                                                                                                                                                                          |            |             |  |  |  |  |  |  |  |
| Total Period |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1, 1       | 75          |  |  |  |  |  |  |  |

| Text | Books                                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------|
| 1    | U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS. Chand & company Ltd., (2005).  |
| 2    | B. R. Puri, L. R. Sharma and K. C. Kalia., Principles of Inorganic Chemistry, S. Chand & Co (2004).                     |
| 3    | R. D. Madan., Modern Inorganic Chemistry, Chand Publishers (2004).                                                      |
| Refe | rences                                                                                                                  |
| 1    | J. E. Huheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Edn, Pearson education (2006).                   |
| 2    | F. A. Cotton, G. Wilkinson., Advanced Inorganic Chemistry, 3rd Edn, John Wiley & Sons, Inc (1972).                      |
| 3    | G. Raj., Advanced Inorganic Chemistry Vol. I & Vol. II, 6th Edn, Goel publishing house (1999).                          |
| 4    | G. S. Manku., Theoretical Principles of Inorganic Chemistry, Tata McGraw –Hill Publishing Company Ltd., (Reprint 2001). |
| 5    | R. Chang., Basic principles of Spectroscopy, McGraw Hill Ltd., New York, (1971).                                        |
| E-Re | ferences                                                                                                                |
| 1    | global.oup.com/ushe/product/boron compounds-9780198502593                                                               |
| 2    | https://www.nature.com > subjects                                                                                       |
| 3    | https://www.chemie.uni-hamburg.de/ac/rehder/Lund_BioinorgChem_08.pdf                                                    |

| HOREN ENDORGHNEIT    | VIVEKANANI                                                                                                                                                                                                                              | DHA COLLEGE OF A<br>(AUTON<br>Elayampalayam, Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NOM                 | DUS   | )     |                   | DR WOMI       | EN      | CETTURED       |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-------|-------------------|---------------|---------|----------------|--|
| Programme            | M.Sc                                                                                                                                                                                                                                    | Programme Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PCH Regulations 202 |       |       |                   |               |         | 2020-2022      |  |
| Department           | Cł                                                                                                                                                                                                                                      | emistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Semester 3          |       |       |                   |               |         | 3              |  |
| Course Code          | Cou                                                                                                                                                                                                                                     | rse Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Periods<br>per Week |       | ek    | Credit            |               |         | m Marks        |  |
|                      |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                   | Т     | Р     | C                 | CA            | ES      | E Total        |  |
| 20P3CH08             | CORE PAPER<br>Quantum Chem<br>Thermodynami                                                                                                                                                                                              | istry and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                   |       |       | 05                | 25            | 75      | 5 100          |  |
| Course<br>Objectives | To impart knowledge in the field of Quantum chemistry with applications. To enable<br>the students to acquire knowledge on statistical thermodynamics. To understand the<br>difference between classical and statistical thermodynamics |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |       |       |                   |               |         |                |  |
| POs                  |                                                                                                                                                                                                                                         | PROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RAM                 | MF    | E OI  | UTCOME            |               |         |                |  |
| PO 1                 | Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |       |       |                   |               |         |                |  |
| PO 2                 | Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |       |       |                   |               |         |                |  |
| PO 3                 | Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |       |       |                   |               |         |                |  |
| PO 4                 |                                                                                                                                                                                                                                         | blate from what one has leaders rather than replicate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |       |       | -                 |               |         |                |  |
| PO 5                 |                                                                                                                                                                                                                                         | e the reliability and rele<br>s analyse and synthesise d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |       |       |                   |               |         |                |  |
| PO 6                 |                                                                                                                                                                                                                                         | and capability for asking to recognise cause and eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |       |       |                   |               |         | -              |  |
| PO 7                 | -                                                                                                                                                                                                                                       | fectively and respectfully<br>up and act together as a g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |       |       |                   | -             |         |                |  |
| PO 8                 |                                                                                                                                                                                                                                         | interpret and draw conclu<br>l experiences from an oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |       | -     | •                 |               | l criti | cally evaluate |  |
| PO 9                 | Critical sensibility                                                                                                                                                                                                                    | to lived experiences with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | self aw             | aren  | ess a | nd reflexivity of | f both self a | nd soc  | eiety.         |  |
| PO 10                |                                                                                                                                                                                                                                         | CT in a variety of learning information sources and u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |       |       |                   |               |         | ate and use a  |  |
| PO 11                | Ability to work in through to complet                                                                                                                                                                                                   | dependently, identify apprior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ropriat             | e res | ourc  | es required for   | a project an  | d mar   | nage a project |  |
| PO 12                | Possess knowledge                                                                                                                                                                                                                       | of the values and beliefs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of mul              | tiple | cultu | ares and a globa  | l perspective | e.      |                |  |
| PO 13                | -                                                                                                                                                                                                                                       | e moral ethical values in a nultiple perspectives and the second se |                     | •     |       |                   |               | argun   | nent about an  |  |
| PO 14                |                                                                                                                                                                                                                                         | pping out the tasks of a tilding a team who can help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |       |       |                   | etting direct | ion fo  | ormulating an  |  |
| PO 15                |                                                                                                                                                                                                                                         | knowledge and skills inclues throughout life through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |       | ng h  | ow to learn that  | are necessa   | ry for  | participating  |  |

| COs            | COURSE OUTCOME                                                                                             |
|----------------|------------------------------------------------------------------------------------------------------------|
| CO 1           | Students will be able to identify wave functions using operators and recognize functions and values.       |
| CO 2           | Students will learn to perturbation and variation.                                                         |
| CO 3           | Students can learn the concept of chemical potential, fugacity of gases, Activity and activity coefficient |
| CO 4           | Students will learn the Objectives and various functions of Statistical thermodynamics                     |
| CO 5           | Students acquire deep knowledge about the concept of non equilibrium and applications                      |
| Pre-requisites |                                                                                                            |

#### **KNOWLEDGE LEVELS**

|      |            |                  |         |           | CO     | / PO /  | KL M    | appin   | g      |       |        | -      |    |    |
|------|------------|------------------|---------|-----------|--------|---------|---------|---------|--------|-------|--------|--------|----|----|
|      | (          | ( <b>3/2/1</b> i | indicat | es the st | rength | of cor  | relatio | n, 3-st | rong,  | 2-med | ium, 1 | -weak) |    |    |
| Co   | os         |                  |         | ]         | KLs    |         |         |         | POs    | 5     |        |        | KI | Ls |
| CO 1 |            |                  |         |           | 2      |         |         |         | PO     | 1     |        |        | 2  | 2  |
| CC   | CO 1       |                  |         | 3         |        |         |         |         | PO     | 2     |        |        | 1  | l  |
|      | CO 2       |                  |         | 2         |        |         |         | PO      | 3      |       |        | 5      | 5  |    |
| CO 2 |            |                  | 2       |           |        |         | PO 4    |         |        |       |        | 5      | 5  |    |
| CC   | 12         |                  | 2       |           |        |         | PO 5    |         |        |       |        | 4      | 1  |    |
| CC   | 15         |                  |         |           |        |         |         | PO 6    |        |       |        | 6      |    |    |
| CC   | <b>)</b> 4 |                  | 2       |           |        |         | PO 7    |         |        |       | 2      |        |    |    |
| C    | )4         |                  |         |           |        |         | PO 8    |         |        |       | 4      |        |    |    |
| CC   | 5          |                  |         |           | 2      |         |         | PO 9    |        |       |        | 1      |    |    |
| C    | , ,        |                  | 2       |           |        |         | PO 10   |         |        |       | 3      |        |    |    |
| PS   | 0.         |                  |         |           | KLs    |         |         | PO 11   |        |       |        | 3      |    |    |
| F.5  | US         |                  |         |           | KL8    |         |         |         | PO 12  |       |        |        | 2  | 2  |
| PSO  | D 1        |                  |         |           | 3      |         |         |         | PO 1   | 3     |        |        | 1  | Į  |
| PSO  | O 2        |                  |         |           | 4      |         |         | PO 14   |        |       |        | 6      |    |    |
| PSO  | O 3        |                  |         |           | 1      |         |         |         | PO 1   | 5     |        |        | 3  | 3  |
|      | (          | ( <b>3/2/1</b> i | indicat | es the st |        | CO / PO | -       |         | trong, | 2-med | ium, 1 | -weak) |    |    |
| COs  |            |                  |         |           |        | Prog    | ramm    | e Outo  | rome ( | POs)  |        |        |    |    |

| COs |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PO13 | PO14 | PO15 |
| CO1 | 2   | 1   | 1   | 1   | 2   | 1   | 2   | 2   | 1   | 3    | 3    | 2    | 1    | 1    | 3    |
| CO2 | 3   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 2   | 2    | 2    | 3    | 2    | 1    | 2    |
| CO3 | 3   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 2   | 2    | 2    | 3    | 2    | 1    | 2    |
| CO4 | 3   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 2   | 2    | 2    | 3    | 2    | 1    | 2    |
| CO5 | 3   | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 2   | 2    | 2    | 3    | 2    | 1    | 2    |

|                                     | CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |     |     |     |     |  |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|--|--|
| Programme Specific Outcome<br>(POs) |                                                                                               |     |     |     |     |  |  |  |  |  |
| Cos                                 | CO1                                                                                           | CO2 | CO3 | CO4 | CO5 |  |  |  |  |  |
| PSO1                                | 3                                                                                             | 2   | 2   | 2   | 2   |  |  |  |  |  |
| PSO2                                | 2                                                                                             | 1   | 1   | 1   | 1   |  |  |  |  |  |
| PSO3                                | 1                                                                                             | 2   | 2   | 2   | 2   |  |  |  |  |  |

#### **Course Assessment Methods**

Direct

1. Continuous Assessment Test I, II & Model

Assignment
 End Semester Examinations

Indirect

1. Course End Delivery

|            | Content of the Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                               |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|--|--|--|--|--|--|
|            | Quantum Chemistry-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Periods                           | 15                            |  |  |  |  |  |  |
|            | Quantum theory: Inadequacy of classical mechanics,<br>Experimental results of Black body radiation – Photoelec                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                 |                               |  |  |  |  |  |  |
| Unit - I   | equation – Heisenberg uncertainty principle – Compton effect. Born's interpretation of wave function. Operators and commutation relations, Eigen functions and Eigen values. Quantum mechanical postulates – Schrodinger equation and its solution to the problem of a particle in one and three dimensional boxes, the harmonic oscillator, the rigid                                                                                                                                                                                                                        |                                   |                               |  |  |  |  |  |  |
|            | of a particle in one and three dimensional boxes, the na<br>rotator and Hydrogen atom (Arriving solution for energy and<br>of quantum numbers and their physical significance –<br>electrons. Approximation methods – Perturbation and Vari<br>of Variation method to Hydrogen and Helium atom.                                                                                                                                                                                                                                                                               | d wave function<br>Probability di | n). The origin istribution of |  |  |  |  |  |  |
|            | Quantum Chemistry-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Periods                           | 15                            |  |  |  |  |  |  |
| Unit - II  | Theory of chemical bonding – Born – Oppenheimer approximation – LCAO – MO approximation for hydrogen molecule ion and Hydrogen – Valence Bond theory of Hydrogen molecule. Concept of Hybridization – sp, sp <sup>2</sup> and s <sup>p3</sup> hybridization – Huckel Molecular orbital (HMO) theory for conjugated $\pi$ - system – applications to simple systems (Ethylene and butadiene) – Physical Significance of HMO coefficients. Self consistent field approximation – Hartree and Hartree – Fock Self Consistant field theory – Slater type orbitals – Slater rules. |                                   |                               |  |  |  |  |  |  |
|            | Thermodynamics - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Periods                           | 15                            |  |  |  |  |  |  |
| Unit - III | Thermodynamics of non-ideal systems - Concept of chemical potential - Gibbs-Duhem<br>equation - Variation of chemical potential with temperature and pressure - Concept of<br>fugacity of gases - Determination by graphical method and from equation of state -<br>Variation of fugacity with temperature and pressure - Fugacity coefficient - Activity and<br>activity coefficient - Variation of activity of a gas with pressure and temperature.<br>Determination of solvent activity by vapour pressure method and Cryoscopic method.                                   |                                   |                               |  |  |  |  |  |  |

|           | Statistical Thermodynamics                                                               | Periods           | 15   |  |  |  |  |  |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------|-------------------|------|--|--|--|--|--|--|--|--|--|
|           | Objectives of Statistical thermodynamics, concept                                        |                   |      |  |  |  |  |  |  |  |  |  |
|           | mathematical probabilities, Distribution of distinguishable and non distinguishable      |                   |      |  |  |  |  |  |  |  |  |  |
|           | particles. Maxwell-Boltzmann, Bose-Einstein and Fern                                     |                   |      |  |  |  |  |  |  |  |  |  |
| Unit - IV | comparisons. Partition Function – Translational, Vibrationa                              |                   |      |  |  |  |  |  |  |  |  |  |
|           | partition Functions. Thermodynamic Functions in terms of p                               |                   |      |  |  |  |  |  |  |  |  |  |
|           | expression for equilibrium constant C. Calculation of Equilibrium Constant from          |                   |      |  |  |  |  |  |  |  |  |  |
|           | Partition function (isotopic exchange equilibria and dissociation of diatomic molecules) |                   |      |  |  |  |  |  |  |  |  |  |
|           | Heat capacities of monoatomic crystals - Einstein s and Debye s theories of heat         |                   |      |  |  |  |  |  |  |  |  |  |
|           | capacities.                                                                              | T                 |      |  |  |  |  |  |  |  |  |  |
|           | Irreversible Thermodynamics                                                              | Periods           | 15   |  |  |  |  |  |  |  |  |  |
|           | Reversible and Irreversible process - Types of irreversibili                             |                   |      |  |  |  |  |  |  |  |  |  |
|           | Non-Equilibrium thermodynamics. Entropy production - heat flow and matter flow.          |                   |      |  |  |  |  |  |  |  |  |  |
| Unit - V  | Progogine's principle of minimum entropy production. Forces, fluxes and Flows -          |                   |      |  |  |  |  |  |  |  |  |  |
|           | Entropy production of forces and fluxes. Linear laws - Phenomenological law - Onsager    |                   |      |  |  |  |  |  |  |  |  |  |
|           | reciprocal relation - proof by Microscopic reversibility - Ele                           |                   |      |  |  |  |  |  |  |  |  |  |
|           | Diffusion. Non-Equilibrium stationary states and Application                             | ns – Peltier effe | ect. |  |  |  |  |  |  |  |  |  |
|           | Total Periods 75                                                                         |                   |      |  |  |  |  |  |  |  |  |  |

| Text | Books                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------|
| 1    | Arun Bahl, B. S.Bahl, G. D.Tuli., Essentials of Physical Chemistry, Multicolour Revised Edn, S. Chand and Company Ltd, (2008). |
| 2    | L. K. Nash., Chemical Thermodynamics, 2nd Edn, Addision Wesley Publishing (1976)                                               |
| 3    | P.W. Atkins., Physical Chemistry, 6th Edn, Oxford University Press, (1998)                                                     |
| 4    | Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014).                                                      |
| Refe | rences                                                                                                                         |
| 1    | R. K. Prasad., Quantum Chemistry, Viva Books Private Ltd (2013).                                                               |
| 2    | D. McQuarrie., Quantum Chemistry, Viva Books Private Limited (2013).                                                           |
| 3    | A. K. Chandra., Introductory Quantum Chemistry, Tata McGraw Hill (1994).                                                       |
| 4    | W. J. Moore., Physical Chemistry, Longmann's (1975).                                                                           |
| 5    | M.C. Gupta., Statistical Thermodynamics, Wiley Eastern Limited (1990)                                                          |
| 6    | I. N. Levine, Quantum Chemistry, 4th Edn., Prentice Hall India, (1994).                                                        |
| 7    | B. K. Sen., Quantum Chemistry Including Spectroscopy, Kalyani publishers (2004).                                               |
| 8    | S. Glasstone., Thermodynamics for Chemists - East-west Press Pvt.Ltd, (2002).                                                  |
| 9    |                                                                                                                                |
| E-Re | ferences                                                                                                                       |
| 1    | www.chemistryexplained.com                                                                                                     |
| 2    | http://unicorn.mcmaster.ca/teaching/4PB3/SymmetryLectureNotes2009-Vallance-Oxford-level2.pdf                                   |
| 3    | http://cbc.arizona.edu/~salzmanr/480a/480ants/kinintro/kinintro.html                                                           |

| HOUREN EMPONETING    | VIVEKANANI                                                                                         | VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN<br>(AUTONOMOUS)<br>Elayampalayam, Tiruchengode-637 205.                                                                                                                                                                                               |         |                 |       |                   |               |           |                |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-------|-------------------|---------------|-----------|----------------|--|--|--|--|
| Programme            | M.Sc Programme Code PCH Regulations 202                                                            |                                                                                                                                                                                                                                                                                                           |         |                 |       |                   |               |           |                |  |  |  |  |
| Department           | Chemistry Semester                                                                                 |                                                                                                                                                                                                                                                                                                           |         |                 |       |                   |               |           |                |  |  |  |  |
| Course Code          | Сог                                                                                                | rse Name                                                                                                                                                                                                                                                                                                  |         | rioc<br>We<br>T |       | Credit<br>C       | Maximu        |           |                |  |  |  |  |
| 20P3CHED01           | ELECTIVE PA<br>Applied Polym                                                                       |                                                                                                                                                                                                                                                                                                           | 5       | 1               | 1     | 04                | CA<br>25      | ESI<br>75 |                |  |  |  |  |
| Course<br>Objectives | preparation of<br>To impart unc                                                                    | To impart the knowledge in the field of polymer chemistry. To impart knowledge in the preparation of syndiotactic, atactic and isotactic polymers using Zeiler-Natta catalyst. To impart understanding in the field of processing of polymers. To explore the applications of various synthetic polymers. |         |                 |       |                   |               |           |                |  |  |  |  |
| POs                  | PROGRAMME OUTCOME                                                                                  |                                                                                                                                                                                                                                                                                                           |         |                 |       |                   |               |           |                |  |  |  |  |
| PO 1                 | Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that |                                                                                                                                                                                                                                                                                                           |         |                 |       |                   |               |           |                |  |  |  |  |
| PO 2                 | Ability to express                                                                                 | form a part of an undergraduate programme of study.<br>Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.                                                                 |         |                 |       |                   |               |           |                |  |  |  |  |
| PO 3                 |                                                                                                    | y analytic thought to a b<br>the basis of empirical evide                                                                                                                                                                                                                                                 |         |                 |       |                   |               |           | ce arguments   |  |  |  |  |
| PO 4                 |                                                                                                    | blate from what one has le<br>ems rather than replicate o                                                                                                                                                                                                                                                 |         |                 |       | -                 |               |           |                |  |  |  |  |
| PO 5                 | arguments of other                                                                                 | e the reliability and rele<br>s analyse and synthesise d                                                                                                                                                                                                                                                  | ata fro | mav             | varie | ty of sources dra | aw valid Co   | nclusio   | ons.           |  |  |  |  |
| PO 6                 |                                                                                                    | and capability for asking to recognise cause and eff                                                                                                                                                                                                                                                      |         |                 |       |                   |               |           | -              |  |  |  |  |
| PO 7                 | 5                                                                                                  | ectively and respectfully<br>up and act together as a gr                                                                                                                                                                                                                                                  |         |                 |       |                   |               |           |                |  |  |  |  |
| PO 8                 |                                                                                                    | interpret and draw conclu<br>l experiences from an oper                                                                                                                                                                                                                                                   |         |                 | -     | •                 |               | d critic  | cally evaluate |  |  |  |  |
| PO 9                 | Critical sensibility                                                                               | to lived experiences with s                                                                                                                                                                                                                                                                               | self aw | aren            | ess a | nd reflexivity of | f both self a | nd soci   | iety.          |  |  |  |  |
| PO 10                |                                                                                                    | CT in a variety of learnin information sources and u                                                                                                                                                                                                                                                      | -       |                 |       |                   | -             |           | ate and use a  |  |  |  |  |
| PO 11                | through to complet                                                                                 |                                                                                                                                                                                                                                                                                                           | _       |                 |       | _                 |               |           | age a project  |  |  |  |  |
| PO 12                |                                                                                                    | of the values and beliefs                                                                                                                                                                                                                                                                                 |         |                 |       |                   |               |           |                |  |  |  |  |
| PO 13                | -                                                                                                  | moral ethical values in a nultiple perspectives and u                                                                                                                                                                                                                                                     |         | -               |       |                   | -             | argum     | ent about an   |  |  |  |  |
| PO 14                | inspiring vision bu                                                                                | pping out the tasks of a t<br>ilding a team who can help                                                                                                                                                                                                                                                  | o achie | ve th           | e vis | sion motivating.  | _             |           | _              |  |  |  |  |
| PO 15                | . –                                                                                                | knowledge and skills inclues throughout life through                                                                                                                                                                                                                                                      |         |                 | ng h  | ow to learn that  | t are necessa | ary for   | participating  |  |  |  |  |

| COs            | COURSE OUTCOME                                                                         |
|----------------|----------------------------------------------------------------------------------------|
| CO 1           | Students enable to understand various methods of polymer preparation.                  |
| CO 2           | Acquire knowledge about types of polymers and processing techniques.                   |
| CO 3           | Students know Molecular weight determination of polymers.                              |
| CO 4           | Students will analyze the various processing of polymers                               |
| CO 5           | Students enable to understand importance of polymers used for commercial applications. |
| Pre-requisites |                                                                                        |

Г

| KNOWLEDGE LEVELS |                                                                                                   |          |         |           |     |        |         |                |        |       |        |        |      |      |      |  |
|------------------|---------------------------------------------------------------------------------------------------|----------|---------|-----------|-----|--------|---------|----------------|--------|-------|--------|--------|------|------|------|--|
| 1.R              | 1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing             |          |         |           |     |        |         |                |        |       |        |        |      |      |      |  |
|                  | CO / PO / KL Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |          |         |           |     |        |         |                |        |       |        |        |      |      |      |  |
|                  |                                                                                                   | 3/2/11   | Indicat |           | -   | of cor | relatio | n, 3-st        |        |       | ium, I | -weak) |      |      |      |  |
| Cos              |                                                                                                   |          |         | ]         | KLs |        |         |                | PO     |       |        |        | KI   |      |      |  |
| CO               | 1                                                                                                 |          |         |           | 2   |        |         |                | PO     |       |        |        | 2    |      |      |  |
|                  |                                                                                                   |          |         |           |     |        |         |                | PO     |       |        |        | 1    |      |      |  |
| CO               | 2                                                                                                 |          |         |           | 1   |        |         |                | PO     |       |        |        | 5    |      |      |  |
|                  |                                                                                                   |          |         |           |     |        |         |                | PO     |       |        |        | 5    |      |      |  |
| CO               | 3                                                                                                 |          |         |           | 5   |        |         |                | PO     |       |        |        | 4    |      |      |  |
|                  |                                                                                                   |          |         |           |     |        |         |                | PO     |       |        |        | 6    |      |      |  |
| CO 4             | 1                                                                                                 |          |         | 3         |     |        |         |                | PO 7   |       |        |        | 2    |      |      |  |
|                  |                                                                                                   |          |         |           |     |        |         | PO 8           |        |       |        | 4      |      |      |      |  |
| CO               | 5                                                                                                 |          | 2       |           |     |        |         | PO 9           |        |       |        | 3      |      |      |      |  |
|                  |                                                                                                   |          |         |           |     |        |         | PO 10<br>PO 11 |        |       |        | 3      |      |      |      |  |
| PSO              | s                                                                                                 |          | KLs     |           |     |        |         | PO 11<br>PO 12 |        |       |        | 2      |      |      |      |  |
| PSO              | 1                                                                                                 |          |         |           | 3   |        |         | PO 12<br>PO 13 |        |       |        |        | 1    |      |      |  |
| PSO              |                                                                                                   |          |         |           | 4   |        |         | PO 13<br>PO 14 |        |       |        |        | 6    |      |      |  |
| PSO              |                                                                                                   |          |         |           | 1   |        |         | PO 14<br>PO 15 |        |       |        | 3      |      |      |      |  |
|                  |                                                                                                   |          |         |           |     | CO/PO  | ) Map   | ping           | 10     |       |        |        |      |      |      |  |
|                  | (                                                                                                 | (3/2/1 i | indicat | es the st |     |        | -       |                | trong, | 2-med | ium, 1 | -weak) | 1    |      |      |  |
| COs              |                                                                                                   |          |         |           |     | Prog   | ramm    | e Outo         | come ( | (POs) |        |        |      |      |      |  |
| COS              | PO1                                                                                               | PO2      | PO3     | PO4       | PO5 | PO6    | PO7     | PO8            | PO9    | PO10  | PO11   | PO12   | PO13 | PO14 | PO15 |  |
| CO1              | 3                                                                                                 | 2        | 1       | 1         | 1   | 1      | 1       | 1              | 2      | 2     | 2      | 3      | 2    | 1    | 2    |  |
| CO2              | 2                                                                                                 | 3        | 1       | 1 1 1 1 2 |     |        |         | 1              | 3      | 1     | 1      | 2      | 3    | 1    | 1    |  |
| CO3              | 1                                                                                                 | 1        | 3       | 3         | 2   | 2      | 1       | 2              | 1      | 1     | 1      | 1      | 1    | 2    | 1    |  |
| CO4              | 2                                                                                                 | 1        | 1       | 1         | 2   | 1      | 2       | 2              | 1      | 3     | 3      | 2      | 1    | 1    | 3    |  |
| CO5              | 3                                                                                                 | 2        | 1       | 1         | 1   | 1      | 1       | 1              | 2      | 2     | 2      | 3      | 2    | 1    | 2    |  |

|      | CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |     |     |     |     |  |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|--|--|--|--|--|
| Car  | Programme Specific Outcome<br>(POs)                                                           |     |     |     |     |  |  |  |  |  |  |  |  |
| Cos  | CO1                                                                                           | CO2 | CO3 | CO4 | CO5 |  |  |  |  |  |  |  |  |
| PSO1 | 2                                                                                             | 1   | 1   | 3   | 2   |  |  |  |  |  |  |  |  |
| PSO2 | 1                                                                                             | 1   | 2   | 2   | 1   |  |  |  |  |  |  |  |  |
| PSO3 | 2                                                                                             | 3   | 1   | 1   | 2   |  |  |  |  |  |  |  |  |

| Course Assessment Methods                                                                                               |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Direct                                                                                                                  |  |  |  |  |  |  |  |  |
| <ol> <li>Continuous Assessment Test I, II &amp; Model</li> <li>Assignment</li> <li>End Semester Examinations</li> </ol> |  |  |  |  |  |  |  |  |
| Indirect                                                                                                                |  |  |  |  |  |  |  |  |
| 1. Course End Delivery                                                                                                  |  |  |  |  |  |  |  |  |

| Content of the Syllabus |                                                                                          |                 |               |  |  |  |  |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------|-----------------|---------------|--|--|--|--|--|--|--|--|--|
|                         | Basic Concepts                                                                           | Periods         | 15            |  |  |  |  |  |  |  |  |  |
|                         | Monomers, Polymers - natural, Semisynthetic, synthetic degree of polymeriz               |                 |               |  |  |  |  |  |  |  |  |  |
| Unit - I                | Linear, branched and network Polymers. Addition polymerization: Mechanism of             |                 |               |  |  |  |  |  |  |  |  |  |
|                         | Free radical, cationic and anionic polymerization. Condensation Polymerization in        |                 |               |  |  |  |  |  |  |  |  |  |
|                         | homogeneous and heterogeneous systems.                                                   |                 |               |  |  |  |  |  |  |  |  |  |
|                         | Co-ordination and co-polymerization                                                      | Periods         | 15            |  |  |  |  |  |  |  |  |  |
| Unit - II               | Kinetics, mono and bimetallic mechanism of co-ordination                                 |                 |               |  |  |  |  |  |  |  |  |  |
| Unit - H                | Zeigler-Natta catalyst. Co-polymerization: Block and graft co-polymers, Types of co-     |                 |               |  |  |  |  |  |  |  |  |  |
|                         | polymerization. Reactivity ratio. Cross-linked polymers and                              | their applicat  | ions.         |  |  |  |  |  |  |  |  |  |
|                         | Molecular Weight and Properties                                                          | Periods         | 15            |  |  |  |  |  |  |  |  |  |
|                         | Importance of molecular weight - Average molecular weight - Number average, weight       |                 |               |  |  |  |  |  |  |  |  |  |
| Unit - III              | average and viscosity average molecular weights. Measurement of molecular weights-       |                 |               |  |  |  |  |  |  |  |  |  |
|                         | Viscosity, light scattering, osmotic and ultracentrifugation methods. Polymer structure  |                 |               |  |  |  |  |  |  |  |  |  |
|                         | and physical properties-crystalline melting point Tm. Glass transition temperature (Tg), |                 |               |  |  |  |  |  |  |  |  |  |
|                         | Determination of Tg. Relationship between Tm and Tg.                                     |                 |               |  |  |  |  |  |  |  |  |  |
|                         | Polymer Processing                                                                       | Periods         | 15            |  |  |  |  |  |  |  |  |  |
| TT •4 TT7               | Compounding, processing techniques: calendering, die casting, rotational casting,        |                 |               |  |  |  |  |  |  |  |  |  |
| Unit - IV               |                                                                                          | ng extrusion    | •             |  |  |  |  |  |  |  |  |  |
|                         | thermoforming, foaming, reinforcing and fibre spinning.<br>thermosetting polymers.       | Plastics, theri | ioplastic and |  |  |  |  |  |  |  |  |  |
|                         | Preparation and applications of Commercial Polymers                                      | Periods         | 15            |  |  |  |  |  |  |  |  |  |
|                         | Polyethylene, polyvinyl chloride, polyamides, polyesters                                 |                 |               |  |  |  |  |  |  |  |  |  |
| Unit - V                | resins. Natural rubber and rubbers derived from buta                                     |                 |               |  |  |  |  |  |  |  |  |  |
|                         | polymers, Fire retarding polymers and electrically conduc                                |                 |               |  |  |  |  |  |  |  |  |  |
|                         | polymers-contact lens, dental polymers, artificial heart, kidn                           | • • •           |               |  |  |  |  |  |  |  |  |  |
|                         | Total Periods                                                                            |                 | 75            |  |  |  |  |  |  |  |  |  |

| Text | Books                                                                                     |
|------|-------------------------------------------------------------------------------------------|
| 1    | V. R. Gowariker, N.V. Viswanathan and J. Sreedhar, Polymer Science, New Age Int., (1986). |
| Refe | rences                                                                                    |
| 1    | F.W. Billmeyer, Text Book of Polymer Science, 3rd Edition, J.Wiley, (2003).               |
| 2    | H.R. Alcock and F.W. Lamber, Contemporary Polymer Chemistry, Prentice Hall, (1981).       |
| 3    | P.J. Flory, Principles of Polymer Chemistry, Cornell University press, New York, (1953).  |
| 4    | G. Odian, Principles of Polymerization, 2nd Edition, John Wiley & Sons, New York, (1981). |
| E-Re | ferences                                                                                  |
| 1    | http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/vsepr.html                       |
| 2    | https://chem.libretexts.org                                                               |
| 3    | http://www.chem.iitb.ac.in/people/Faculty/prof/pdfs/L5.pdf                                |

| HOREN ENPONEDUCIN    | VIVEKANANI                     | VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN<br>(AUTONOMOUS)<br>Elayampalayam, Tiruchengode-637 205.                                                                                                                               |                         |            |       |                   |               |           |                 |  |  |  |  |  |
|----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|-------|-------------------|---------------|-----------|-----------------|--|--|--|--|--|
| Programme            | M.Sc                           | Programme Code                                                                                                                                                                                                                            | PCH Regulations 2020-20 |            |       |                   |               |           |                 |  |  |  |  |  |
| Department           | Chemistry Semester 3           |                                                                                                                                                                                                                                           |                         |            |       |                   |               |           |                 |  |  |  |  |  |
| Course Code          | Cou                            | rse Name                                                                                                                                                                                                                                  | per                     | rioc<br>We | ek    | Credit            |               |           | n Marks         |  |  |  |  |  |
| 20P3CHED02           | ELECTIVE PA<br>Industrial Chen |                                                                                                                                                                                                                                           | L<br>5                  | Т          | Р     | C<br>04           | CA<br>25      | ES.<br>75 |                 |  |  |  |  |  |
| Course<br>Objectives | To understand t                | To impart knowledge on fermentation, pigments, oils and fats.<br>To understand the industrial applications of chemistry.<br>To give an idea for the student about drugs and explosives.                                                   |                         |            |       |                   |               |           |                 |  |  |  |  |  |
| POs                  |                                | PROG                                                                                                                                                                                                                                      | RAM                     | MF         | E OI  | UTCOME            |               |           |                 |  |  |  |  |  |
| PO 1                 |                                | strating comprehensive k                                                                                                                                                                                                                  |                         |            | and 1 | understanding o   | of one or m   | ore di    | sciplines that  |  |  |  |  |  |
| PO 2                 | Ability to express             | form a part of an undergraduate programme of study.<br>Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself. |                         |            |       |                   |               |           |                 |  |  |  |  |  |
| PO 3                 |                                | y analytic thought to a b<br>the basis of empirical evide                                                                                                                                                                                 |                         |            |       |                   |               |           | ce arguments    |  |  |  |  |  |
| PO 4                 |                                | blate from what one has leaders rather than replicate of                                                                                                                                                                                  |                         |            |       |                   |               |           |                 |  |  |  |  |  |
| PO 5                 | arguments of other             | e the reliability and rele<br>s analyse and synthesise d                                                                                                                                                                                  | ata fro                 | n a v      | varie | ty of sources dra | aw valid Co   | nclusi    | ons.            |  |  |  |  |  |
| PO 6                 |                                | and capability for asking to recognise cause and eff                                                                                                                                                                                      |                         |            | •     |                   |               | •••       | •               |  |  |  |  |  |
| PO 7                 |                                | ectively and respectfully up and act together as a gr                                                                                                                                                                                     |                         |            |       |                   |               |           |                 |  |  |  |  |  |
| PO 8                 | ideas, evidence and            | interpret and draw conclu<br>l experiences from an oper                                                                                                                                                                                   | n mind                  | ed ar      | nd re | asoned perspect   | ive.          |           | -               |  |  |  |  |  |
| PO 9                 | -                              | to lived experiences with                                                                                                                                                                                                                 |                         |            |       |                   |               |           |                 |  |  |  |  |  |
| PO 10                |                                | CT in a variety of learning information sources and u                                                                                                                                                                                     |                         |            |       |                   |               |           | ate and use a   |  |  |  |  |  |
| PO 11                | through to complet             |                                                                                                                                                                                                                                           | -                       |            |       |                   |               |           | age a project   |  |  |  |  |  |
| PO 12                | -                              | of the values and beliefs                                                                                                                                                                                                                 |                         | <u> </u>   |       |                   |               |           |                 |  |  |  |  |  |
| PO 13                | -                              | moral ethical values in a nultiple perspectives and t                                                                                                                                                                                     |                         | -          |       |                   | -             | argun     | nent about an   |  |  |  |  |  |
| PO 14                | inspiring vision bu            | pping out the tasks of a t<br>ilding a team who can help                                                                                                                                                                                  | o achie                 | ve th      | e vis | sion motivating.  | -             |           | -               |  |  |  |  |  |
| PO 15                |                                | knowledge and skills inclues throughout life through                                                                                                                                                                                      |                         |            | ng h  | ow to learn that  | t are necessa | ary for   | • participating |  |  |  |  |  |

| COs            | COURSE OUTCOME                                                                         |
|----------------|----------------------------------------------------------------------------------------|
| CO 1           | Students enable to understand various fermentation processes.                          |
| CO 2           | Acquire knowledge about different drugs and pharmaceutical aids.                       |
| CO 3           | Students know about the types of pigments and its use.                                 |
| CO 4           | Students will analyze the applications of enamels, adhesives and explosives.           |
| CO 5           | Students enable to understand importance of oils and fats for commercial applications. |
| Pre-requisites |                                                                                        |

| KNOWLEDGE LEVELS                                                                      |                                                                           |          |           |           |     |       |       |                |        |       |        |        |      |      |      |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|-----------|-----------|-----|-------|-------|----------------|--------|-------|--------|--------|------|------|------|--|
| 1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing |                                                                           |          |           |           |     |       |       |                |        |       |        |        |      |      |      |  |
| CO / PO / KL Mapping                                                                  |                                                                           |          |           |           |     |       |       |                |        |       |        |        |      |      |      |  |
|                                                                                       | (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |          |           |           |     |       |       |                |        |       |        |        |      |      |      |  |
| Cos                                                                                   |                                                                           |          |           | ]         | KLs |       |       |                | PO     | S     |        |        | KI   |      |      |  |
| СО                                                                                    | 1                                                                         |          |           |           | 3   |       |       |                | PO     |       |        |        | 2    |      |      |  |
|                                                                                       | 1                                                                         |          |           |           | 5   |       |       |                | PO     |       |        |        | 1    |      |      |  |
| CO                                                                                    | 2                                                                         |          |           |           | 1   |       |       |                | PO     |       |        |        | 5    |      |      |  |
|                                                                                       |                                                                           |          |           |           | -   |       |       |                | PO     |       |        |        | 5    |      |      |  |
| CO                                                                                    | 3                                                                         |          |           |           | 5   |       |       |                | PO     |       |        |        | 4    |      |      |  |
|                                                                                       | -                                                                         |          |           |           |     |       |       |                | PO     |       |        |        | 6    |      |      |  |
| CO                                                                                    | 4                                                                         |          |           |           | 3   |       |       |                | PO     |       |        | 2      |      |      |      |  |
|                                                                                       |                                                                           |          |           |           |     |       |       | PO 8           |        |       |        | 4      |      |      |      |  |
| CO                                                                                    | 5                                                                         |          | 2         |           |     |       |       | PO 9<br>PO 10  |        |       |        | 3      |      |      |      |  |
|                                                                                       |                                                                           |          |           |           |     |       |       | PO 10<br>PO 11 |        |       |        | 3      |      |      |      |  |
| PSO                                                                                   | S                                                                         |          | KLs       |           |     |       |       | PO 11<br>PO 12 |        |       |        | 2      |      |      |      |  |
| PSO                                                                                   | 1                                                                         |          |           |           | 3   |       |       | PO 12<br>PO 13 |        |       |        |        | 1    |      |      |  |
| PSO<br>PSO                                                                            |                                                                           |          |           |           | 4   |       |       | PO 13<br>PO 14 |        |       |        | 6      |      |      |      |  |
| PSO                                                                                   |                                                                           |          |           |           | 4   |       |       | PO 14<br>PO 15 |        |       |        | 3      |      |      |      |  |
| 150                                                                                   | 5                                                                         |          |           |           |     | CO/PO | ) Map | ping           | 101    |       |        |        |      |      |      |  |
|                                                                                       | (                                                                         | (3/2/1 i | ndicat    | es the st |     |       | -     | - 0            | rong,  | 2-med | ium, 1 | -weak) | 1    |      |      |  |
| GO                                                                                    |                                                                           |          |           |           |     | Prog  | ramm  | e Outo         | come ( | POs)  |        |        |      |      |      |  |
| COs                                                                                   | PO1                                                                       | PO2      | PO3       | PO4       | PO5 | PO6   | PO7   | PO8            | PO9    | PO10  | PO11   | PO12   | PO13 | PO14 | PO15 |  |
| CO1                                                                                   | 2                                                                         | 2        | 1         | 1         | 1   | 1     | 1     | 1              | 2      | 2     | 2      | 3      | 2    | 1    | 2    |  |
| CO2                                                                                   | 2                                                                         | 3        | 1 1 1 1 2 |           |     |       |       | 1              | 3      | 1     | 1      | 2      | 3    | 1    | 1    |  |
| CO3                                                                                   | 1                                                                         | 1        | 3         | 3         | 2   | 2     | 1     | 2              | 1      | 1     | 1      | 1      | 1    | 2    | 1    |  |
| CO4                                                                                   | 2                                                                         | 1        | 1         | 1         | 2   | 1     | 2     | 2              | 1      | 3     | 3      | 2      | 1    | 1    | 3    |  |
| CO5                                                                                   | 3                                                                         | 2        | 1         | 2         | 1   | 1     | 1     | 1              | 2      | 2     | 2      | 3      | 2    | 1    | 3    |  |

| CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |                |     |     |     |     |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------|-----|-----|-----|-----|--|--|--|--|--|--|
| Programme Specific Outcome<br>(POs)                                                           |                |     |     |     |     |  |  |  |  |  |  |
| Cos                                                                                           | CO1            | CO2 | CO3 | CO4 | CO5 |  |  |  |  |  |  |
| PSO1                                                                                          | 2              | 2   | 1   | 3   | 2   |  |  |  |  |  |  |
| PSO2                                                                                          | 1              | 1   | 2   | 2   | 1   |  |  |  |  |  |  |
| PSO3                                                                                          | PSO3 2 3 1 1 2 |     |     |     |     |  |  |  |  |  |  |

| Course Assessment Methods                                            |  |  |  |  |  |  |
|----------------------------------------------------------------------|--|--|--|--|--|--|
| Direct                                                               |  |  |  |  |  |  |
| 1. Continuous Assessment Test I, II & Model                          |  |  |  |  |  |  |
| <ul><li>2. Assignment</li><li>3. End Semester Examinations</li></ul> |  |  |  |  |  |  |
| Indirect                                                             |  |  |  |  |  |  |
| 1. Course End Delivery                                               |  |  |  |  |  |  |

| Content of the Syllabus |                                                                                                                                                                           |             |                |  |  |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--|--|--|--|--|--|--|
|                         | Fermentation                                                                                                                                                              | Periods     | 15             |  |  |  |  |  |  |  |
| 1                       | Introduction - Historical - Conditions favourable for fermentation. Characteristics for                                                                                   |             |                |  |  |  |  |  |  |  |
| Unit - I                | enzymes - short accounts of some fermentation processes - Manufacture of beer -                                                                                           |             |                |  |  |  |  |  |  |  |
|                         | sprits- wines and vinegar. Ethyl alcohol from molasses- Preparation of wash distillation-                                                                                 |             |                |  |  |  |  |  |  |  |
|                         | Alcohol from waste sulphite liquor.<br>Drugs, diagnostic reagents and pharmaceutics aids                                                                                  | Periods     | 15             |  |  |  |  |  |  |  |
|                         | <b>Drugs:</b> Definition sources of drugs – some important drugs -                                                                                                        |             |                |  |  |  |  |  |  |  |
|                         | paracetamol – penicillin – chlormycetin – structure – propert                                                                                                             | · ·         |                |  |  |  |  |  |  |  |
|                         | Organic diagnostic reagents – definition – uses – sodi                                                                                                                    |             | , phenol red   |  |  |  |  |  |  |  |
| Unit - II               | Evans blue, indigo carmine, methylene blue, xylose, Histamine and sodium benzoate -                                                                                       |             |                |  |  |  |  |  |  |  |
|                         | properties – uses.                                                                                                                                                        |             |                |  |  |  |  |  |  |  |
|                         | <b>Organic pharmaceutics aids</b> – Definition – preservatives – antioxidants – flavouring                                                                                |             |                |  |  |  |  |  |  |  |
|                         | agents - colouring agents - sweetening agents - Emulsifying agents and stabilising                                                                                        |             |                |  |  |  |  |  |  |  |
|                         | agents – examples for each class – uses (structure and prepar                                                                                                             |             |                |  |  |  |  |  |  |  |
|                         | Pigments                                                                                                                                                                  | Periods     | 15             |  |  |  |  |  |  |  |
|                         | Definition – composition, characteristics and uses of white pigments - white lead, Zinc                                                                                   |             |                |  |  |  |  |  |  |  |
| Unit - III              | oxide Lithopone and $TiO_2$ – Blue pigments – Ultra marine blue, cobalt blue and iron                                                                                     |             |                |  |  |  |  |  |  |  |
|                         | blue – characteristics – uses. Red pigments – red lead –characteristics and uses. Green pigments – chrome green, Guigwet's green and chromium oxide – characteristics and |             |                |  |  |  |  |  |  |  |
|                         | their uses- Black pigments- Yellow pigments.                                                                                                                              | oxide chara | cteristics and |  |  |  |  |  |  |  |
|                         | Adhesives, Enamels and Explosives                                                                                                                                         | Periods     | 15             |  |  |  |  |  |  |  |
|                         | Adhesives: definition – classification of adhesives – animal glue – preparation- uses –                                                                                   |             |                |  |  |  |  |  |  |  |
| Unit - IV               | protein adhesives - starch adhesives - preparation - uses.                                                                                                                |             |                |  |  |  |  |  |  |  |
|                         | Enamels: Introduction - Raw Materials – Manufacture and Applications                                                                                                      |             |                |  |  |  |  |  |  |  |
|                         | Explosives: Introduction- Classification- preparation and uses of explosives- Nitro                                                                                       |             |                |  |  |  |  |  |  |  |
|                         | cellulose, TNT, Picric acid, Gun Powder, Cordite and Dynar                                                                                                                | nite.       |                |  |  |  |  |  |  |  |

|               | Oils and Fats                                                                                                                                                                                                                                                            | Periods       | 15             |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|--|--|--|
| Unit - V      | Introduction – distinction, properties- classification- vege<br>cotton seed oil and soybean oil- Refining of crude vegetable<br>peanut oil- olive oil- castor oil- safflower oil.<br>Analysis of oils and fats: Definition and determination of S<br>value and RM value. | oils- coconut | oil, palm oil- |  |  |  |
| Total Periods |                                                                                                                                                                                                                                                                          |               |                |  |  |  |

| Text | Books                                                                                                                                                           |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1    | B.N. Charabarthy – "Industrial Chemistry", 1st Ed., Oxford and IBh Publishing, New Delhi.                                                                       |  |  |  |  |  |  |  |
| 2    | B.K. Sharma – "Industrial Chemistry", 1st Ed., (1983), Goel Publication, Meerut.                                                                                |  |  |  |  |  |  |  |
| 3    | Arun Bahl and B.S. Bahl – "Text Book of Organic Chemistry", 11 <sup>th</sup> and 18 <sup>th</sup> Ed., S. Chand, New Delhi, 2006.                               |  |  |  |  |  |  |  |
| 4    | Ghosh, Jayashree – "Text Book of Pharmaceutical Chemistry", 3 <sup>rd</sup> Ed., S.Chand & Co. Ltd., New Delhi, 1999.                                           |  |  |  |  |  |  |  |
| Refe | rences                                                                                                                                                          |  |  |  |  |  |  |  |
| 1    | V.P. Gowariker and N.V. Viswanathan – "Polymer Science", 1st Ed., Wiley Easter Pvt. Ltd., New Delhi.                                                            |  |  |  |  |  |  |  |
| 2    | Lakshmi. S – "Pharmaceutical Chemistry", 3rd Ed., (1995), Sultan Chand & Sons, New Delhi.                                                                       |  |  |  |  |  |  |  |
| 3    | Rajasekaran, VN. – "Pharmaceutical Chemistry", 1st Ed., (2003), Sun Publications – Chennai.                                                                     |  |  |  |  |  |  |  |
| 4    | Krishnamoorthy, P. Vallinayagan & K. Jaya Subramanian – "Applied Chemistry", 2 <sup>nd</sup> Ed., (1999, 2001), Tata MaGraw-HillPublishing Co. Ltd., New Delhi. |  |  |  |  |  |  |  |
| E-Re | ferences                                                                                                                                                        |  |  |  |  |  |  |  |
| 1    | http://www.naturebioscience.com/molasses-fermentation.php                                                                                                       |  |  |  |  |  |  |  |
| 2    | https://digital-photography-school.com/mastering-color-series-color-blue-in-photography                                                                         |  |  |  |  |  |  |  |
| 3    | https://www.ilo.org/legacy/english/protection/safework/ghs/ghsfinal/ghsc1528.pdf                                                                                |  |  |  |  |  |  |  |

| HOMEN EMPONERIES     | VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN<br>(AUTONOMOUS)<br>Elayampalayam, Tiruchengode-637 205.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                            |       |                   |             |             |               |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------|-------|-------------------|-------------|-------------|---------------|--|--|--|
| Programme            | M.Sc                                                                                                                             | Programme Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            | P     | СН                | Regulati    | ons         | 2020-2022     |  |  |  |
| Department           | Cł                                                                                                                               | iemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                            |       |                   | 4           |             |               |  |  |  |
| Course Code          | Cou                                                                                                                              | rse Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | Periods<br>per Week Credit |       |                   | Max<br>CA   | imun<br>ESI | m Marks       |  |  |  |
| 20P4CH09             | CORE PAPER<br>Physical metho                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5       | Т                          | Р     | 05                | 25          | 75          |               |  |  |  |
| Course<br>Objectives | spectroscopy.                                                                                                                    | students to underst<br>Γο acquire knowled<br>rganic chemistry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            | •     | ·                 |             |             |               |  |  |  |
| POs                  |                                                                                                                                  | PROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RAM     | MF                         | E OI  | UTCOME            |             |             |               |  |  |  |
| PO 1                 |                                                                                                                                  | Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                            |       |                   |             |             |               |  |  |  |
| PO 2                 | Ability to express                                                                                                               | Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                            |       |                   |             |             |               |  |  |  |
| PO 3                 |                                                                                                                                  | Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                            |       |                   |             |             |               |  |  |  |
| PO 4                 |                                                                                                                                  | blate from what one has leaders rather than replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                            |       |                   |             |             |               |  |  |  |
| PO 5                 | arguments of other                                                                                                               | e the reliability and rele<br>s analyse and synthesise d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ata fro | mav                        | varie | ty of sources dra | aw valid Co | nclusio     | ons.          |  |  |  |
| PO 6                 |                                                                                                                                  | and capability for asking to recognise cause and eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | ~ ·                        |       |                   |             |             | -             |  |  |  |
| PO 7                 | •                                                                                                                                | fectively and respectfully up and act together as a group of the sector |         |                            |       |                   | •           |             |               |  |  |  |
| PO 8                 | ideas, evidence and                                                                                                              | interpret and draw conclu<br>l experiences from an oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n mind  | ed ai                      | nd re | asoned perspect   | ive.        |             |               |  |  |  |
| PO 9                 |                                                                                                                                  | to lived experiences with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                            |       |                   |             |             | -             |  |  |  |
| PO 10                |                                                                                                                                  | CT in a variety of learning information sources and u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                            |       |                   |             |             | ate and use a |  |  |  |
| PO 11                | Ability to work independently, identify appropriate resources required for a project and manage a project through to completion. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                            |       |                   |             |             |               |  |  |  |
| PO 12                | Possess knowledge of the values and beliefs of multiple cultures and a global perspective.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                            |       |                   |             |             |               |  |  |  |
| PO 13                | -                                                                                                                                | e moral ethical values in nultiple perspectives and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | -                          |       |                   | -           | argun       | nent about an |  |  |  |
| PO 14                | inspiring vision bu                                                                                                              | pping out the tasks of a ilding a team who can help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o achie | ve th                      | e vis | sion motivating.  | -           |             | -             |  |  |  |
| PO 15                |                                                                                                                                  | knowledge and skills inclues throughout life through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                            | ng h  | low to learn that | are necessa | ary for     | participating |  |  |  |

| COs            | COURSE OUTCOME                                                                                          |
|----------------|---------------------------------------------------------------------------------------------------------|
| CO 1           | Students will learn about Electromagnetic radiation                                                     |
| CO 2           | Students can understand the importance                                                                  |
| CO 3           | Students will learn about the theory of UV spectroscopy, Fluorescence Spectroscopy and its applications |
| CO 4           | Students will analyze theory and applications of NMR and EPR spectroscopy                               |
| CO 5           | Students will evaluate the molecular weight of the organic compounds                                    |
| Pre-requisites |                                                                                                         |

|     |     |       |         |                      | KNO     | OWLE              | DGE I | LEVE                 | LS             |       |        |             |      |      |   |
|-----|-----|-------|---------|----------------------|---------|-------------------|-------|----------------------|----------------|-------|--------|-------------|------|------|---|
| 1.1 |     |       |         | ndersta<br>es the st | CO      | / PO /            | KL M  | appin                | g              |       |        |             |      | ing  |   |
| Co  | s   |       |         |                      | KLs     |                   | PO    | s                    |                | KLs   |        |             |      |      |   |
| СО  | 1   |       |         |                      | 1       |                   |       |                      | PO             |       |        | 2           |      |      |   |
| СО  | 2   |       |         |                      | 2       |                   |       |                      | PO<br>PO       | 3     |        |             | 1    | i    |   |
| СО  | 3   |       |         |                      | 3       |                   |       |                      | PO<br>PO<br>PO | 5     |        | 5 4         |      |      |   |
| СО  | 4   |       | 4       |                      |         |                   |       | PO 6<br>PO 7<br>PO 8 |                |       |        | 6<br>2<br>4 |      |      |   |
| СО  | 5   |       |         | 5                    |         |                   |       | PO 9<br>PO 10        |                |       |        | 1 3         |      |      |   |
| PSG | Ds  |       | KLs -   |                      |         |                   |       | PO 11<br>PO 12       |                |       |        | 3 2         |      |      |   |
| PSC | ) 1 |       | 3       |                      |         |                   | PO 13 |                      |                |       | 1      |             |      |      |   |
| PSC | 2   |       |         |                      | 4       |                   |       | PO 14                |                |       |        | 6           |      |      |   |
| PSC | ) 3 |       |         |                      | 1       |                   |       | PO 15                |                |       |        | 3           |      |      |   |
|     | (   | 3/2/1 | indicat | es the st            |         | CO / PO<br>of cor | -     |                      | trong.         | 2-med | ium. 1 | -weak)      |      |      |   |
|     |     |       |         |                      | 0       |                   | ramm  |                      |                |       | ,      | ,           |      |      |   |
| COs | PO1 | PO2   | PO3     | PO4                  | PO5 PO6 | PO7               | PO8   | 1                    | 1              | PO11  | PO12   | PO13        | PO14 | PO15 |   |
| CO1 | 2   | 3     | 1       | 1                    | 1       | 1                 | 2     | 1                    | 3              | 1     | 1      | 2           | 3    | 1    | 1 |
| CO2 | 3   | 2     | 1       | 1                    | 1       | 1                 | 1     | 1                    | 2              | 2     | 2      | 3           | 2    | 1    | 2 |
| CO3 | 2   | 1     | 1       | 1                    | 2       | 1                 | 2     | 2                    | 1              | 3     | 3      | 2           | 1    | 1    | 3 |
| CO4 | 1   | 1     | 2       | 2                    | 3       | 1                 | 1     | 3                    | 1              | 2     | 2      | 1           | 1    | 1    | 2 |
| CO5 | 1   | 1     | 3       | 3                    | 2       | 2                 | 1     | 2                    | 1              | 1     | 1      | 1           | 1    | 2    | 1 |

|                                     | CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |     |     |     |     |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|
| Programme Specific Outcome<br>(POs) |                                                                                               |     |     |     |     |  |  |  |
| Cos                                 | CO1                                                                                           | CO2 | CO3 | CO4 | CO5 |  |  |  |
| PSO1                                | 1                                                                                             | 2   | 3   | 2   | 1   |  |  |  |
| PSO2                                | 1                                                                                             | 1   | 2   | 3   | 2   |  |  |  |
| PSO3                                | 3                                                                                             | 2   | 1   | 1   | 1   |  |  |  |

### **Course Assessment Methods**

Direct

1. Continuous Assessment Test I, II & Model

Assignment
 End Semester Examinations

Indirect

1. Course End Delivery

|            | Content of the Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|            | Microwave spectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Periods                                                                                                                                              | 15                                                                                                                              |
| Unit - I   | Introduction: Electromagnetic radiation, Interaction of light<br>absorption & emission of radiation. Rotational, vibrational,<br>molecules; regions and representation of spectra. Micro wa<br>molecules as rigid rotors: rotational energy levels, intensity<br>rules, effect of isotopic substitution. Diatomic molecules as<br>spectra of polyatomic molecules – Linear and Symmetric top                                                                                                                                                                                 | and electronic<br>ave Spectroscopy<br>of spectral lin<br>non-rigid rotor                                                                             | transitions in<br>py: Diatomic<br>nes, selection                                                                                |
|            | Vibrational Spectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Periods                                                                                                                                              | 15                                                                                                                              |
| Unit - II  | Vibrational Spectroscopy: Vibrating diatomic molecule: ener<br>simple harmonic and Anharmonic oscillator - energy lev<br>selection rules; Diatomic vibrating rotator: Born-Oppenheim<br>rotational spectra, selection rules; P, Q, R branches. Vibratio<br>fundamental vibrations and its symmetry, normal modes of<br>combination of bands. Raman Effect: Rayleigh and Raman<br>Stokes lines, molecular polarizability, Raman selection rules<br>Raman spectra- linear molecules, symmetric top and spherica<br>Raman spectra-symmetry and Raman active vibrations, rule of | els, vibrationa<br>er approximation<br>ns of polyatom<br>of vibration, o<br>scattering, Sto<br>s. Raman spect<br>al top molecule<br>of mutual exclus | l transitions,<br>on, vibration-<br>ic molecules:<br>vertones and<br>kes and anti-<br>ra: rotational<br>s; vibrational<br>sion. |
|            | UV and fluorescence Spectroscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Periods                                                                                                                                              | 15                                                                                                                              |
| Unit - III | UV-spectroscopy: Theory, Instrumentation, Beer-Lambert<br>spectrum. Electronic transitions – Types, selection rules, Ch<br>and $\varepsilon_{max}$ ) Conjugated double bond – dienes, carbonyl co<br>Factors influencing absorption. Spectroscopic terms – C<br>Bathochromic shift, Hypsochromic shift and Hypochromic s<br>Fluorescence Spectroscopy – Principles, instrumentation and                                                                                                                                                                                      | aracteristic absompounds and<br>hromophore, hift and application                                                                                     | sorption ( $\lambda_{max}$<br>aryl groups.<br>Auxochrome,                                                                       |

|           | NMR and ESR Spectroscopy                                                                                                                                                                                                                                                                                                                                                                                                                                   | Periods                                                                             | 15                                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Unit - IV | NMR Spectra: Theory, Instrumentation. Chemical shift - Fact<br>Shielding and deshielding mechanisms. Spin-spin coupling, C<br>and Vicinal coupling constant, heteronuclear couplings, I<br>Introduction to <sup>13</sup> C NMR, <sup>19</sup> F NMR, <sup>31</sup> P NMR and appl<br>Spectroscopy – Theory, derivative curves, g values, Hyper<br>anisotropic systems and Applications                                                                     | Coupling constant<br>Nuclear Overhications of <sup>1</sup> H                        | nt – Geminal<br>auser effect.<br>NMR. ESR                                   |
|           | Mass and Mossbauer Spectroscopy                                                                                                                                                                                                                                                                                                                                                                                                                            | Periods                                                                             | 15                                                                          |
| Unit - V  | Mass Spectroscopy: Theory, Instrumentation, Types of ion<br>ion, rearrangement and Metastable ion, odd even ions. Mo<br>peak. Determination of molecular formula - Nitrogen rule, rin<br>analysis - Fragmentation process: Retro Diels Alder rearrangement - Double bond and ring equivalence.<br>hydrocarbon, carbonyl compounds and nitro compounds). Mo<br>width - Isomer shift - Quadrupole interactions - Magne<br>elucidation of iron tin complexes. | blecular ion pe<br>ng rule - Isotop<br>rearrangement<br>Fragmentationssbauer Spectr | ak and Base<br>ic abundance<br>- Mclattery<br>on (alcohol,<br>roscopy: Line |
|           | Total Periods                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     | 75                                                                          |

| Text Books   |                                                                                                             |
|--------------|-------------------------------------------------------------------------------------------------------------|
| 1            | Y. R. Sharma., Elementary Organic Spectroscopy, Chand Publications (2007)                                   |
| 2            | Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014)                                    |
| 3            | R. Chang., Basic principles of Spectroscopy, McGraw-Hill Inc., US (1971).                                   |
| 4            | Jag Mohan., Organic Spectroscopy - Principles and Applications, CRC press (2004)                            |
| 5            | D.N. Sathyanarayana., Introduction to Magnetic resonance Spectroscopy, IK International Publishing          |
|              | House Pvt. Ltd., (2013)                                                                                     |
| References   |                                                                                                             |
| 1            | C. N. Banwell and E. M. McCash., Fundamentals of Molecular Spectroscopy, 4th Edn, Tata McGraw Hill, (2010). |
| 2            | B.R. Puri, L. R. Sharma, M. S. Pathania., Principles of Physical Chemistry, Vishal Publishing Co. (2016)    |
| 3            | P. S. Kalsi., Spectroscopy of Organic Compounds, New Age International (2007)                               |
| E-References |                                                                                                             |
| 1            | nptel.ac.in/courses/103103033/module9/lecture1.pdf                                                          |
| 2            | http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf                                         |
| 3            | https://www.ceitec.eu/nanoparticles-for-biomedical-applications/f33079                                      |
| 4            | https://chem.libretexts.org/                                                                                |
|              |                                                                                                             |

| HONERI ENPONERILEI   | VIVEKANANI                                                                                                                       | OHA COLLEGE OF A<br>(AUTON<br>Elayampalayam, Tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OM                   | OUS        | 5)    |                  | DR WOMI       | т         | Vinestand<br>Entrusto |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------|------------------|---------------|-----------|-----------------------|--|
| Programme            | M.Sc                                                                                                                             | Programme Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCH Regulations 2020 |            |       |                  |               | 2020-2022 |                       |  |
| Department           | C                                                                                                                                | nemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |            |       | Semester         |               |           | 4                     |  |
| Course Code          | Со                                                                                                                               | ırse Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | per                  | erio<br>We | eek   | Credit           |               |           | m Marks               |  |
| 20P4CHE05            | ELECTIVE V:<br>Environmental                                                                                                     | Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L<br>5               | Т          | Р     | C<br>04          | CA<br>25      | ESE<br>75 | Total                 |  |
| Course<br>Objectives | -                                                                                                                                | wledge in the field<br>strial, agricultural poll<br>of atmosphere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |            |       | -                |               | -         | -                     |  |
| POs                  |                                                                                                                                  | PROGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RAM                  | IME        | E OI  | UTCOME           |               |           |                       |  |
| PO 1                 | form a part of an u                                                                                                              | strating comprehensive kr<br>ndergraduate programme o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f stud               | y.         |       |                  |               |           | _                     |  |
| PO 2                 |                                                                                                                                  | thoughts and ideas effect<br>confidently share ones view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |            |       |                  |               | with      | others using          |  |
| PO 3                 |                                                                                                                                  | y analytic thought to a bo<br>ne basis of empirical evider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |            |       |                  |               |           | e arguments           |  |
| PO 4                 |                                                                                                                                  | plate from what one has leasens rather than replicate c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |            |       | -                |               |           |                       |  |
| PO 5                 |                                                                                                                                  | e the reliability and releves analyse and synthesise date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |            |       |                  |               |           |                       |  |
| PO 6                 |                                                                                                                                  | and capability for asking r<br>to recognise cause and effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |            |       |                  |               |           | -                     |  |
| PO 7                 | -                                                                                                                                | Sectively and respectfully we up and act together as a group of the section of th |                      |            |       |                  | -             |           |                       |  |
| PO 8                 |                                                                                                                                  | interpret and draw conclus<br>l experiences from an open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |            | -     | •                |               | l critica | ally evaluate         |  |
| PO 9                 | -                                                                                                                                | to lived experiences with s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |            |       | -                |               |           | -                     |  |
| PO 10                |                                                                                                                                  | CT in a variety of learnin information sources and us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                    |            |       |                  | -             |           | e and use a           |  |
| PO 11                | Ability to work independently, identify appropriate resources required for a project and manage a project through to completion. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |       |                  |               |           |                       |  |
| PO 12                | Possess knowledge                                                                                                                | of the values and beliefs o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f mul                | tiple      | cultu | ares and a globa | l perspective | e         | _                     |  |
| PO 13                | -                                                                                                                                | Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |            |       |                  |               |           |                       |  |
| PO 14                |                                                                                                                                  | pping out the tasks of a to<br>ilding a team who can help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |            |       |                  | etting direct | ion for   | mulating an           |  |
| PO 15                |                                                                                                                                  | knowledge and skills inclues throughout life through s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |            | ng h  | ow to learn that | are necessa   | ry for    | participating         |  |

| COs            | COURSE OUTCOME                                                           |
|----------------|--------------------------------------------------------------------------|
| CO 1           | Students will acquire sound knowledge of environmental chemistry         |
| CO 2           | Students learn the importance of water management                        |
| CO 3           | Students will acquire knowledge about pollution from industries          |
| CO 4           | Students will acquire knowledge about pollution from agricultural wastes |
| CO 5           | Students will evaluate the waste management                              |
| Pre-requisites |                                                                          |

| KNOWLEDGE LEVELS |                                                                                                               |         |        |           |        |         |              |              |    |       |        |        |    |      |      |
|------------------|---------------------------------------------------------------------------------------------------------------|---------|--------|-----------|--------|---------|--------------|--------------|----|-------|--------|--------|----|------|------|
| 1.R              | 1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing<br>CO / PO / KL Mapping |         |        |           |        |         |              |              |    |       |        |        |    |      |      |
|                  | (                                                                                                             | 3/2/1 i | ndicat | es the st |        |         |              |              | 0  | 2-med | ium, 1 | -weak) |    |      |      |
| Cos              |                                                                                                               |         |        | ]         | KLs    |         |              |              | PO | 5     |        |        | KI | _S   |      |
| СО               | 1                                                                                                             |         |        |           | 1      |         |              |              | PO | 1     |        |        | 2  |      |      |
|                  | 1                                                                                                             |         |        |           | 1      |         |              |              | РО | 2     |        |        | 1  |      |      |
| CO               | 2                                                                                                             |         |        |           | 2      |         |              |              | PO |       |        |        | 5  |      |      |
|                  | _                                                                                                             |         |        |           | -      |         |              |              | PO |       |        |        | 5  |      |      |
| CO               | 3                                                                                                             |         |        |           | 4      |         |              |              | PO |       |        |        | 4  |      |      |
|                  |                                                                                                               |         |        |           |        |         |              |              | PO |       |        |        | 6  |      |      |
| CO               | 4                                                                                                             |         |        |           | 4      |         |              | PO 7<br>PO 8 |    |       |        | 2 4    |    |      |      |
|                  |                                                                                                               |         | 4      |           |        |         | PO 8<br>PO 9 |              |    |       | 1      |        |    |      |      |
| CO               | 5                                                                                                             |         |        |           |        |         | PO 10        |              |    | 3     |        |        |    |      |      |
|                  |                                                                                                               |         |        |           |        |         | PO 11        |              |    |       | 3      |        |    |      |      |
| PSO              | S                                                                                                             |         | KLs    |           |        |         |              | PO 12        |    |       |        | 2      |    |      |      |
| PSO              | 1                                                                                                             |         | 3      |           |        |         |              | PO 13        |    |       |        | 1      |    |      |      |
| PSO              |                                                                                                               |         | 4      |           |        |         | PO 14        |              |    |       | 6      |        |    |      |      |
| PSO              | 3                                                                                                             |         |        | 1         |        |         |              | PO 15        |    |       |        | 3      |    |      |      |
|                  | ,                                                                                                             | ·       | •••    |           |        | CO / PO | -            |              |    | • •   |        | • `    |    |      |      |
|                  | (                                                                                                             | 3/2/11  | ndicat | es the st | rength |         |              |              |    |       | ium, I | -weak) |    |      |      |
| COs              |                                                                                                               |         |        |           |        |         | ramm         | r            |    | 1     |        |        |    |      |      |
|                  | -                                                                                                             | PO2     | PO3    | PO4       | PO5    | PO6     | PO7          | PO8          |    | PO10  | PO11   | PO12   |    | PO14 | PO15 |
| CO1              | 2                                                                                                             | 3       | 1      | 1         | 1      | 1       | 2            | 1            | 3  | 1     | 1      | 2      | 3  | 1    | 1    |
| CO2              | 3                                                                                                             | 2       | 1      | 1         | 1      | 1       | 1            | 1            | 2  | 2     | 2      | 3      | 2  | 1    | 2    |
| CO3              | 1                                                                                                             | 1       | 2      | 2         | 3      | 1       | 1            | 3            | 1  | 2     | 2      | 1      | 1  | 1    | 2    |
| CO4              | 1                                                                                                             | 1       | 2      | 2         | 3      | 1       | 1            | 3            | 1  | 2     | 2      | 1      | 1  | 1    | 2    |
| CO5              | 1                                                                                                             | 1       | 2      | 2         | 3      | 1       | 1            | 3            | 1  | 2     | 2      | 1      | 1  | 1    | 2    |

|                                     | CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |     |     |     |     |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|
| Programme Specific Outcome<br>(POs) |                                                                                               |     |     |     |     |  |  |  |
| Cos                                 | CO1                                                                                           | CO2 | CO3 | CO4 | CO5 |  |  |  |
| PSO1                                | 1                                                                                             | 2   | 2   | 2   | 2   |  |  |  |
| PSO2                                | 1                                                                                             | 1   | 3   | 3   | 3   |  |  |  |
| PSO3                                | 3                                                                                             | 2   | 1   | 1   | 1   |  |  |  |

### **Course Assessment Methods**

1. Continuous Assessment Test I, II & Model

Assignment
 End Semester Examinations

Indirect

1. Course End Delivery

| Content of the Syllabus |                                                                                                        |                   |                 |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------|-------------------|-----------------|--|--|--|--|--|
|                         | Fundamentals of Environmental Chemistry                                                                | Periods           | 15              |  |  |  |  |  |
|                         | Concept of environmental chemistry, Composition of atmosphere                                          | re, vertical tem  | perature and    |  |  |  |  |  |
| Unit - I                | vertical structure of the atmosphere. Environmental pollution: Type                                    | es and sources of | f Pollutants -  |  |  |  |  |  |
|                         | air, water and soil pollution. Prevention and control of pollutions                                    | Biogeochemical    | cycles C, N,    |  |  |  |  |  |
|                         | P, S and O. Biological control of chemical factors in the environmen                                   | ıt.               |                 |  |  |  |  |  |
|                         | Water Chemistry                                                                                        | Periods           | 15              |  |  |  |  |  |
|                         | Characteristics of water, Quality of natural water, quality requirem                                   | ents of portable  | water, organic, |  |  |  |  |  |
|                         | humic and colloidal material in water, chemical composition of water bodies, Commercial water          |                   |                 |  |  |  |  |  |
| Unit - II               | purification method- reverse osmosis method-disinfection of water- purification method of water        |                   |                 |  |  |  |  |  |
|                         | for industrial purpose- lime-soda process, ion exchange process, Zeolite process. Water pollution      |                   |                 |  |  |  |  |  |
|                         | and its environmental impact, eutrophication, Water quality parameters: pH, conductivity, TDS,         |                   |                 |  |  |  |  |  |
|                         | DO, BOD and COD. Role of water in the environment- Hydrological cycle.                                 |                   |                 |  |  |  |  |  |
|                         | Industrial Pollutants                                                                                  | Periods           | 15              |  |  |  |  |  |
|                         | Polymers and Plastics - The classification - The characteristics - Environmental Implications of       |                   |                 |  |  |  |  |  |
|                         | polymers and plastics - abatement procedures for polymers and plastics pollution. Asbestos-            |                   |                 |  |  |  |  |  |
| Unit - III              | Structural characteristics of Asbestos - applications of asbestos - sources of asbestos in the         |                   |                 |  |  |  |  |  |
| 01111 - 111             | environment - analysis of asbestos - effects of asbestos pollution - Mitigation of asbestos pollution. |                   |                 |  |  |  |  |  |
|                         | Polychlorinated Biphenyls The need - Fate of poly chlorinated Biphenyls in the Environment -           |                   |                 |  |  |  |  |  |
|                         | Environmental Implications of Polychlorinated Biphenyls - Abatement procedures for poly                |                   |                 |  |  |  |  |  |
|                         | chlorinated Biphenyls pollution.                                                                       |                   |                 |  |  |  |  |  |
| Unit - IV               | Agricultural Pollutants                                                                                | Periods           | 15              |  |  |  |  |  |

|          | Fertilizers The classification - Environmental implications of fertilizers - Abatement procedures for |                                           |                   |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|--|--|--|
|          | fertilizers pollution - Eutrophication. Insecticides The classification - The characteristics -       |                                           |                   |  |  |  |
|          | Environmental implications of insecticides - Abatement procedu                                        | res for insectici                         | des pollution -   |  |  |  |
|          | Bhopal Episode. Fungicides and Herbicides The need - The class                                        | sification - The                          | characteristics - |  |  |  |
|          | Environmental Implications of Fungicides and Herbicides - Abate                                       | ement procedures                          | s for fungicides  |  |  |  |
|          | and Herbicides pollution.                                                                             |                                           |                   |  |  |  |
|          | Waste Management and Recycling         Periods                                                        |                                           |                   |  |  |  |
|          | Sources and classification of waste. Waste management - Land filling - Incineration -                 |                                           |                   |  |  |  |
|          | medicinal waste - New technique to treat industrial and farm effluer                                  | n effluents - Reduce, reuse and recycle - |                   |  |  |  |
| Unit - V | Wealth from waste recycling - Recycling technique - Utilizing agric                                   | cultural waste - E                        | nergy Recovery    |  |  |  |
|          | from Waste - Municipal waste into road making - Electricity from tannery waste - Vermicomposting      |                                           |                   |  |  |  |
|          | - biogas - Plastic recycling techniques - Waste water and its treatment recycling of sewage -         |                                           |                   |  |  |  |
|          | Removal of hazardous wastes from contaminated metals.                                                 |                                           |                   |  |  |  |
|          | Total Periods75                                                                                       |                                           |                   |  |  |  |

| Text Books   |                                                                                                                                     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1            | Sharma and Kaur, Environmental Chemistry, Krishna Publishers, New Delhi, 2000.                                                      |
| 2            | Dara, S.S., Environmental Pollution and Control, S.Chand & Co., New Delhi, First Edition, 1993.                                     |
| 3            | S.E Manahan, Environmental Chemistry, Lewis Publishers, London, 2001.                                                               |
| References   |                                                                                                                                     |
| 1            | De, A.K., Environmental Chemistry, New Age International Publishers Private Ltd., New Delhi, Fifth Edition, 2008.                   |
| 2            | Sodhi, G.S., Fundamantal Concepts of Environmental Chemistry, Narosa Publishing House Pvt.<br>Ltd., New Delhi, Third Edition, 2009. |
| E-References |                                                                                                                                     |
| 1            | www.purdueglobal.edu/degree-programs/legal-studies/bachelor-environmental-policy-management                                         |
| 2            | www.onlinecolleges.net/degrees/environmental-science                                                                                |

| HONER EMPONERULTI    | VIVEKANANI                                                                                                                                                                                          | OHA COLLEGE OF A<br>(AUTON<br>Elayampalayam, Tii                                                                                                                                   | ОМО                    | DUS   | )      |                   | DR WOMI       | EN        | TUPResident<br>CENTRED |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|--------|-------------------|---------------|-----------|------------------------|
| Programme            | M.Sc                                                                                                                                                                                                | Programme Code                                                                                                                                                                     | PCH Regulations 2020-2 |       |        |                   |               | 2020-2022 |                        |
| Department           | C                                                                                                                                                                                                   | nemistry                                                                                                                                                                           |                        |       |        | Semester          |               |           | 4                      |
| Course Code          | Сог                                                                                                                                                                                                 | per                                                                                                                                                                                | erio<br>We             | eek   | Credit |                   |               | num Marks |                        |
|                      |                                                                                                                                                                                                     |                                                                                                                                                                                    | L                      | Т     | Р      | С                 | CA            | ES        | E Total                |
| 20P4CHE06            | ELECTIVE VI<br>Corrosion Princ<br>Monitoring                                                                                                                                                        | 5                                                                                                                                                                                  |                        |       | 04     | 25                | 75            | 5 100     |                        |
| Course<br>Objectives | to minimize an                                                                                                                                                                                      | understanding of the c<br>ad prevent the corros<br>ods and materials sele                                                                                                          | sion.                  | Un    | ders   | standing vari     | ious corre    |           |                        |
| POs                  |                                                                                                                                                                                                     | PROGI                                                                                                                                                                              | RAM                    | MF    | το     | JTCOME            |               |           |                        |
| PO 1                 |                                                                                                                                                                                                     | Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.                             |                        |       |        |                   |               |           |                        |
| PO 2                 |                                                                                                                                                                                                     | Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself. |                        |       |        |                   |               |           |                        |
| PO 3                 | Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications |                                                                                                                                                                                    |                        |       |        |                   |               |           |                        |
| PO 4                 |                                                                                                                                                                                                     | plate from what one has leasens rather than replicate c                                                                                                                            |                        |       |        | -                 |               |           |                        |
| PO 5                 |                                                                                                                                                                                                     | e the reliability and releves analyse and synthesise da                                                                                                                            |                        |       |        |                   |               |           |                        |
| PO 6                 |                                                                                                                                                                                                     | and capability for asking r<br>to recognise cause and effe                                                                                                                         |                        |       | · ·    | · ·               |               | •••       | •                      |
| PO 7                 | -                                                                                                                                                                                                   | ectively and respectfully w<br>up and act together as a gro                                                                                                                        |                        |       |        |                   | -             |           |                        |
| PO 8                 |                                                                                                                                                                                                     | interpret and draw conclus<br>experiences from an open                                                                                                                             |                        |       | -      | -                 |               | l criti   | cally evaluate         |
| PO 9                 | Critical sensibility                                                                                                                                                                                | to lived experiences with s                                                                                                                                                        | elf aw                 | aren  | ess a  | nd reflexivity of | f both self a | nd soo    | ciety.                 |
| PO 10                |                                                                                                                                                                                                     | CT in a variety of learnin information sources and us                                                                                                                              | -                      |       |        |                   | -             |           | ate and use a          |
| PO 11                | Ability to work ind<br>through to complet                                                                                                                                                           | lependently, identify appro                                                                                                                                                        | opriat                 | e res | ource  | es required for   | a project an  | d mai     | nage a project         |
| PO 12                |                                                                                                                                                                                                     | of the values and beliefs o                                                                                                                                                        | f mul                  | tiple | cultu  | res and a globa   | l perspectiv  | e.        |                        |
| PO 13                | -                                                                                                                                                                                                   | moral ethical values in c<br>nultiple perspectives and u                                                                                                                           |                        | -     |        |                   | -             | argui     | nent about an          |
| PO 14                |                                                                                                                                                                                                     | pping out the tasks of a to<br>lding a team who can help                                                                                                                           |                        |       | -      |                   | -             | ion f     | ormulating an          |
| PO 15                | Ability to acquire l                                                                                                                                                                                | knowledge and skills inclu-<br>s throughout life through s                                                                                                                         | ding l                 | earni |        |                   |               | ry fo     | r participating        |

| COs            | COURSE OUTCOME                                                         |
|----------------|------------------------------------------------------------------------|
| CO 1           | Students will acquire sound knowledge about corrosion and its types    |
| CO 2           | Students learn the importance of polarization and its causes           |
| CO 3           | Students will acquire knowledge about corrosion monitoring techniques  |
| CO 4           | Students will acquire knowledge about corrosion coating and prevention |
| CO 5           | Students will evaluate the efficiency of corrosion inhibitor           |
| Pre-requisites |                                                                        |

| KNOWLEDGE LEVELS                                                                                              |     |          |         |           |         |         |         |              |        |       |        |        |      |      |      |
|---------------------------------------------------------------------------------------------------------------|-----|----------|---------|-----------|---------|---------|---------|--------------|--------|-------|--------|--------|------|------|------|
| 1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing<br>CO / PO / KL Mapping |     |          |         |           |         |         |         |              |        |       |        |        |      |      |      |
|                                                                                                               | (   | 3/2/1 i  | ndicat  | es the st |         |         |         |              | -      | 2-med | ium. 1 | -weak) |      |      |      |
| Cos                                                                                                           |     |          |         |           | KLs     |         |         |              | PO     |       |        |        | KI   | 2S   |      |
| СО                                                                                                            | 1   |          |         |           | 1       |         |         |              | PO     | 1     |        |        | 2    |      |      |
|                                                                                                               | 1   |          |         |           | 1       |         |         |              | PO     | 2     |        |        | 1    |      |      |
| CO                                                                                                            | 2   |          |         |           | 2       |         |         |              | PO     |       |        |        | 5    |      |      |
|                                                                                                               | _   |          |         |           | -       |         |         |              | PO     |       |        |        | 5    |      |      |
| CO                                                                                                            | 3   |          |         |           | 4       |         |         |              | PO     |       |        |        | 4    |      |      |
|                                                                                                               |     |          |         |           |         |         |         |              | PO     |       |        |        | 6    |      |      |
| CO                                                                                                            | 4   |          | 4       |           |         |         |         | PO 7         |        |       | 2 4    |        |      |      |      |
|                                                                                                               |     |          |         |           |         |         |         | PO 8<br>PO 9 |        |       |        | 1      |      |      |      |
| CO                                                                                                            | 5   |          | 4       |           |         |         |         | PO 10        |        |       |        | 3      |      |      |      |
|                                                                                                               |     |          | KLs     |           |         |         |         | PO 11        |        |       |        | 3      |      |      |      |
| PSO                                                                                                           | S   |          |         |           |         |         |         | PO 12        |        |       |        | 2      |      |      |      |
| PSO                                                                                                           | 1   |          |         |           | 3       |         |         | PO 13        |        |       |        | 1      |      |      |      |
| PSO                                                                                                           | 2   |          |         |           | 4       |         |         | PO 14        |        |       |        | 6      |      |      |      |
| PSO                                                                                                           | 3   |          |         |           | 1       |         |         | PO 15        |        |       |        | 3      |      |      |      |
|                                                                                                               |     |          |         |           |         | CO / PO | -       |              |        |       |        |        |      |      |      |
|                                                                                                               | (   | (3/2/1 i | indicat | es the st | trength | of cor  | relatio | n, 3-st      | rong,  | 2-med | ium, 1 | -weak) |      |      |      |
| COs                                                                                                           |     |          |         |           |         | Prog    | ramm    | e Outo       | come ( | POs)  |        |        |      |      |      |
| 003                                                                                                           | PO1 | PO2      | PO3     | PO4       | PO5     | PO6     | PO7     | PO8          | PO9    | PO10  | PO11   | PO12   | PO13 | PO14 | PO15 |
| CO1                                                                                                           | 2   | 3        | 1       | 1         | 1       | 1       | 2       | 1            | 3      | 1     | 1      | 2      | 3    | 1    | 1    |
| CO2                                                                                                           | 3   | 2        | 1       | 1         | 1       | 1       | 1       | 1            | 2      | 2     | 2      | 3      | 2    | 1    | 2    |
| CO3                                                                                                           | 1   | 1        | 2       | 2 2 3 1 1 |         |         | 1       | 3            | 1      | 2     | 2      | 1      | 1    | 1    | 2    |
| CO4                                                                                                           | 1   | 1        | 2       | 2         | 3       | 1       | 1       | 3            | 1      | 2     | 2      | 1      | 1    | 1    | 2    |
| CO5                                                                                                           | 1   | 1        | 2       | 2         | 3       | 1       | 1       | 3            | 1      | 2     | 2      | 1      | 1    | 1    | 2    |

|      | CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |           |     |     |     |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------|-----------|-----|-----|-----|--|--|--|--|--|--|
| Car  | Programme Specific Outcome<br>(POs)                                                           |           |     |     |     |  |  |  |  |  |  |
| Cos  | CO1                                                                                           | CO2       | CO3 | CO4 | CO5 |  |  |  |  |  |  |
| PSO1 | 1                                                                                             | 2         | 2   | 2   | 2   |  |  |  |  |  |  |
| PSO2 | 1                                                                                             | 1         | 3   | 3   | 3   |  |  |  |  |  |  |
| PSO3 | 3                                                                                             | 3 2 1 1 1 |     |     |     |  |  |  |  |  |  |

# Course Assessment Methods Direct 1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations Indirect 1. Course End Delivery

|            | Content of the Syllabus                                                                               |                    |                 |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------|--------------------|-----------------|--|--|--|--|--|--|
|            | Basic Concepts of corrosion                                                                           | Periods            | 15              |  |  |  |  |  |  |
|            | Corrosion – Introduction – definition – consequences of corrosion. Theories of corrosion – dry        |                    |                 |  |  |  |  |  |  |
| Unit - I   | corrosion - wet or electrochemical corrosion - difference. Corrosi                                    | on rate expression | on. Forms of    |  |  |  |  |  |  |
|            | corrosion-Galvanic-crevice-pitting-intergranular-selective                                            | leaching - erosi   | on – stress –   |  |  |  |  |  |  |
|            | hydrogen damage – their prevention.                                                                   |                    |                 |  |  |  |  |  |  |
|            | Thermodynamics of corrosion                                                                           | Periods            | 15              |  |  |  |  |  |  |
| Unit - II  | Thermodynamics - Change of Gibbs free energy. Pourbaix diagram                                        | of water, iron ar  | nd aluminium –  |  |  |  |  |  |  |
| Unit - 11  | limitations of Pourbaix diagram. Polarization - measurement - causes of polarization.                 |                    |                 |  |  |  |  |  |  |
|            | Concentration polarization – activation polarization – resistance pola                                | arization (Basic i | deas only).     |  |  |  |  |  |  |
|            | Corrosion monitoring techniques                                                                       | Periods            | 15              |  |  |  |  |  |  |
| Unit - III | Corrosion monitoring techniques - Weight loss method - hydrogen permeation studies - electrical       |                    |                 |  |  |  |  |  |  |
| Unit - 111 | resistance measurement - linear polarisation resistance - potentiodynamic and galvanodynamic          |                    |                 |  |  |  |  |  |  |
|            | polarization – electrochemical impedance spectroscopy.                                                |                    |                 |  |  |  |  |  |  |
|            | Corrosion prevention                                                                                  | Periods            | 15              |  |  |  |  |  |  |
|            | Corrosion prevention - material selection - change of environment - proper design - anodic and        |                    |                 |  |  |  |  |  |  |
| Unit - IV  | cathodic protection - application of coatings - types of coatings. Hot dipping - metal cladding -     |                    |                 |  |  |  |  |  |  |
|            | cementation - electroplating - surface or chemical conversion coating - anodising - vitreous or       |                    |                 |  |  |  |  |  |  |
|            | porcelain enamel coating – paints (Basic idea only).                                                  |                    |                 |  |  |  |  |  |  |
|            | Corrosion inhibitors                                                                                  | Periods            | 15              |  |  |  |  |  |  |
|            | Corrosion inhibitors - definition - types - chemical passivators - adsorption inhibitors - film       |                    |                 |  |  |  |  |  |  |
| Unit - V   | forming inhibitors - vapour phase inhibitors - advantages of using inhibitors. Industrial application |                    |                 |  |  |  |  |  |  |
|            | of inhibitors - inhibition of reinforcing steel in concrete, coal wate                                | r slurries, coolin | g water system, |  |  |  |  |  |  |
|            | acid solutions and oxygen scavengers. Green inhibition – definition.                                  |                    |                 |  |  |  |  |  |  |
|            | Total Periods                                                                                         |                    | 75              |  |  |  |  |  |  |

| Text Books   |                                                                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | Raj Narayan, An introduction to metallic corrosion and its prevention, Oxford and IBH Publishing company (1983).                               |
| 2            | V.S. Sastri, Green corrosion inhibitor, John Wiley and Sons Inc., Publications (2011).                                                         |
| 3            | A. Ravikrishnan, Applied chemistry, Sri Krishna Publications (2007).                                                                           |
| References   |                                                                                                                                                |
| 1            | Mars. G. Fontana, Corrosion Engineering, Tata McGraw – Hill publishing company Ltd. (1986).                                                    |
| 2            | B.K. Sharma, Industrial Chemistry, Vol. I & II, Krishna Prakashan (2014).                                                                      |
| E-References |                                                                                                                                                |
| 1            | https://www.materials.unsw.edu.au/study-us/high-school-students-and-teachers/online tutorials / corrosion / introduction/wet-and-dry-corrosion |
| 2            | https://onlinelibrary.wiley.com/doi/full/10.1002/maco.202011977                                                                                |
| 3            | https://www.vea.org.uk/what-is-enamel/                                                                                                         |

| HONE ENDOWERNEN      | VIVEKANANI                                                                                                                                                                         | DHA COLLEGE OF A<br>(AUTON<br>Elayampalayam, Ti                                                                                                                                                     | NOM                     | OUS    | 5)     |                   | DR WOMI       |                      | Rheinfand<br>http://toostaco |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|--------|-------------------|---------------|----------------------|------------------------------|--|
| Programme            | M.Sc                                                                                                                                                                               | Programme Code                                                                                                                                                                                      | PCH Regulations 2020-20 |        |        |                   |               |                      | 2020-2022                    |  |
| Department           | Cl                                                                                                                                                                                 | nemistry                                                                                                                                                                                            |                         |        |        | Semester          | 1             |                      | 4                            |  |
| Course Code          | Сог                                                                                                                                                                                |                                                                                                                                                                                                     | eriod<br>We<br>T        |        | Credit |                   |               | ım Marks<br>SE Total |                              |  |
| 20P4CHP04            | CORE PRACTIC<br>Organic Chemist                                                                                                                                                    |                                                                                                                                                                                                     | 1                       | 5      | 04     | CA<br>40          | ESE<br>60     | 100                  |                              |  |
| Course<br>Objectives | gives an idea to                                                                                                                                                                   | this lab is to provide h<br>sort out a suitable meth<br>to conduct two stage pr                                                                                                                     | hod to                  | o esti | imat   |                   |               |                      |                              |  |
| POs                  |                                                                                                                                                                                    | PROG                                                                                                                                                                                                | RAM                     | IMF    | E OI   | UTCOME            |               |                      |                              |  |
| PO 1                 |                                                                                                                                                                                    | Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.                                              |                         |        |        |                   |               |                      |                              |  |
| PO 2                 | Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself. |                                                                                                                                                                                                     |                         |        |        |                   |               |                      |                              |  |
| PO 3                 | claims beliefs on th                                                                                                                                                               | Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications |                         |        |        |                   |               |                      |                              |  |
| PO 4                 |                                                                                                                                                                                    | blate from what one has le<br>ems rather than replicate of                                                                                                                                          |                         |        |        |                   |               |                      |                              |  |
| PO 5                 | -                                                                                                                                                                                  | e the reliability and rele<br>s analyse and synthesise d                                                                                                                                            |                         |        |        | -                 | -             |                      |                              |  |
| PO 6                 |                                                                                                                                                                                    | and capability for asking to recognise cause and eff                                                                                                                                                |                         |        |        |                   |               |                      |                              |  |
| PO 7                 | on the part of a gro                                                                                                                                                               | ectively and respectfully up and act together as a g                                                                                                                                                | roup in                 | the i  | intere | ests of work effi | ciently as a  | member               | of a team.                   |  |
| PO 8                 |                                                                                                                                                                                    | interpret and draw conclu<br>l experiences from an oper                                                                                                                                             |                         |        | -      | -                 |               | l critical           | ly evaluate                  |  |
| PO 9                 | Critical sensibility                                                                                                                                                               | to lived experiences with                                                                                                                                                                           | self aw                 | aren   | ess a  | nd reflexivity of | f both self a | nd socie             | ty.                          |  |
| PO 10                |                                                                                                                                                                                    | CT in a variety of learnin<br>information sources and u                                                                                                                                             |                         |        |        |                   |               |                      | e and use a                  |  |
| PO 11                | Ability to work ind<br>through to complet                                                                                                                                          | dependently, identify apprion.                                                                                                                                                                      | ropriat                 | e res  | ource  | es required for   | a project an  | d manag              | ge a project                 |  |
| PO 12                | Possess knowledge                                                                                                                                                                  | of the values and beliefs                                                                                                                                                                           | of mul                  | tiple  | cultu  | ires and a globa  | l perspectivo | e.                   |                              |  |
| PO 13                | ethical issue from r                                                                                                                                                               | moral ethical values in a nultiple perspectives and u                                                                                                                                               | use eth                 | ical p | pract  | ices in all work. |               | e                    |                              |  |
| PO 14                | inspiring vision but                                                                                                                                                               | pping out the tasks of a silding a team who can help                                                                                                                                                | p achie                 | ve th  | e vis  | ion motivating.   | _             |                      | _                            |  |
| PO 15                |                                                                                                                                                                                    | nowledge and skills inclu<br>s throughout life through                                                                                                                                              | -                       |        | ng ho  | ow to learn that  | are necessar  | y for pai            | rticipating                  |  |

| COs            | COURSE OUTCOME                                                          |
|----------------|-------------------------------------------------------------------------|
| CO 1           | Students can able to estimate quantitatively the give organic compound. |
| CO 2           | Students can able to design a synthesis of new compound.                |
| CO 3           | Students can able to purify the synthesized compound.                   |
| CO 4           | Students can able to propose the mechanism of chemical reactions        |
| CO 5           | Students will able to carry out their research in future.               |
| Pre-requisites |                                                                         |

Г

| KNOWLEDGE LEVELS                                                                                            |     |          |           |           |         |       |          |                |        |       |        |        |      |      |      |
|-------------------------------------------------------------------------------------------------------------|-----|----------|-----------|-----------|---------|-------|----------|----------------|--------|-------|--------|--------|------|------|------|
| 1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing                       |     |          |           |           |         |       |          |                |        |       |        |        |      |      |      |
| CO / PO / KL Mapping                                                                                        |     |          |           |           |         |       |          |                |        |       |        |        |      |      |      |
| (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)       Cos     KLs     POs     KLs |     |          |           |           |         |       |          |                |        |       |        |        |      |      |      |
|                                                                                                             | 5   |          |           | 1         | NLS     |       |          |                | PO     |       |        |        | 2    |      |      |
| CO                                                                                                          | 1   |          |           |           | 3       |       |          |                | PO     |       |        |        | 1    |      |      |
|                                                                                                             |     |          |           |           |         |       |          |                | PO     |       |        |        | 5    |      |      |
| CO                                                                                                          | 2   |          |           |           | 6       |       |          |                | PO     |       |        |        | 5    |      |      |
| 60                                                                                                          | 2   |          |           |           | 2       |       |          |                | PO     | 5     |        |        | 4    |      |      |
| CO                                                                                                          | 3   |          |           |           | 3       |       |          |                | PO     | 6     |        |        | 6    |      |      |
| СО                                                                                                          | 4   |          |           |           | 5       |       |          |                | PO     |       |        | 2      |      |      |      |
|                                                                                                             | -   |          | 5         |           |         |       | PO 8     |                |        | 4     |        |        |      |      |      |
| СО                                                                                                          | 5   |          | 3         |           |         |       | PO 9     |                |        |       | 1      |        |      |      |      |
| -                                                                                                           |     |          |           |           |         |       |          |                | PO 1   |       |        |        | 3    |      |      |
| PSC                                                                                                         | )s  |          | KLs       |           |         |       |          | PO 11<br>PO 12 |        |       |        |        | 2    |      |      |
| PSO                                                                                                         | 1   |          |           |           | 3       |       |          | PO 12<br>PO 13 |        |       |        | 1      |      |      |      |
| PSO                                                                                                         |     |          |           |           | 4       |       |          | PO 14          |        |       |        | 6      |      |      |      |
| PSO                                                                                                         |     |          |           |           | 1       |       |          | PO 15          |        |       |        | 3      |      |      |      |
|                                                                                                             |     |          |           |           |         | CO/P  | O Maj    | pping          |        |       |        |        |      |      |      |
|                                                                                                             | (   | (3/2/1 i | ndicat    | es the st | trength | of co | rrelatio | on, 3-s        | trong, | 2-med | ium, 1 | -weak) |      |      |      |
| COs                                                                                                         |     |          |           |           |         | Pro   | gramn    | 1e Out         | come   | (POs) |        |        |      |      |      |
|                                                                                                             | PO1 | PO2      | PO3       | PO4       | PO5     | PO6   | PO7      | PO8            | PO9    | PO10  | PO11   | PO12   | PO13 | PO14 | PO15 |
| CO1                                                                                                         | 2   | 1        | 1         | 1         | 2       | 1     | 2        | 2              | 1      | 3     | 3      | 2      | 1    | 1    | 3    |
| CO2                                                                                                         | 1   | 1        | 2         | 2         | 1       | 3     | 1        | 1              | 1      | 1     | 1      | 1      | 1    | 3    | 1    |
| CO3                                                                                                         | 2   | 1        | 1 1 2 1 2 |           | 2       | 2     | 1        | 3              | 3      | 2     | 1      | 1      | 3    |      |      |
| CO4                                                                                                         | 1   | 1        | 3         | 3         | 2       | 2     | 1        | 2              | 1      | 1     | 1      | 1      | 1    | 2    | 1    |
| CO5                                                                                                         | 2   | 1        | 1         | 1         | 2       | 1     | 2        | 2              | 1      | 3     | 3      | 2      | 1    | 1    | 3    |

|      | CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |     |     |     |     |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|--|--|
| Car  | Programme Specific Outcome<br>(POs)                                                           |     |     |     |     |  |  |  |  |  |
| Cos  | CO1                                                                                           | CO2 | CO3 | CO4 | CO5 |  |  |  |  |  |
| PSO1 | 3                                                                                             | 1   | 3   | 1   | 3   |  |  |  |  |  |
| PSO2 | 2                                                                                             | 1   | 2   | 2   | 2   |  |  |  |  |  |
| PSO3 | 1 1 1 1 1                                                                                     |     |     |     |     |  |  |  |  |  |

| Course Assessment Methods                   |  |  |  |  |  |
|---------------------------------------------|--|--|--|--|--|
| Direct                                      |  |  |  |  |  |
| 1. Continuous Assessment Test I, II & Model |  |  |  |  |  |
| 2. Assignment                               |  |  |  |  |  |
| 3. End Semester Examinations                |  |  |  |  |  |
| Indirect                                    |  |  |  |  |  |
| 1. Course End Delivery                      |  |  |  |  |  |

| Content of the Syllabus |                                                                                     |                  |               |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------|------------------|---------------|--|--|--|--|--|
|                         | Organic Estimations and Spectral Interpretations                                    | Periods          | 35            |  |  |  |  |  |
| Unit - I                | Estimation of phenol, Estimation of aniline, Estimation of m                        | nethyl ketone, E | Estimation of |  |  |  |  |  |
|                         | glucose.                                                                            |                  |               |  |  |  |  |  |
|                         | Interpretation of IR and UV visible spectra of organic compounds (six in each case) |                  |               |  |  |  |  |  |
|                         | Two stage preparations                                                              | Periods          | 40            |  |  |  |  |  |
|                         | sym-Tribromobenzene from aniline (Bromination + Hydroly                             | sis)             |               |  |  |  |  |  |
| Unit - II               | p-nitroaniline from acetanilide (Nitration + Hydrolysis)                            |                  |               |  |  |  |  |  |
| 01111 - 11              | Benzanilide from benzophenone (Beckmann rearrangement)                              |                  |               |  |  |  |  |  |
|                         | m-nitroaniline from nitrobenzene (Nitration + Reduction)                            |                  |               |  |  |  |  |  |
|                         | p-bromo acetanlide from aniline (Acetylation + Bromination                          | )                |               |  |  |  |  |  |
|                         | Total Periods 75                                                                    |                  |               |  |  |  |  |  |

| Refe | References                                                                                           |  |  |  |  |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 1    | Dr. N.S Gnanapragasam, Organic chemistry Lab manual                                                  |  |  |  |  |  |  |  |  |  |
| 2    | Raj .K. Bansal, Laboratory Manual of Organic chemistry, 3rd Edition, New Age Internal Publication .  |  |  |  |  |  |  |  |  |  |
| 3    | B.S. Furniss, A.J.Hannaford, P.W.D Smith and A.R. Tatchell, Vogel's Practical Organic chemistry, 5th |  |  |  |  |  |  |  |  |  |
| 5    | Edition. ELBS                                                                                        |  |  |  |  |  |  |  |  |  |
| 4    | V. Venkateshwaran, R. Veerasamy, A. R. Kulandaivelu, Basic principles of practical chemistry, Sultan |  |  |  |  |  |  |  |  |  |
| 4    | Chand & Sons,New Delhi, 2016                                                                         |  |  |  |  |  |  |  |  |  |
| E-Re | ferences                                                                                             |  |  |  |  |  |  |  |  |  |
| 1    | http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html                                            |  |  |  |  |  |  |  |  |  |
| 2    | http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1                                                    |  |  |  |  |  |  |  |  |  |
| 3    | http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1                                                 |  |  |  |  |  |  |  |  |  |

| HONEN ENPONERMENT    | VIVEKANANI                             | <b>DHA COLLEGE OF</b> A<br>( <b>AUTO</b> )<br>Elayampalayam, Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOM     | OUS         | 5)     |                   | DR WOMI       |            | Rheinland<br>O y10074627 |
|----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------|-------------------|---------------|------------|--------------------------|
| Programme            | M.Sc                                   | Programme Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |             | PO     | СН                | Regulati      | ons        | 2020-2022                |
| Department           | Cl                                     | nemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |             |        | Semester          | 1             |            | 4                        |
| Course Code          | Со                                     | urse Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | per     | eriod<br>We | ek     | Credit            |               | kimum I    | 1                        |
| 20P4CHP05            | CORE PRACTIO                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L       | Т           | P<br>5 | C<br>04           | CA<br>40      | ESE<br>60  | Total<br>100             |
| Course<br>Objectives | properties of ion                      | ing in micro scale ex<br>s and their compounds<br>the of pH, stability of con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .To     | educ        | ate t  | he students al    |               |            |                          |
| POs                  |                                        | PROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RAN     | IMF         | εοι    | JTCOME            |               |            |                          |
| PO 1                 |                                        | strating comprehensive k<br>ndergraduate programme of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |             | and u  | inderstanding o   | f one or m    | ore disc   | iplines that             |
| PO 2                 |                                        | thoughts and ideas effec<br>confidently share ones vie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |             |        |                   |               | e with o   | thers using              |
| PO 3                 | claims beliefs on th                   | y analytic thought to a b<br>ne basis of empirical evide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nce id  | entify      | y rele | vant assumption   | ns or implic  | ations     |                          |
| PO 4                 |                                        | blate from what one has le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |             |        |                   |               |            |                          |
| PO 5                 | -                                      | e the reliability and rele<br>s analyse and synthesise d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |             |        | -                 | -             |            |                          |
| PO 6                 |                                        | and capability for asking<br>to recognise cause and eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |             |        |                   |               |            |                          |
| PO 7                 | on the part of a gro                   | fectively and respectfully<br>up and act together as a gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | roup in | the         | intere | ests of work effi | ciently as a  | member     | of a team.               |
| PO 8                 |                                        | interpret and draw conclu<br>l experiences from an oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |             | -      | -                 |               | d critical | ly evaluate              |
| PO 9                 | Critical sensibility                   | to lived experiences with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | self aw | aren        | ess a  | nd reflexivity of | f both self a | nd socie   | ty.                      |
| PO 10                | · ·                                    | CT in a variety of learnin information sources and u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •       |             |        |                   | •             |            | e and use a              |
| PO 11                | Ability to work in through to complete | dependently, identify apprior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ropriat | e res       | ource  | es required for   | a project an  | d manag    | ge a project             |
| PO 12                | Possess knowledge                      | of the values and beliefs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of mul  | tiple       | cultu  | res and a globa   | l perspectiv  | e.         |                          |
| PO 13                | ethical issue from 1                   | e moral ethical values in a nultiple perspectives and the second se                                                                                                                                                                                                                                             | use eth | ical j      | practi | ces in all work.  | -             | -          |                          |
| PO 14                | inspiring vision bu                    | pping out the tasks of a pilot of | p achie | ve th       | e vis  | ion motivating.   | -             |            | -                        |
| PO 15                |                                        | cnowledge and skills inclu<br>es throughout life through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |             | ng ho  | w to learn that   | are necessar  | y for par  | ticipating               |

| COs            | COURSE OUTCOME                                                                                                                                                                                 |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 1           | Students will learn how to conduct a process systematically and precisely                                                                                                                      |
| CO 2           | The qualitative analysis gives a type of mental training and develops a power of reasoning not equal to any other course in chemistry                                                          |
| CO 3           | The students will learn the nature, significance, and influence of errors and how they may best be avoided or minimized during qualitative and quantitative examination of a chemical compound |
| CO 4           | Students will able to design and synthesize new complexes                                                                                                                                      |
| CO 5           | Students will able to carry out their research in future                                                                                                                                       |
| Pre-requisites |                                                                                                                                                                                                |

| KNOWLEDGE LEVELS                                                                                                                                                                           |                 |          |        |           |     |      |       |                 |          |         |         |        |      |      |      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|--------|-----------|-----|------|-------|-----------------|----------|---------|---------|--------|------|------|------|--|
| 1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing<br>CO / PO / KL Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |                 |          |        |           |     |      |       |                 |          |         |         |        |      |      |      |  |
| Cos                                                                                                                                                                                        | Cos KLs POs KLs |          |        |           |     |      |       |                 |          |         |         |        |      |      |      |  |
|                                                                                                                                                                                            |                 |          |        |           |     |      |       |                 | PO       | 1       |         |        | 2    |      |      |  |
| CO                                                                                                                                                                                         | 1               |          |        |           | 1   |      |       |                 | РО       | 2       |         |        | 1    |      |      |  |
| CO                                                                                                                                                                                         | 2               |          |        |           | 4   |      |       |                 | PO       |         |         |        | 5    |      |      |  |
|                                                                                                                                                                                            |                 |          |        |           | 4   |      |       |                 | PO       |         |         |        | 5    |      |      |  |
| CO                                                                                                                                                                                         | 3               |          |        |           | 2   |      |       |                 | PO       |         |         |        | 4    |      |      |  |
|                                                                                                                                                                                            |                 |          |        |           | _   |      |       |                 | PO<br>PO |         |         |        | 2    |      |      |  |
| CO 4                                                                                                                                                                                       | 4               |          |        |           | 6   |      |       |                 | PO       |         |         | 4      |      |      |      |  |
|                                                                                                                                                                                            | _               |          |        |           |     |      |       | PO 9            |          |         |         | 1      |      |      |      |  |
| CO S                                                                                                                                                                                       | 5               |          | 3      |           |     |      |       | PO 10           |          |         |         | 3      |      |      |      |  |
| PSO                                                                                                                                                                                        | c               |          | KLs    |           |     |      |       | PO 11           |          |         |         | 3      |      |      |      |  |
|                                                                                                                                                                                            |                 |          |        |           |     |      |       | PO 12           |          |         |         |        | 2    |      |      |  |
| PSO                                                                                                                                                                                        |                 |          |        |           | 3   |      |       | PO 13           |          |         |         | 1      |      |      |      |  |
| PSO                                                                                                                                                                                        |                 |          |        |           | 4   |      |       | PO 14           |          |         |         | 6      |      |      |      |  |
| PSO                                                                                                                                                                                        | 3               |          |        |           | 1   |      |       | PO 15 3 Mapping |          |         |         |        |      |      |      |  |
|                                                                                                                                                                                            | (               | (3/2/1 i | ndicat | es the st |     |      |       |                 | trong    | , 2-med | lium, 1 | -weak) |      |      |      |  |
| COs                                                                                                                                                                                        |                 |          |        |           |     | Prog | gramr | ne Out          | come     | (POs)   |         |        |      |      |      |  |
| PO1 PO2                                                                                                                                                                                    |                 |          | PO3    | PO4       | PO5 | PO6  | PO7   | PO8             | PO9      | PO10    | PO11    | PO12   | PO13 | PO14 | PO15 |  |
| C01                                                                                                                                                                                        | 2               | 3        | 1      | 1         | 1   | 1    | 2     | 1               | 3        | 1       | 1       | 2      | 3    | 1    | 1    |  |
| CO2                                                                                                                                                                                        | 1               | 1        | 2      | 2         | 3   | 1    | 1     | 3               | 1        | 2       | 2       | 1      | 1    | 1    | 2    |  |
| CO3                                                                                                                                                                                        | 3               | 2        | 1      | 1 1 1 1 1 |     | 1    | 1     | 2               | 2        | 2       | 3       | 2      | 1    | 2    |      |  |
| CO4                                                                                                                                                                                        | 1               | 1        | 2      | 2         | 1   | 3    | 1     | 1               | 1        | 1       | 1       | 1      | 1    | 3    | 1    |  |
| CO5                                                                                                                                                                                        | 2               | 1        | 1      | 1         | 2   | 1    | 2     | 2               | 1        | 3       | 3       | 2      | 1    | 1    | 3    |  |

|      | CO / PSO Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |   |   |   |   |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------|---|---|---|---|--|--|--|--|--|--|--|
| Car  | Programme Specific Outcome<br>(POs)                                                           |   |   |   |   |  |  |  |  |  |  |  |
| Cos  | CO1                                                                                           |   |   |   |   |  |  |  |  |  |  |  |
| PSO1 | 1                                                                                             | 2 | 2 | 1 | 3 |  |  |  |  |  |  |  |
| PSO2 | 1 3 1 1 2                                                                                     |   |   |   |   |  |  |  |  |  |  |  |
| PSO3 | 3                                                                                             | 1 | 2 | 1 | 1 |  |  |  |  |  |  |  |

| Course Assessment Methods                   |  |  |  |  |  |  |  |
|---------------------------------------------|--|--|--|--|--|--|--|
| Direct                                      |  |  |  |  |  |  |  |
| 1. Continuous Assessment Test I, II & Model |  |  |  |  |  |  |  |
| 2. Assignment                               |  |  |  |  |  |  |  |
| 3. End Semester Examinations                |  |  |  |  |  |  |  |
| Indirect                                    |  |  |  |  |  |  |  |
| 1. Course End Delivery                      |  |  |  |  |  |  |  |

|                      | Content of the Syllabus                                     |                 |    |  |  |  |  |  |  |  |
|----------------------|-------------------------------------------------------------|-----------------|----|--|--|--|--|--|--|--|
|                      | Organic Estimations and Spectral Interpretations            | Periods         | 35 |  |  |  |  |  |  |  |
| Unit - I             | Iron and Magnesium, Iron and Nickel, Copper and Nickel,     | Copper and Zinc | 2  |  |  |  |  |  |  |  |
| Preparations Periods |                                                             |                 |    |  |  |  |  |  |  |  |
|                      | Tris(thiourea)copper(I) chlorideBis(acetylacetanato) copper |                 | •  |  |  |  |  |  |  |  |
| Unit - II            | Hexamminecobalt(III) chlorideSodium hexanitrocobaltate(     | (III)           |    |  |  |  |  |  |  |  |
|                      | Potasium trioxalatoaluminate(III) trihydrate                |                 |    |  |  |  |  |  |  |  |
|                      | Chloropentamminecobalt(III) chlorideHexamminenickel(II      | ) chloride      |    |  |  |  |  |  |  |  |
|                      | <b>Total Periods</b> 75                                     |                 |    |  |  |  |  |  |  |  |

| Text Books   |                                                                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| References   |                                                                                                                                                |
| 1            | J. Mendham, R.C. Denney, J.D. Barnes, M.J.K. Thomas, Vogel's Textbook of Quantitative Chemical Analysis, 6th Edition, Pearson Education (2001) |
| 2            | V. Venkateswaran, R. Veeraswamy and A.R.Kulandaivelu, Basic Principles of Practical Chemistry,<br>New Delhi, S.Chand & Co, (1995)              |
| E-References |                                                                                                                                                |
| 1            | http://lib.hku.hk/Press/9622092128.pdf                                                                                                         |
| 2            | http://www.kvsunjuwan.com                                                                                                                      |
| 3            | http://science-blogs.ucoz.com/resources/notes/msc/pract1/CationGuide.pdf                                                                       |

| HOMEN EMPONERNENT    | VIVEKANANI                   | OHA COLLEGE OF AR<br>(AUTONO)<br>Elayampalayam, Tiruc                          | MOU    | S)        |        |               | DR WOMI       | τŬ       | Resentand<br>Entrice |  |
|----------------------|------------------------------|--------------------------------------------------------------------------------|--------|-----------|--------|---------------|---------------|----------|----------------------|--|
| Programme            | M.Sc                         | Programme Code                                                                 |        |           | ons 2  | 2020-2022     |               |          |                      |  |
| Department           | (                            | Chemistry                                                                      |        |           |        | Semester      | r             |          | 4                    |  |
| Course Code          | Co                           | ourse Name                                                                     | per    | erio<br>W | eek    | Credit        |               |          | m Marks              |  |
|                      |                              |                                                                                | L      | Т         | Р      | С             | CA            | ESE      | Total                |  |
| 20P4CHCP06           | CORE PRACT<br>Physical Chemi | ICAL II:<br>stry Practical - II                                                |        |           | 4      | 04            | 40            | 60       | 100                  |  |
| Course<br>Objectives | chemical prope               | principles of phase rul<br>erties of the given com<br>with instruments indepen | npour  | ds        |        |               |               |          |                      |  |
| POs                  |                              | PROGRA                                                                         | MM     | E C       | DUT    | COME          |               |          |                      |  |
| PO 1                 |                              | strating comprehensive know<br>ndergraduate programme of st                    |        | and       | unde   | erstanding c  | f one or m    | ore disc | ciplines that        |  |
| PO 2                 | Ability to express           | thoughts and ideas effective<br>confidently share ones views                   | ely in |           |        |               |               | e with c | others using         |  |
| PO 3                 |                              | y analytic thought to a body<br>the basis of empirical evidence                |        |           |        |               |               |          | e arguments          |  |
| PO 4                 |                              | plate from what one has learn<br>ems rather than replicate curr                |        |           | -      | -             |               |          |                      |  |
| PO 5                 | arguments of other           | e the reliability and relevan<br>s analyse and synthesise data                 | from a | vari      | ety of | f sources dra | aw valid Co   | nclusior | 18.                  |  |
| PO 6                 |                              | and capability for asking rele<br>to recognise cause and effect                |        |           | -      |               |               |          | -                    |  |
| PO 7                 | -                            | ectively and respectfully with<br>up and act together as a group               |        |           |        |               | -             |          |                      |  |
| PO 8                 | ideas, evidence and          | interpret and draw conclusion<br>experiences from an open m                    | inded  | and 1     | easor  | ed perspect   | ive.          |          | 2                    |  |
| PO 9                 |                              | to lived experiences with self                                                 |        |           |        |               |               |          | -                    |  |
| PO 10                | variety of relevant          | CT in a variety of learning s<br>information sources and use a                 | pprop  | riate     | softw  | are for anal  | ysis of data. |          |                      |  |
| PO 11                | through to complet           |                                                                                |        |           |        | -             |               |          | ge a project         |  |
| PO 12                |                              | of the values and beliefs of n                                                 | _      |           |        | -             |               |          |                      |  |
| PO 13                | -                            | moral ethical values in con-<br>nultiple perspectives and use                  |        | -         |        |               | -             | argume   | nt about an          |  |
| PO 14                | inspiring vision but         | pping out the tasks of a team<br>lding a team who can help ac                  | hieve  | the v     | ision  | motivating.   |               |          | _                    |  |
| PO 15                | . –                          | nowledge and skills including<br>s throughout life through self                |        |           | now to | b learn that  | are necessar  | y for pa | rticipating          |  |

| COs            | COURSE OUTCOME                                                                                                                      |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| CO 1           | Students will understand the breadth and concepts of physical chemistry.                                                            |
| CO 2           | Students will develop skills in procedures and instrumental methods applied in analytical and practical tasks of physical chemistry |
| CO 3           | Students will plan, conduct, review and report the experiment.                                                                      |
| CO 4           | Students will analyze the possible errors in phase studies.                                                                         |
| CO 5           | Students will evaluate the adsorption mechanism with time.                                                                          |
| Pre-requisites |                                                                                                                                     |

|                                                                                                   | KNOWLEDGE LEVELS                                                                      |          |        |           |          |         |     |        |          |         |                 |        |      |      |      |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------|--------|-----------|----------|---------|-----|--------|----------|---------|-----------------|--------|------|------|------|
| 1.                                                                                                | 1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing |          |        |           |          |         |     |        |          |         |                 |        |      |      |      |
| CO / PO / KL Mapping<br>(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) |                                                                                       |          |        |           |          |         |     |        |          |         |                 |        |      |      |      |
| Co                                                                                                |                                                                                       |          |        |           | KLs      |         |     | ,      | PO       |         |                 | ,      | KI   | _S   |      |
| CC                                                                                                | 1                                                                                     |          |        |           | 2        |         |     |        | PO       | 1       |                 |        | 3    |      |      |
|                                                                                                   | / 1                                                                                   |          |        |           | 2        |         |     |        | PO       |         |                 |        | 1    |      |      |
| CC                                                                                                | 2                                                                                     |          |        |           | 1        |         |     |        | PO       |         |                 |        | 4    |      |      |
|                                                                                                   |                                                                                       |          |        |           |          |         |     |        | PO       |         |                 |        | 2    |      |      |
| CC                                                                                                | 3                                                                                     |          |        |           | 3        |         |     |        | PO       |         |                 |        | 6    |      |      |
|                                                                                                   |                                                                                       |          |        |           |          |         |     |        | PO<br>PO |         |                 |        | 6    |      |      |
| CC                                                                                                | ) 4                                                                                   |          |        |           | 2        |         |     |        | PO       |         |                 |        | 1    |      |      |
|                                                                                                   |                                                                                       |          | 6      |           |          |         |     | PO 9   |          |         |                 | 1      |      |      |      |
| CC                                                                                                | ) 5                                                                                   |          |        |           |          |         |     | PO 10  |          |         |                 | 4      |      |      |      |
| PS                                                                                                | Oc                                                                                    |          | KLs    |           |          |         |     | PO 11  |          |         |                 | 5      |      |      |      |
|                                                                                                   |                                                                                       |          | KL8    |           |          |         |     | PO 12  |          |         |                 | 3      |      |      |      |
| PSC                                                                                               |                                                                                       |          | 3      |           |          |         |     | PO 13  |          |         |                 | 1      |      |      |      |
| PSC                                                                                               |                                                                                       |          |        |           | 4        |         |     | PO 14  |          |         |                 | 6      |      |      |      |
| PSC                                                                                               | 03                                                                                    |          |        |           | 1        |         |     | •      | PO 1     | 5       |                 |        | 1    |      |      |
|                                                                                                   |                                                                                       | (3/2/1 i | ndicat | es the st |          | CO/P    |     |        | trang    | 2-med   | ium 1           | -weak) |      |      |      |
|                                                                                                   |                                                                                       | 512111   | nuicut |           | in engen |         |     | ne Out |          |         | <i>iuiii, i</i> | weak)  | ·    |      |      |
| COs                                                                                               | DO1                                                                                   | PO2      | PO3    | PO4       | PO5      | PO6     | PO7 |        |          | PO10    | DO11            | DO12   | DO12 | DO14 | DO15 |
| CO1                                                                                               | 2                                                                                     | 2        | 1      | 3         | 1        | 1       | 1   | 2      | 2        | 1       | 1               | 2      | 2    | 1    | 2    |
| CO2                                                                                               |                                                                                       |          | 1      | 2         | 1        | 1       | 2   | 3      | 3        | 1       | 1               | 1      | 3    | 1    | 3    |
| CO2<br>CO3                                                                                        |                                                                                       |          | 2      | 2         | 1        | 1       | 2   | 1      | 1        | 2       | 1               | 3      | 1    | 1    | 1    |
|                                                                                                   |                                                                                       | 1        | 3      | 1         | 1        |         | 2   | 2      |          |         | 2               | 2      | 1    | 2    |      |
| CO4                                                                                               |                                                                                       |          |        |           |          |         | 1   |        |          | 1       | 1               |        |      | _    | _    |
| CO5                                                                                               | 1                                                                                     | 1        | 1      | 1         | 3        | 3       | 1   | 1      | 1        | 1       | 2               | 1      | 1    | 3    | 1    |
|                                                                                                   |                                                                                       | (3/2/1   | indica | ites the  |          | CO / Pa |     |        | rong, 2  | 2-mediu | ım, 1-v         | veak)  |      |      |      |

| Car  | Programme Specific Outcome<br>(POs) |           |         |     |     |  |  |  |  |  |  |  |
|------|-------------------------------------|-----------|---------|-----|-----|--|--|--|--|--|--|--|
| Cos  | CO1                                 | CO2       | CO3     | CO4 | CO5 |  |  |  |  |  |  |  |
| PSO1 | 2                                   | 2         | 2 3 2 1 |     |     |  |  |  |  |  |  |  |
| PSO2 | 1                                   | 1         | 2       | 3   | 2   |  |  |  |  |  |  |  |
| PSO3 | 2                                   | 2 2 1 1 1 |         |     |     |  |  |  |  |  |  |  |

| Course Assessment Methods                   |  |  |  |  |  |  |
|---------------------------------------------|--|--|--|--|--|--|
| Direct                                      |  |  |  |  |  |  |
| 1. Continuous Assessment Test I, II & Model |  |  |  |  |  |  |
| 2. Assignment                               |  |  |  |  |  |  |
| 3. End Semester Examinations                |  |  |  |  |  |  |
| Indirect                                    |  |  |  |  |  |  |
| 1. Course End Delivery                      |  |  |  |  |  |  |

| Content of the Syllabus |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |  |  |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
|                         | Non- Electrical Experiments Periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                                   |  |  |  |  |  |  |  |
| Unit - I                | <ul> <li>i. Phase rule studies</li> <li>a) Two component systems-Simple Eutectic formation</li> <li>b) Phase diagram of a two-component system forming compound (wir melting point).</li> <li>c) Phase diagram of a three component liquid system (with one partially n (Toluene-Water- Acetic acid).</li> <li>ii. Heat of solution of benzoic acid in water.</li> <li>iii. Verification of Freundlich adsorption isotherm (Adsorption of oxalic acid Charcoal).</li> <li>iv. Comparison of strengths of three acids from kinetic study (Iodination of v. Determination of E<sub>a</sub> and A (for the hydrolysis of ethyl acetate temperatures).</li> <li>vi. Estimation of KI by partition method.</li> </ul> | niscible pair)<br>id on<br>acetone). |  |  |  |  |  |  |  |
|                         | <b>Total Periods</b> 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |  |  |  |  |  |  |  |

| Text | Text Books and References                                                                                                              |  |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 1    | A .O. Thomas, Practical Chemistry, Scientific Book Centre, Cannanore (2003).                                                           |  |  |  |  |  |  |  |  |
| 2    | 2 V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic Principles of Practical Chemistry,<br>New Delhi, S.Chand & Co, (1995). |  |  |  |  |  |  |  |  |
| 1    | B Viswanathan, P.S. Raghavan, Practical Physical Chemistry, Viva Books Private Limited, (2005).                                        |  |  |  |  |  |  |  |  |
| E-Re | ferences                                                                                                                               |  |  |  |  |  |  |  |  |
| 1    | http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/Material Science                                                               |  |  |  |  |  |  |  |  |
| 2    | http://www.cffet.net/sia-e/2_Pot_titr.pdf                                                                                              |  |  |  |  |  |  |  |  |

| NONEN EMPONERNEN     | VIVEKANANI                                                                                                                       | <b>DHA COLLEGE OF</b> A<br>( <b>AUTO</b> )<br>Elayampalayam, Ti               | NOM     | OUS         | 5)     |                   | OR WOMI       |           | Abusicand<br>Stripe CD<br>19 19 20 2007 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------|-------------|--------|-------------------|---------------|-----------|-----------------------------------------|
| Programme            | M.Sc                                                                                                                             | Programme Code                                                                |         |             | PO     | СН                | Regulati      | ons       | 2020-2022                               |
| Department           | Cl                                                                                                                               | emistry                                                                       |         |             |        | Semester          |               |           | 4                                       |
| Course Code          | Сог                                                                                                                              | rse Name                                                                      |         | eriod<br>We |        | Credit            | Maximum Marks |           | Marks                                   |
|                      |                                                                                                                                  |                                                                               | L       | Т           | Р      | С                 | CA            | ESE       | Total                                   |
| 20P4PR01             | PROJECT                                                                                                                          |                                                                               |         | 5           |        | 04                | 40            | 60        | 100                                     |
| Course<br>Objectives | 2. To offer skill b                                                                                                              | e habit of literature sur<br>ased knowledge to the<br>e students towards basi | studer  | nts.        |        |                   |               |           |                                         |
| POs                  |                                                                                                                                  | PROG                                                                          | RAM     | IME         | E OI   | UTCOME            |               |           |                                         |
| PO 1                 |                                                                                                                                  | strating comprehensive k<br>ndergraduate programme o                          |         |             | and 1  | understanding o   | f one or m    | ore disc  | ciplines that                           |
| PO 2                 |                                                                                                                                  | thoughts and ideas effect confidently share ones vie                          |         |             |        |                   |               | e with c  | others using                            |
| PO 3                 | claims beliefs on th                                                                                                             | y analytic thought to a b<br>e basis of empirical evide                       | nce id  | entify      | y rele | vant assumption   | ns or implic  | ations    | _                                       |
| PO 4                 |                                                                                                                                  | plate from what one has le                                                    |         |             |        | -                 |               |           |                                         |
| PO 5                 | -                                                                                                                                | e the reliability and reless analyse and synthesise d                         |         |             |        | -                 | -             |           |                                         |
| PO 6                 |                                                                                                                                  | and capability for asking to recognise cause and eff                          |         |             |        |                   |               |           | -                                       |
| PO 7                 | •                                                                                                                                | ectively and respectfully<br>up and act together as a g                       |         |             |        |                   | •             |           |                                         |
| PO 8                 |                                                                                                                                  | nterpret and draw conclu<br>experiences from an oper                          |         |             | -      | -                 |               | d critica | lly evaluate                            |
| PO 9                 | Critical sensibility                                                                                                             | to lived experiences with                                                     | self aw | aren        | ess a  | nd reflexivity of | f both self a | nd socie  | ty.                                     |
| PO 10                |                                                                                                                                  | CT in a variety of learning information sources and u                         | -       |             |        |                   | -             |           | e and use a                             |
| PO 11                | Ability to work independently, identify appropriate resources required for a project and manage a project through to completion. |                                                                               |         |             |        |                   |               |           |                                         |
| PO 12                |                                                                                                                                  | of the values and beliefs                                                     |         | -           |        |                   |               |           |                                         |
| PO 13                | ethical issue from r                                                                                                             | moral ethical values in a nultiple perspectives and                           | use eth | ical j      | pract  | ices in all work. | -             |           |                                         |
| PO 14                | inspiring vision but                                                                                                             | pping out the tasks of a t<br>lding a team who can help                       | p achie | ve th       | e vis  | sion motivating.  |               |           |                                         |
| PO 15                |                                                                                                                                  | nowledge and skills inclu<br>s throughout life through                        |         |             | ng ho  | ow to learn that  | are necessar  | ry for pa | rticipating                             |

# QP CODE-20P3CH06 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

### **DEPARTMENT OF CHEMISTRY**

### **MODEL QUESTION PAPER**

| Programme(s)    | Title of the Paper                                         | Semester |
|-----------------|------------------------------------------------------------|----------|
| M.Sc. CHEMISTRY | Natural Products, Pericyclic reactions and Retro synthesis | III      |

Time: 3 Hrs.

Max.Marks : 75

| 1 | Zing | giberene is example for           |       |                              | <b>K</b> 1 | CO-1 |
|---|------|-----------------------------------|-------|------------------------------|------------|------|
|   | Α    | Mono terpenes                     | В     | Sesqui terpenes              |            |      |
|   | C    | Di terpenes                       | D     | Tri terpenes                 |            |      |
| 2 | Whi  | ch one of the following is an exa | mpl   | e of bicyclic mono terpenes? | K2         | CO-1 |
|   | Α    | α-Pinene                          | B     | Meroquinine                  |            |      |
|   | C    | Citral                            | C     | None of these                |            |      |
| 3 | Whi  | ch of the following is animal ste | rol C | Cholesterol is compound      | K2         | CO-1 |
|   | Α    | Mycosterol                        | B     | Stigmasterol                 |            |      |
|   | С    | Cholesterol                       | D     | None of these                |            |      |
| 4 | Hov  | w many angular methyl group pro   | esen  | t in oestrone?               | K2         | CO-1 |
|   | Α    | 2                                 | В     | 3                            |            |      |
|   | С    | 1                                 | D     | 4                            |            |      |
| 5 | Qui  | nine on oxidation with chromic a  | acid  | gives quininic acid and      | K2         | CO-2 |
|   | Α    | Lutidine                          | В     | Conine                       |            |      |
|   | C    | Formic acid                       | D     | Papaverine                   |            |      |
| 6 | Whi  | ch of the following alkaloid havi | ng I  | soquinoline group?           | K1         | CO-2 |
|   | Α    | Quinine                           | В     | Conine                       |            |      |
|   | C    | Nicotine                          | D     | Papaverine                   |            |      |
| 7 | Dihy | dro flavone is otherwise called_  | i     |                              | K1         | CO-2 |

|    | A                                                | Flavanoid                                                         | B                   | Isoflavone                        |            |      |
|----|--------------------------------------------------|-------------------------------------------------------------------|---------------------|-----------------------------------|------------|------|
|    | С                                                | Flavanone                                                         | D                   | Chalcone                          |            |      |
| 8  | Flav                                             | onoids is a powerful                                              | <u>.</u>            |                                   | K1         | CO-2 |
|    | Α                                                | Antioxidant agent                                                 | В                   | Antibiotic agent                  |            |      |
|    | С                                                | Chromones                                                         | D                   | Flavones                          |            |      |
| 9  | The                                              | fundamental nucleus in anthocy                                    | anin                | es is                             | <b>K</b> 1 | CO-3 |
|    | Α                                                | Fluoroglucinol                                                    | В                   | Benzopyrylium chloride            |            |      |
|    | С                                                | Phenolic acid                                                     | D                   | None of the above                 |            |      |
| 10 | Whi                                              | ch one of the following is purin                                  | e bas               | es?                               | K2         | CO-3 |
|    | A                                                | Adenine and Thymine                                               | В                   | Thymine and Cytosine              |            |      |
|    | C                                                | Cytosine and Guanine                                              | D                   | Adenine and Guanine               |            |      |
| 11 | Whi                                              | ch of the following vitamins is                                   | known as cobalamin? | K1                                | CO-3       |      |
|    | Α                                                | Vitamin B <sub>4</sub>                                            | В                   | Vitamin B <sub>2</sub>            |            |      |
|    | C                                                | Vitamin B <sub>6</sub>                                            | D                   | Vitamin B <sub>12</sub>           |            |      |
| 12 | Whi                                              | ch of the following is essential                                  | for th              | e development of red blood cell?  | <b>K</b> 1 | CO-3 |
|    | Α                                                | Vitamin A                                                         | В                   | Vitamin C                         |            |      |
|    | С                                                | Vitamin B <sub>12</sub>                                           | D                   | Vitamin D                         |            |      |
| 13 | The                                              | electrocyclic reaction for ground                                 | nd sta              | te of haxatrienes rotatory        | K3         | CO-4 |
|    | Α                                                | Con                                                               | В                   | Dis                               |            |      |
|    | C                                                | Con or Dis                                                        | D                   | Cannot be predicted               |            |      |
| 14 | The                                              | product of following reaction is                                  | i                   |                                   | <b>K</b> 1 | CO-4 |
|    |                                                  |                                                                   |                     |                                   |            |      |
|    | A                                                |                                                                   | В                   |                                   |            |      |
|    | С                                                |                                                                   | D                   |                                   |            |      |
|    |                                                  |                                                                   |                     |                                   |            |      |
| 15 | :                                                | cyclo addition reaction, if both same face, the process is termed |                     | onds to a component are formed on | К3         | CO-4 |
|    | A                                                | Suprafacial                                                       | B                   | Antarafacial                      |            |      |
|    | C                                                | Supra-suprafacial                                                 | D                   | Antara-antarafacial               |            |      |
| 16 | $\left( \begin{array}{c} \\ \end{array} \right)$ |                                                                   | H <sub>2</sub>      |                                   | K2         | CO-4 |

|    | А          | [1,4]                                                 | В     | [1,4]                                                                              |            |      |
|----|------------|-------------------------------------------------------|-------|------------------------------------------------------------------------------------|------------|------|
|    | C          | [1,5]                                                 | D     | [1,5]                                                                              |            |      |
| 17 | The        | following species is best known                       | as    | СНО                                                                                | K1         | CO-5 |
|    | A          | al species                                            | В     | d1 umpolung                                                                        |            |      |
|    | С          | d2 species                                            | D     | a2 species                                                                         |            |      |
| 18 | Whi        | ch of the following statements be                     | est d | escribes a synthon?                                                                | <b>K</b> 1 | CO-5 |
|    | A          | A synthetic reagent used in a                         | В     | A key intermediate in a reaction                                                   |            |      |
|    | ~          | reaction                                              |       | sequence                                                                           |            |      |
|    | C          | A transition state involved in a reaction mechanism   | D     | A hypothetical structure that<br>would result in a given reaction if<br>it existed |            |      |
| 19 | Whi        | ch of the following synthons is a                     | n ex  | 1                                                                                  | <b>K</b> 1 | CO-5 |
|    |            | 0                                                     | ~     |                                                                                    |            |      |
|    | Г          |                                                       |       | ⊖<br>⊖ сн₂сн₃                                                                      |            |      |
|    | · · ·      |                                                       |       | HO                                                                                 |            |      |
|    |            | A B                                                   |       | C D                                                                                |            |      |
|    | A          | Structure A                                           | B     | Structure B                                                                        |            |      |
|    | C          | Structure C                                           | D     | Structure D                                                                        |            |      |
| 20 | 1          | ch of the following statements be                     | est d | escribes a disconnection in                                                        | K3         | CO-5 |
|    | retro<br>A | synthesis?<br>A disconnection involves a              | В     | A disconnection involves                                                           |            |      |
|    | А          | theoretical disconnection of a                        | D     | identifying stages where a bond is                                                 |            |      |
|    |            | bond in a target structure in                         |       | split in the corresponding                                                         |            |      |
|    |            | order to identify simpler                             |       | synthesis                                                                          |            |      |
|    |            | structures that could be linked through the formation |       |                                                                                    |            |      |
|    |            | of that bond                                          |       |                                                                                    |            |      |
|    | C          | A disconnection identifies                            | D     | A disconnection describes the                                                      |            |      |
|    |            | retrosynthetic stages which                           |       | reaction conditions required to                                                    |            |      |
|    |            | would not be feasible in the corresponding synthesis  |       | split a target structure into simpler molecules.                                   |            |      |
|    |            |                                                       | ctior | <u>i</u>                                                                           |            |      |
|    |            | Answer All que                                        |       | ons $(5 \times 5 = 25)$                                                            |            |      |
| 21 | A          | Describe the following synthes                        | sis,  |                                                                                    | K2         | CO-1 |
|    |            | 1) Papaverine2) Zing                                  | iber  | ene                                                                                |            |      |
|    |            |                                                       | (     | DR                                                                                 |            |      |
|    | В          | Explain the structural elucidate                      | ion o | of α - pinene.                                                                     | K1         | CO-1 |
| 22 | A          | What are alkaloids? Explain it                        | s cla | ssification in brief.                                                              | K2         | CO-2 |
|    |            |                                                       | (     | DR                                                                                 |            |      |
|    |            |                                                       |       |                                                                                    |            |      |

|    | В | Explain about the Kostaneck synthesis of flavones                                | K3 | CO-2 |
|----|---|----------------------------------------------------------------------------------|----|------|
| 23 | Α | Describe the synthesis of anthocyanin in detail.                                 | K3 | CO-3 |
|    |   | OR                                                                               |    |      |
|    | В | Describe the structural elucidation of vitamin B12 in brief.                     | K1 | CO-3 |
| 24 | Α | Write a detailed note on cycloaddition                                           | K2 | CO-4 |
|    |   | OR                                                                               |    |      |
|    | В | Explain the Claisen rearrangement with mechanism                                 | K2 | CO-4 |
| 25 | Α | Explain synthons with their synthetic equivalent.                                | K1 | CO-5 |
|    |   | OR                                                                               |    |      |
|    | В | Describe disconnection approach.                                                 | K2 | CO-5 |
|    |   | Section C<br>Answer ANY THREE Questions (3 x 10 = 30)                            |    |      |
| 26 |   | Explain the structural elucidation of cholesterol.                               | K4 | CO-1 |
| 27 |   | What are alkaloids? Describe the structural elucidation of morphine in detail.   | К3 | CO-2 |
| 28 |   | Explain the structure and biological applications of anthocyanins in detail      | К3 | CO-3 |
| 29 |   | Explain the FMO method for analyzing an electrocyclic reactions with an example. | К3 | CO-4 |
| 30 |   | Explain umpolung in carbonyls and amino functional group                         | K4 | CO-5 |

### QP CODE-20P3CH07 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (Autonomous) DEPARTMENT OF CHEMISTRY MODEL QUESTION PAPER

| Programme(s)   | Title of the Paper                                                        | Semester |
|----------------|---------------------------------------------------------------------------|----------|
| M.Sc. CHEMISTR | Organometallic, Solid state, Spectroscopy and Bio-<br>inorganic Chemistry | III      |

Time: 3 Hrs.

Max.Marks : 75

| 1 | Tł | ne complete combustion of dibo                                                | orane | e is                                            | <b>K</b> 1 | CO-1 |  |
|---|----|-------------------------------------------------------------------------------|-------|-------------------------------------------------|------------|------|--|
|   | A  | endothermi                                                                    | B     | exothermic                                      |            |      |  |
|   | C  | there is no change in energy                                                  | D     | Depends on the reaction                         |            |      |  |
| 2 | W  | hich of the following compoun                                                 | d ex  | ists in liquid state?                           | K2         | CO-1 |  |
|   | A  | Diborane                                                                      | В     | Pentaborane                                     |            |      |  |
|   | С  | Decaborane                                                                    | C     | Borane                                          |            |      |  |
| 3 | 7( | i)+ B(OCH <sub>3</sub> ) <sub>3</sub> $\rightarrow$ NaBH <sub>4</sub> + 6(ii) | )+ 3( | (iii) Name the compounds i, ii, iii?            | K2         | CO-1 |  |
|   | A  | i.sodium hydride ii.sodium<br>iii.methanol                                    | В     | i.sodium ii.methanol iii.sodium hydride         |            |      |  |
|   | C  | i.sodium ii.sodium hydride<br>iii.methanol                                    | D     | i.sodium hydride ii.methanol<br>iii.sodium      |            |      |  |
| 4 | W  | hich of the following is not use                                              | d as  | raw material for production of boranes?         | K2         | CO-1 |  |
|   | Α  | Methanol                                                                      | В     | Sodium borohydride                              |            |      |  |
|   | C  | Glycol ether                                                                  | D     | Mineral oil                                     |            |      |  |
| 5 | W  | hich of the following is the neu                                              | tral  | complex which follows the 18- electron rule?    | K2         | CO-2 |  |
|   | Α  | $(\eta^5-C_5H_5)Fe(CO)_2$                                                     | В     | $(\eta^{5}-C_{5}H_{5})2Mo(CO)_{3}$              |            |      |  |
|   | C  | $(\eta^{5}-C_{5}H_{5})_{2}Co$                                                 | D     | $(\eta^{5}-C_{5}H_{5})2Re(\eta^{6}-C_{6}H_{6})$ |            |      |  |
| 6 | H  | How many M — M bonds are present in $[Cp Mo(CO_3)]_2$ ?                       |       |                                                 |            |      |  |
|   | A  | 1                                                                             | В     | 2                                               |            |      |  |
|   | C  | 0                                                                             | D     | 4                                               |            |      |  |

| 7  | W                                                                                                 | hich of the following complex h                                                        | as a | a highest oxidation state of metal?                            | K1         | CO-2 |  |
|----|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|----------------------------------------------------------------|------------|------|--|
|    | A                                                                                                 | $(\eta^{6}-C_{6}H_{6})_{2}Cr$                                                          | В    | Mn(CO) <sub>5</sub> Cl                                         |            |      |  |
|    | C                                                                                                 | Na <sub>2</sub> [Fe(CO) <sub>4</sub> ]                                                 | D    | $K[Mn(C_5]]$                                                   |            |      |  |
| 8  | W                                                                                                 | hich of following pair is not isol                                                     | oba  | 1?                                                             | <b>K</b> 1 | CO-2 |  |
|    | Α                                                                                                 | Mn(CO) <sub>5</sub> , CH <sub>3</sub>                                                  | В    | [Fe(CO) <sub>4</sub> ], O                                      |            |      |  |
|    | С                                                                                                 | Mn(CO) <sub>5</sub> , Cl                                                               | D    | Mn(CO) <sub>5</sub> , O                                        |            |      |  |
| 9  | The smallest repetitive unit of the crystal structure is known as                                 |                                                                                        |      |                                                                |            |      |  |
|    | A                                                                                                 | atoms                                                                                  | В    | Compound                                                       |            |      |  |
|    | C                                                                                                 | Unit cell                                                                              | D    | Lattice                                                        |            |      |  |
| 10 | 1                                                                                                 | rystals in which the number of the 32 is known as                                      | e co | mbinations of the symmetric molecule is limited                | K2         | CO-3 |  |
|    | Α                                                                                                 | Crystallographic unit cell                                                             | В    | Crystallographic point groups                                  |            |      |  |
|    | C                                                                                                 | Crystallographic crystals                                                              | D    | crystallographic atoms.                                        |            |      |  |
| 11 | The point coordinates of the vertex just opposite to the origin are                               |                                                                                        |      |                                                                |            |      |  |
|    | A                                                                                                 | 000                                                                                    | В    | 001                                                            |            |      |  |
|    | С                                                                                                 | 011                                                                                    | D    | 111                                                            |            |      |  |
| 12 | Ех                                                                                                | cample for dia-magnetic materials                                                      | L    |                                                                | K1         | CO-3 |  |
|    | A                                                                                                 | super conductors                                                                       | B    | Alkali metals                                                  |            |      |  |
|    | C                                                                                                 | Transition metals                                                                      | D    | Ferrites                                                       |            |      |  |
| 13 | Which of the following is the principle of Atomic Absorption Spectroscopy?                        |                                                                                        |      |                                                                |            |      |  |
|    | A                                                                                                 | Radiationisabsorbedbynon-<br>excitedatomsinvapourstateandaree<br>xcitedtohigher states | В    | Medium absorbs radiation and transmitted radiation is measured |            |      |  |
|    | C                                                                                                 | Colour is measured                                                                     | D    | Colour is simply observed                                      |            |      |  |
| 14 | In Atomic Absorption Spectroscopy, which of the following is the generally used radiation source? |                                                                                        |      |                                                                |            |      |  |
|    | A                                                                                                 | Tungsten lamp                                                                          | В    | Xenon mercury arc lamp                                         |            |      |  |
|    | C                                                                                                 | Hydrogen or deuterium discharge lamp                                                   | D    | Hollow cathode lamp                                            |            |      |  |

| 15 | ES | ESCA gives sufficient chemical information upto a depth about_armstrong in metals. |          |                                            |    |      |  |
|----|----|------------------------------------------------------------------------------------|----------|--------------------------------------------|----|------|--|
|    | Α  | 5-20                                                                               | B        | 15-40                                      |    |      |  |
|    | C  | 40-100                                                                             | D        | 100-200                                    |    |      |  |
| 16 |    | screte electrons cannot be observ<br>the following reasons?                        | ved in e | lectron ionization of an atom due to which | K2 | CO-4 |  |
|    | A  | Environmental disturbances                                                         | B        | Same mass                                  |    |      |  |
|    | C  | Same charge                                                                        | D        | the electron- electron interaction         |    |      |  |
| 17 | Ох | kidation state of Iron in haemog                                                   | globin i | s                                          | K1 | CO-5 |  |
|    | A  | +1                                                                                 | B        | +2                                         |    |      |  |
|    | C  | +3                                                                                 | D        | None                                       |    |      |  |
| 18 | Th | K1                                                                                 | CO-5     |                                            |    |      |  |
|    | A  | porphyrin                                                                          | B        | Corrin                                     |    |      |  |
|    | C  | Phthalocyanin                                                                      | D        | crown ether                                |    | •    |  |
| 19 | Ce | K1                                                                                 | CO-5     |                                            |    |      |  |
|    | Α  | Iron                                                                               | В        | Manganese                                  |    |      |  |
|    | С  | Magnesium                                                                          | D        | Zinc                                       |    |      |  |
| 20 | W  | К3                                                                                 | CO-5     |                                            |    |      |  |
|    | A  | Bone deformities                                                                   | B        | Enlarged spleen                            |    |      |  |
|    | C  | Heart problems                                                                     | D        | All of the above                           |    |      |  |
|    |    |                                                                                    |          | Section B                                  |    |      |  |
|    |    |                                                                                    |          | $(5 \times 5 = 25)$                        |    | 00.1 |  |
| 21 | A  | Explain the ring compounds                                                         | of sul   | OR OR                                      | K2 | CO-1 |  |
|    | В  | Distinguish between isopoly                                                        | vanions  |                                            | K1 | CO-1 |  |
| 22 | A  | Describe the synthesis and str                                                     | K2       | CO-2                                       |    |      |  |
|    |    |                                                                                    |          | OR                                         |    |      |  |
|    | В  | Express your ideas about chai                                                      | n carbo  | on donar and cyclic carbon donar.          | K3 | CO-2 |  |
| 23 | A  | Write notes on space groups and                                                    | miller i | ndices.                                    | K3 | CO-3 |  |
|    |    |                                                                                    |          | OR                                         |    |      |  |

|    | B | Explain magnetic properties of solids.                                  | K1 | CO-3 |
|----|---|-------------------------------------------------------------------------|----|------|
| 24 | Α | Describe about principle of AAS.                                        | K2 | CO-4 |
|    |   | OR                                                                      |    |      |
|    | В | Write notes on Koopman's theorem and chemical shift.                    | K2 | CO-4 |
| 25 | Α | Explain the structure and work function of haemoglobin.                 | K1 | CO-5 |
|    |   | OR                                                                      |    |      |
|    | В | Describe about chelate therapy.                                         | K2 | CO-5 |
|    |   | Section C<br>Answer ANY THREE Questions (3 x 10 = 30)                   |    |      |
| 26 |   | Explain in detail about metal clusters and its types                    | K4 | CO-1 |
| 27 |   | Write the hydroformylation of olefins using Cobalt or Rhodium catalysts | К3 | CO-2 |
| 28 |   | Explain defects in solids.                                              | K3 | CO-3 |
| 29 |   | Discuss theory and applications of PES.                                 | К3 | CO-4 |
| 30 |   | Explain the structure and work functions of Chlorophyll.                | K4 | CO-5 |

### VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous) DEPARTMENT OF CHEMISTRY MODEL QUESTION PAPER

# Programme(s)Title of the PaperSemesterM.Sc., ChemistryQuantum Chemistry and ThermodynamicsIII

Time: 3 Hrs.

Max. Marks : 75

| ,    |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Ou   | t of these which one is a                                                                                                                                                                                                                                                                                                                                                                                                             | angul                                                                                                                                                                                                                                                                                                                                                                                                                          | lar variables                                                                                                                                                                                                                                                                                                                                                                                                                          | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-1                                                   |
| Α    | φ, θ                                                                                                                                                                                                                                                                                                                                                                                                                                  | В                                                                                                                                                                                                                                                                                                                                                                                                                              | θ, r                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| C    | φ, <b>r</b>                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                                                                                                                                                                                                                                                              | r, R                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| Jψι  | $\psi^* d\tau = 1$ , eigen function                                                                                                                                                                                                                                                                                                                                                                                                   | is are                                                                                                                                                                                                                                                                                                                                                                                                                         | i<br>;                                                                                                                                                                                                                                                                                                                                                                                                                                 | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-1                                                   |
| Α    | real                                                                                                                                                                                                                                                                                                                                                                                                                                  | B                                                                                                                                                                                                                                                                                                                                                                                                                              | normalized                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| C    | orthogonal                                                                                                                                                                                                                                                                                                                                                                                                                            | D                                                                                                                                                                                                                                                                                                                                                                                                                              | continuous                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| If a | a particle is in 1D box a                                                                                                                                                                                                                                                                                                                                                                                                             | nd n=                                                                                                                                                                                                                                                                                                                                                                                                                          | =3, the E is                                                                                                                                                                                                                                                                                                                                                                                                                           | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-1                                                   |
| A    | h <sup>2</sup> /8Ma <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                      | B                                                                                                                                                                                                                                                                                                                                                                                                                              | $12h^2/8Ma^2$                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| C    | 9h <sup>2</sup> /8Ma <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                                                                                                                                                              | 4h <sup>2</sup> /8Ma <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| Ylr  | $_{n}(\theta,\phi)$ are called                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                      | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-1                                                   |
| Α    | quantum number                                                                                                                                                                                                                                                                                                                                                                                                                        | B                                                                                                                                                                                                                                                                                                                                                                                                                              | wave function                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| C    | reduced mass                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                                                                                                                                                                                                                                                                                                                                                                                              | spherical harmonics                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| Ē-1  | $E_0$ is always                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                      | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-2                                                   |
| A    | positive                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                                                                                                                                                                                                                                                                                                                                                                                              | zero                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| C    | negative                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                              | constant                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| Th   | e integral $S_{ab}$ is called                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                      | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-2                                                   |
| Α    | coulomb integral                                                                                                                                                                                                                                                                                                                                                                                                                      | B                                                                                                                                                                                                                                                                                                                                                                                                                              | overlap integral                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| C    | resonance integral                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                              | secular integral                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| Th   | e energy level E <sub>4</sub> of ben                                                                                                                                                                                                                                                                                                                                                                                                  | zene                                                                                                                                                                                                                                                                                                                                                                                                                           | molecule is                                                                                                                                                                                                                                                                                                                                                                                                                            | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-2                                                   |
| A    | 2α-β                                                                                                                                                                                                                                                                                                                                                                                                                                  | B                                                                                                                                                                                                                                                                                                                                                                                                                              | α-2β                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| C    | α-β                                                                                                                                                                                                                                                                                                                                                                                                                                   | D                                                                                                                                                                                                                                                                                                                                                                                                                              | α+β                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| c    | lenotes                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                      | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-2                                                   |
| Α    | linear operator                                                                                                                                                                                                                                                                                                                                                                                                                       | B                                                                                                                                                                                                                                                                                                                                                                                                                              | angular operator                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|      | A         C         Jψν         A         C         If a         A         C         Yır         A         C         F-I         A         C         Th         A         C         Th         A         C         Th         A         C         Th         A         C         A         C         Th         A         C         Th         A         C         Th         A         C         Th         A         C         F< a | A $\varphi, \theta$ C $\varphi, r$ $J \psi \psi^* d\tau = 1$ , eigen functionArealCorthogonalIf a particle is in 1D box andA $h^2/8Ma^2$ C $9h^2/8Ma^2$ Y Im( $\theta, \varphi$ ) are calledAquantum numberCreduced mass $\bar{E}-E_0$ is alwaysApositiveCnegativeThe integral $S_{ab}$ is calledAcoulomb integralCresonance integralThe energy level $E_4$ of benA $2\alpha$ - $\beta$ C $\alpha$ - $\beta$ $\hat{F}$ denotes | A $\varphi, \theta$ BC $\varphi, r$ D $J\psi\psi^*d\tau = 1$ , eigen functionsareArealBCorthogonalDIf a particle is in 1D box and n=Ah²/8Ma²BC9h²/8Ma²DY_{Im}(\theta, \phi) are calledAAquantum numberBCreduced massDĒ-E_0 is alwaysAApositiveBCnegativeDThe integral $S_{ab}$ is calledAcoulomb integralBCresonance integralDThe energy level E4 of benzenerA $2\alpha$ - $\beta$ BC $\alpha$ - $\beta$ D $\hat{F}$ denotes $\varphi$ | Out of these which one is angular variablesA $\varphi, \theta$ B $\theta, r$ C $\varphi, r$ D $r, R$ $\int \psi \psi^* d\tau = 1$ , eigen functions areArealBnormalizedCorthogonalDcontinuousIf a particle is in 1D box and n=3, the E isAh <sup>2</sup> /8Ma <sup>2</sup> B12h <sup>2</sup> /8Ma <sup>2</sup> C9h <sup>2</sup> /8Ma <sup>2</sup> D4h <sup>2</sup> /8Ma <sup>2</sup> Y <sub>Im</sub> ( $\theta, \phi$ ) are calledAquantum numberBAquantum numberBwave functionCreduced massDspherical harmonicsĒ-E <sub>0</sub> is alwaysApositiveBAcoulomb integralBoverlap integralCresonance integralDsecular integralCresonance integralDsecular integralC $\alpha$ - $\beta$ B $\alpha$ -2 $\beta$ C $\alpha$ - $\beta$ D $\alpha$ + $\beta$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

|    | С   | Hermitian operator                                                 | D          | Fock operator                                                      |            |      |
|----|-----|--------------------------------------------------------------------|------------|--------------------------------------------------------------------|------------|------|
| 9  | Fu  | gacity was introduced l                                            | Эÿ         |                                                                    | K1         | CO-3 |
|    | Α   | Duhem                                                              | В          | Morgan                                                             |            |      |
|    | С   | Lewis                                                              | D          | Gibbs                                                              |            |      |
| 10 | Gil | obs Helmholtz equation                                             | r of '٦    |                                                                    | K1         | CO-3 |
|    | Α   | $\overline{H}/T^2$                                                 | B          | $-\overline{H}/T^2$                                                |            |      |
|    | C   | <i>Ħ/</i> T                                                        | D          | - <i>Ħ/</i> T                                                      |            |      |
| 11 | Th  | e quantity $H_o$ -H represe                                        | ents       |                                                                    | K1         | CO-3 |
|    | A   | ideal heat of formation                                            | В          | ideal heat of fusion                                               |            |      |
|    | C   | ideal heat of vaporization                                         | D          | ideal heat of evaporation                                          |            |      |
| 12 | Cp  | in Kirchhoff's law repr                                            | K1         | CO-3                                                               |            |      |
|    | A   | current potential                                                  | B          | constant                                                           |            |      |
|    | C   | energy                                                             | D          | heat capacity                                                      |            |      |
| 13 | Th  | e equation for the evalu                                           | lation     | of $\beta$ in M.B. distribution law is                             | K1         | CO-4 |
|    | A   | $\beta = 1/kT$                                                     | В          | $\beta = -1/kT$                                                    |            |      |
|    | С   | $\beta = kT$                                                       | D          | $\beta = 2/kT$                                                     |            |      |
| 14 | Th  | e vibrational energy lev                                           | vels o     | f a diatomic are given by                                          | K1         | CO-4 |
|    | A   | $E_n = (n + 1/2) hv$                                               | В          | $\mathbf{E}_{\mathbf{n}} = (\mathbf{n} + 1) \mathbf{h} \mathbf{v}$ |            |      |
|    | C   | $\mathbf{E}_{\mathbf{n}} = (\mathbf{n} + 2) \mathbf{h} \mathbf{v}$ | D          | all the above                                                      |            |      |
| 15 | Wł  | hat is the rotational part                                         | <b>K</b> 1 | CO-4                                                               |            |      |
|    | A   | 1.923                                                              | В          | 1.723                                                              |            |      |
|    | С   | 1.823                                                              | D          | 1.623                                                              |            |      |
| 16 | Aı  | partition function can b                                           | e used     | d to calculate                                                     | <b>K</b> 1 | CO-4 |
|    | A   | Free energy                                                        | B          | Enthalpies                                                         |            |      |
|    | С   | Entropies                                                          | D          | none of these                                                      |            |      |
| 17 | 1   | e essential contribution<br>s brought by                           | to th      | e thermodynamics of the non-equilibrium systems                    | <b>K</b> 1 | CO-5 |
|    | A   | Fermi                                                              | В          | Einstein                                                           |            |      |
|    | С   | Pokrovskii                                                         | D          | Prigogine                                                          |            |      |

| No                                                                                                       | on-equilibrium thermody                                                                                        | nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ics is concerned with transport processes and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                                                                                                        | energy of chemical reactions                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| С                                                                                                        | frequency                                                                                                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | state variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The thermodynamic study of non-equilibrium steady states, in which entropy production and some flows are |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>K</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| À                                                                                                        | Zero                                                                                                           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Non-zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| С                                                                                                        | one                                                                                                            | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Th                                                                                                       | e entropy (S) is a function                                                                                    | on of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the collection of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Α                                                                                                        | Intensive variable                                                                                             | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Massieu potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| С                                                                                                        | extensive quantities                                                                                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | extended Massieu function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                          | k                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Δ                                                                                                        |                                                                                                                | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A                                                                                                        |                                                                                                                | or qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| П                                                                                                        | 111                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                          | <u> </u>                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A                                                                                                        | Write a note on self con                                                                                       | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| n                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A                                                                                                        | Find out the fugacity of                                                                                       | f a r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| n                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                          |                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A                                                                                                        | Write a brief note on vi                                                                                       | ibrat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                                                                                                        | ~                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| В                                                                                                        | particles.                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A                                                                                                        | Justify the entropy prod                                                                                       | duct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion in heat flow and matter flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B                                                                                                        | Describe in detailed ab                                                                                        | out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                          | Answer AN                                                                                                      | Y T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Section C<br>HREE Questions (3 x 10 = 30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                          | Prove and derive a S.E                                                                                         | . for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | application of perturbation method to H atom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                          | Explain HMO theory to                                                                                          | o eth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ylene system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                          | Determine the fugacity                                                                                         | of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a real gas by equation of state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                          | Derive and explain Fer                                                                                         | mi-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dirac statistics law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                          | Verify Onsager recipro                                                                                         | cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | relation using electro kinetic phenomenon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                          | A<br>C<br>Th<br>pro<br>A<br>C<br>Th<br>A<br>C<br>C<br>A<br>B<br>A<br>B<br>A<br>B<br>A<br>B<br>A<br>B<br>A<br>A | A       energy of chemical reactions         C       frequency         The thermodynamic study production and some flows         A       Zero         C       one         The entropy (S) is a function         A       Intensive variable         C       extensive quantities         A       Explain the postulates         B       Illustrate eigen value a         A       Write a note on self co         B       Give the application of         A       Find out the fugacity o         B       Illustrate Gibbs Duhem         A       Write a brief note on v         B       Discuss about distribut particles.         A       Justify the entropy production of         B       Describe in detailed ab | Aenergy of chemical<br>reactionsBCfrequencyDThe thermodynamic study of no<br>production and some flows are<br>AZeroAZeroBConeDThe entropy (S) is a function of<br>AIntensive variableBCextensive quantitiesDAIntensive variableBCextensive quantitiesDAExplain the postulates of quantitiesDBIllustrate eigen value and eigen val | reactionsDCfrequencyDstate variablesThe thermodynamic study of non-equilibrium steady states, in which entropy<br>production and some flows areAAZeroBNon-zeroConeDnone of theseThe entropy (S) is a function of the collection ofAIntensive variableAIntensive variableBMassieu potentialCextensive quantitiesDextended Massieu functionAExplain the postulates of quantum mechanics.Section BBIllustrate eigen value and eigen function.ORBGive the application of VB theory to hydrogen molecule.AFind out the fugacity of a real gas by graphical method.BIllustrate Gibbs Duhem equation.AWrite a brief note on vibrational partition function.ADiscuss about distribution of distinguishable and non distinguishable particles.AJustify the entropy production in heat flow and matter flow.BDiscuse in detailed about non-equilibrium stationary states. | A<br>reactionsB<br>rates of chemical reactionsImage: Section B<br>section BCfrequencyDstate variablesThe thermodynamic study of non-equilibrium steady states, in which entropy<br>production and some flows areK1AZeroBNon-zeroConeDnone of theseThe entropy (S) is a function of the collection ofK1AIntensive variableBMassieu potentialCextensive quantitiesDextended Massieu functionCextensive quantitiesDextended functionAExplain the postulates of quantum mechanics.K2AExplain the postulates of quantum mechanics.K2AWrite a note on self consistent field approximation.K2AFind out the fugacity of a real gas by graphical method.K2AFind out distribution of distinguishable and non distinguishable<br>particles.K2AUrite a brief note on vibrational partition function.K2AJustify the entropy production in heat flow and matter flow.K2BDiscuss about distribution of distinguishable and non distinguishable<br>particles.K2AJustify the entropy production in near flow and matter flow.K2BDescribe in detailed about non-equilibrium stationary states.K2CSection C<br>Answer ANY THREE Questions (3 x 10 = 30)K2Prove and derive a S.E. for application of perturbation method to H atom.K3Explain HMO theory to ethylene system.K4Det |

# QP CODE-20P4CH09 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

### **DEPARTMENT OF CHEMISTRY**

### **MODEL QUESTION PAPER**

| Programme(s)    | Title of the Paper            | Semester |
|-----------------|-------------------------------|----------|
| M.Sc. Chemistry | Physical methods in Chemistry | IV       |

Time: 3 Hrs.

Max.Marks : 75

| 1 | Pick              | out the microwave inactive mol    | K1         | CO-1                               |            |      |
|---|-------------------|-----------------------------------|------------|------------------------------------|------------|------|
|   | Α                 | CO <sub>2</sub>                   | В          | СО                                 |            |      |
|   | С                 | KCl                               | D          | NO                                 |            |      |
| 2 | Radi              | o frequency deals with which sp   | pectr      | oscopy                             | <b>K</b> 1 | CO-1 |
|   | Α                 | rotational                        | В          | NMR                                |            |      |
|   | C                 | vibrational                       | D          | electronic                         |            |      |
| 3 | I <sub>B</sub> =I | C≠IA refers                       |            |                                    | K1         | CO-1 |
|   | Α                 | linear molecules                  | В          | spherical tops                     |            |      |
|   | С                 | symmetric tops                    | D          | asymmetric tops                    |            |      |
| 4 | The               | quantity "J" stands for           | <b>K</b> 1 | CO-1                               |            |      |
|   | Α                 | vibrational quantum number        | В          | magnetic quantum number            |            |      |
|   | C                 | electronic quantum number         | D          | rotational quantum number          |            |      |
| 5 | The               | bond length for non-cyclic triate | K1         | CO-2                               |            |      |
|   | Α                 | 2                                 | В          | 3                                  |            |      |
|   | C                 | 4                                 | D          | 1                                  |            |      |
| 6 | The               | energy curve of HCl is            | K1         | CO-2                               |            |      |
|   | Α                 | compound                          | B          | parabola                           |            |      |
|   | C                 | spiral                            | D          | simple                             |            |      |
| 7 | In R              | aman spectra, symmetric top mo    | olecu      | lles have $\Delta J$ =+1 indicates | K1         | CO-2 |
|   | Α                 | Q branch lines                    | В          | S branch lines                     |            |      |

|    | C                         | R branch lines                        | D          | P branch lines                               |            |      |
|----|---------------------------|---------------------------------------|------------|----------------------------------------------|------------|------|
| 8  | $\varepsilon_{\rm J} = 1$ | $BJ (J+1) - DJ^2 (J+1)^2$ , here D de | <b>K</b> 1 | CO-2                                         |            |      |
|    | Α                         | distortion constant                   | В          | Boltzmann's constant                         |            |      |
|    | C                         | rotational constant                   | D          | centrifugal distortion constant              |            |      |
| 9  | UV                        | spectroscopy is useful for the de     | etecti     | on of                                        | K1         | CO-3 |
|    | A                         | functional group                      | В          | extent of conjugation                        |            |      |
|    | С                         | geometrical isomers                   | D          | all of these                                 |            |      |
| 10 | The                       | energy difference between $\pi$ an    | d π*       | is kcal/mole                                 | <b>K</b> 1 | CO-3 |
|    | A                         | 186                                   | В          | 176                                          |            |      |
|    | C                         | 156                                   | D          | 136                                          |            |      |
| 11 | An a                      | auxochrome is one which is            | <b>i</b>   | i                                            | <b>K</b> 1 | CO-3 |
|    | A                         | colour enhancing                      | В          | atom with lone pair of electrons             |            |      |
|    | С                         | extending conjugation                 | D          | all of these                                 |            |      |
| 12 | The                       | main advantage of fluorescence        | K1         | CO-3                                         |            |      |
|    | A                         | Its sensitivity                       | В          | Its compatibility with separation techniques |            |      |
|    | C                         | Its compatibility with most analytes  | D          | None of the above                            |            |      |
| 13 | NM                        | R spectra are observed in             | <b>K</b> 1 | CO-4                                         |            |      |
|    | A                         | radio frequency                       | В          | microwave                                    |            |      |
|    | С                         | UV/Vis                                | D          | X-ray                                        |            |      |
| 14 | Whi                       | ch of the following solvents can      | K1         | CO-4                                         |            |      |
|    | Α                         | CCl <sub>4</sub>                      | В          | CS <sub>2</sub>                              |            |      |
|    | C                         | CHCl <sub>3</sub>                     | D          | (CCl <sub>3</sub> ) <sub>2</sub> C=O         |            |      |
| 15 | Vici                      | nal F-F coupling ranges from          | (          | eps                                          | K1         | CO-4 |
|    | Α                         | 43-370                                | В          | 0-58                                         |            |      |
|    | С                         | 0-39                                  | D          | 42-80                                        |            |      |
| 16 | ESR                       | is used to control the state of el    | lectro     | on spin quits in                             | K1         | CO-4 |
|    | A                         | diamond                               | В          | gallium                                      |            |      |
|    | C                         | silicon                               | D          | all the above                                |            |      |
| 17 | The                       | molecular ion peak is usually in      | tense      | e for                                        | K1         | CO-5 |
|    | Α                         | aromatic compounds                    | В          | conjugated olefins                           |            |      |
|    | С                         | alcohols                              | D          | neoalkanes                                   |            |      |
| 18 | In ca                     | ase of polynuclear hydrocarbons       | s, the     | base peak appears                            | K1         | CO-5 |

|    | A           | as parent ion peak                              | В            | at 91 due to tropyium ion           |     |      |
|----|-------------|-------------------------------------------------|--------------|-------------------------------------|-----|------|
|    | C           | at 77 due to phenylcation                       | D            | None of these                       |     |      |
| 19 | McL<br>peak |                                                 | k in         | mass spectrum is usually the base   | K1  | CO-5 |
|    | Α           | aldehydes                                       | В            | ketones                             |     |      |
|    | С           | acids                                           | D            | all of these                        |     |      |
| 20 | Mos         | sbauer Spectroscopy associates v                | with         | rays                                | K1  | CO-5 |
|    | Α           | radio                                           | В            | gamma                               |     |      |
|    | C           | X-ray                                           | D            | Cosmic                              |     |      |
|    |             |                                                 | ctior        |                                     |     |      |
| 21 | Α           | Answer All que Write a brief note on vibration  |              |                                     | K2  | CO-1 |
| 21 | 11          |                                                 | -            | DR                                  | 112 |      |
|    | D           | Disques about distribution of                   |              | -                                   | K2  | CO-1 |
|    | В           | particles.                                      | aist         | inguishable and non distinguishable | KZ  | 0-1  |
| 22 | A           | Justify the entropy production                  | in h         | eat flow and matter flow.           | K2  | CO-2 |
|    |             |                                                 | (            | DR                                  |     |      |
|    | В           | Describe in detailed about non                  | -equ         | ilibrium stationary states.         | K2  | CO-2 |
| 23 | Α           | List out and explain bands in U                 | JV-Y         | Vis spectrum.                       | K2  | CO-3 |
|    |             |                                                 | (            | DR                                  |     |      |
|    | В           | Explain the principles and app                  | licat        | ions of fluorescence spectroscopy.  | K2  | CO-3 |
| 24 | A           | Write a detailed note on absorp                 | ptior        | n and emission spectrum.            | K2  | CO-4 |
|    |             |                                                 | (            | DR                                  |     |      |
|    | В           | Describe rotational, vibrationa                 | l and        | d electronic spectra.               | K2  | CO-4 |
| 25 | A           | Draw and explain the energy of                  | of dia       | atomic molecule.                    | K2  | CO-5 |
|    |             |                                                 | (            | DR                                  |     |      |
|    | В           | Explain the rotational Raman s                  | spec         | tra of symmetric top molecules.     | K2  | CO-5 |
|    |             | Section<br>Answer ANY THREE Q                   |              | tions $(3 \times 10 = 30)$          |     |      |
|    |             |                                                 |              |                                     |     |      |
| 26 |             | Draw and derive the energy eq<br>molecules.     | luati        | on for rigid linear diatomic        | К3  | CO-1 |
| 27 |             | Justify the pure rotational Ram                 | nan s        | spectra of linear molecules.        | K4  | CO-2 |
| 28 |             | Calculate $\lambda_{max}$ for the following (i) | g co<br>(ii) | mpounds.                            | K5  | CO-3 |

|    | (iii) (iv)                                                            |    |      |
|----|-----------------------------------------------------------------------|----|------|
| 29 | Define chemical shift. What are the factors affecting chemical shift? | K4 | CO-4 |
| 30 | Draw and explain the components of mass spectrophotometer.            | K3 | CO-5 |

### QP CODE-20P4CHE05 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN

#### (Autonomous)

PG & RESEARCH DEPARTMENT OF CHEMISTRY

# MODEL QUESTION PAPER

| Programme(s)    | Title of the Paper      | Semester |
|-----------------|-------------------------|----------|
| M.Sc. Chemistry | Environmental Chemistry | IV       |

Time: 3 Hrs.

Max.Marks : 75

| 1 |            | Which of the following is produced when electrical discharges pass through oxygen in air? |      |                                          |    |      |  |
|---|------------|-------------------------------------------------------------------------------------------|------|------------------------------------------|----|------|--|
|   | Α          | Ozone                                                                                     | В    | Methane                                  |    |      |  |
|   | C          | CFCs                                                                                      | D    | Lead compounds                           |    |      |  |
| 2 | Tem        | perature of outer mesosphere is                                                           | 1    |                                          | K1 | CO-1 |  |
|   | Α          | 93°C                                                                                      | В    | -93°C                                    |    |      |  |
|   | С          | 5°C                                                                                       | D    | -5°C                                     |    |      |  |
| 3 |            | ease caused by eating fish found<br>ing mercury is                                        | in w | vater contaminated with industrial waste | K1 | CO-1 |  |
|   | A          | Minamata disease                                                                          | В    | Brights disease                          |    |      |  |
|   | С          | Hashimotos disease                                                                        | D    | Osteosclerosis                           |    |      |  |
| 4 | Whi        | K2                                                                                        | CO-1 |                                          |    |      |  |
|   | A          | Oxides of nitrogen                                                                        | В    | Oxides of carbon                         |    |      |  |
|   | С          | Oxides of sulphur                                                                         | D    | None of the above                        |    |      |  |
| 5 | The        | The optimum value in natural water is                                                     |      |                                          |    |      |  |
|   | Α          | 2-4ppm                                                                                    | В    | 4-7ppm                                   |    |      |  |
|   | С          | 4-6ppm                                                                                    | D    | 2-7ppm                                   |    |      |  |
| 6 | By<br>bion | <b>K</b> 1                                                                                | CO-2 |                                          |    |      |  |
|   | A          | 10%                                                                                       | В    | 30%                                      |    |      |  |
|   | С          | 50%                                                                                       | D    | 75%                                      |    |      |  |
| 7 | Rea        | K2                                                                                        | CO-2 |                                          |    |      |  |
|   | Α          | KMnO <sub>4</sub>                                                                         | В    | MnO <sub>4</sub>                         |    |      |  |
|   | С          | Potassium                                                                                 | D    | Magnesium                                |    |      |  |

| 8  | Bio-                                                                                                        | Bio-chemical oxygen demand (BOD) for the first 20 days in generally referred to |        |                                             |    |      |
|----|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------|---------------------------------------------|----|------|
|    | A                                                                                                           | Initial demand                                                                  | В      | First stage demand                          |    |      |
|    | C                                                                                                           | Carbonaceous demand                                                             | D      | All of these                                |    |      |
| 9  | Plast                                                                                                       | tics enter the marine environment                                               | prima  | arily by                                    | K2 | CO-3 |
|    | A                                                                                                           | being dumped or lost there                                                      | В      | debris carried in runoff                    |    |      |
|    | C                                                                                                           | washing out of landfills                                                        | D      | none of the answers are correct             |    |      |
| 10 |                                                                                                             | ch of the following is a health i iture?                                        | haza   | rd often found in kitchen cabinets and      | K2 | CO-3 |
|    | A                                                                                                           | Mold                                                                            | В      | Radon                                       |    |      |
|    | C                                                                                                           | Asbestos                                                                        | D      | Formaldehyde                                |    |      |
| 11 | Poly                                                                                                        | chlorinated biphenyls (PCBs), affe                                              | ecting | g                                           | K1 | CO-3 |
|    | A                                                                                                           | Estrogen metabolism                                                             | В      | Blood Circulation                           |    |      |
|    | C                                                                                                           | Cell membrane                                                                   | D      | Biodegradable                               |    |      |
| 12 | Polychlorinated biphenyls' are by products of plastics, lubricants, rubber and                              |                                                                                 |        |                                             |    | CO-3 |
|    | A                                                                                                           | Paper production                                                                | В      | Wood production                             |    |      |
|    | C                                                                                                           | Steel production                                                                | D      | All of above                                |    |      |
| 13 | Wha                                                                                                         | <b>K</b> 1                                                                      | CO-4   |                                             |    |      |
|    | A                                                                                                           | High level of nitrates & Eutrophications                                        | B      | Salinization                                |    |      |
|    | C                                                                                                           | Desalinization                                                                  | D      | Increase soil Fertility                     |    |      |
| 14 | Cost                                                                                                        | Costly and harmful pesticides can be replaced by                                |        |                                             |    |      |
|    | A                                                                                                           | Artificial Predators                                                            | В      | Natural Predators                           |    |      |
|    | C                                                                                                           | Small Animals                                                                   | D      | Weeds                                       |    |      |
| 15 | What are impacts of over cultivation & over grazing?                                                        |                                                                                 |        |                                             |    | CO-4 |
|    | A                                                                                                           | Soil Erosion, Degradation, Desertification                                      | В      | Desertification & Salinization              |    |      |
|    | C                                                                                                           | C Soil erosion & Salinization D Eutrophication                                  |        |                                             |    |      |
| 16 | If water containing DDT (dichloro-diphenyl-trichloroethane: $C_{14}H_9O_5$ ) is fed upon by cattle, it will |                                                                                 |        |                                             |    | CO-4 |
|    | A                                                                                                           | get stored in the liver                                                         | В      | get stored in the fatty tissues of animals  |    |      |
|    | C                                                                                                           | be excreted out with urine                                                      | D      | get stored in the muscle fibers             |    |      |
| 17 |                                                                                                             | simplest and most common metho                                                  | od us  | ed in the cities is to collect and dump the | K1 | CO-5 |
|    | A                                                                                                           | landfill                                                                        | В      | river                                       |    |      |
|    | С                                                                                                           | ocean                                                                           | D      | any of the above                            |    |      |

| 18 | Whi         | K2                                           | CO-5          |                                       |    |      |
|----|-------------|----------------------------------------------|---------------|---------------------------------------|----|------|
|    | Α           | Control of waste generation                  | B             | Storage and collection                |    |      |
|    | С           | Disposal                                     | D             | Stop waste generation                 |    |      |
| 19 |             | er which rule of Government, guic wed today? | leline        | es for solid waste management are     | K1 | CO-5 |
|    | A           | Municipal Solid Waste Rules, 2000            | В             | Municipal Solid Waste Rules, 2016     |    |      |
|    | С           | Solid Waste Rules, 2000                      | D             | Solid Waste Rules, 2016               |    |      |
| 20 | Whi<br>wast | <b>e</b> 1 1 1                               | om tl         | ne decomposition of biodegradable     | K2 | CO-5 |
|    | A           | Ethane                                       | В             | Methane                               |    |      |
|    | C           | Propene                                      | D             | Ethene                                |    |      |
|    |             |                                              | ectio<br>uest | on B<br>ions (5x 5 = 25 )             |    |      |
| 21 | A           |                                              |               | potential and chemical equilibria in  | K2 | CO-1 |
|    |             |                                              |               | OR                                    |    |      |
|    | B           | Write short notes on fundamenta              |               | •                                     | K2 | CO-1 |
| 22 | A           | Discuss the detrimental effects of           | of inc        |                                       | K3 | CO-2 |
|    |             |                                              |               | OR                                    |    |      |
|    | В           | Explain redox potential in water             | chei          | nistry.                               | K3 | CO-2 |
| 23 | A           | Write a short note on Polychlori             | nated         | l Biphenyls.                          | K2 | CO-3 |
|    |             |                                              |               | OR                                    |    |      |
|    | В           | Write a note on sources of asbes             | tos i         | n the environment.                    | K2 | CO-3 |
| 24 | A           | Write the short notes on Env<br>Herbicides.  | viron         | mental Implications of Fungicides and | K3 | CO-4 |
|    |             |                                              |               | OR                                    |    |      |
|    | В           | Explain the Environmental impl               | icatio        | ons of Insecticides.                  | K3 | CO-4 |
| 25 | Α           | Write notes on Municipal waste               | into          | road making.                          | K4 | CO-5 |
|    |             |                                              |               | OR                                    |    |      |
|    | В           | Explain about Waste manageme                 | nt.           |                                       | K4 | CO-5 |
|    |             | Secti<br>Answer ANY THREE                    |               |                                       |    |      |
| 26 |             | Explain the sample techniques chemistry.     | s for         | air, water and soil in Environmental  | K4 | CO-1 |
| 27 |             | What are COD and BOD? Expla                  | ain w         | ith suitable method to calculate.     | K4 | CO-2 |
| 28 |             | Explain the Environmental Impl               | icati         | ons of Polymers and Plastics.         | K2 | CO-3 |

| 29 | Explain the Abatement procedures for fungicides and Herbicides pollution.         | K4 | CO-4 |
|----|-----------------------------------------------------------------------------------|----|------|
| 30 | <br>Write the notes on the following (i) Utilizing agricultural waste (ii) Wealth | K4 | CO-5 |
|    | from waste.                                                                       |    |      |

# QP CODE-20P4CHE06 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

## **DEPARTMENT OF CHEMISTRY**

### **MODEL QUESTION PAPER**

| Programme(s)    | Title of the Paper                              | Semester |
|-----------------|-------------------------------------------------|----------|
| M.Sc. CHEMISTRY | Corrosion Principles, Protection and Monitoring | IV       |

Time: 3 Hrs.

Max.Marks : 75

### Section A Answer all questions (20 x 1 = 20)

| 1 | What is mechanism of dry corrosion                                                  |                                               |       |                                 |    | CO-1 |
|---|-------------------------------------------------------------------------------------|-----------------------------------------------|-------|---------------------------------|----|------|
|   | Α                                                                                   | Absorption                                    | B     | Electrochemical theory          |    |      |
|   | C                                                                                   | Differential solubility                       | D     | B & C                           |    |      |
| 2 | Wh                                                                                  | ich of the following factors affec            | t the | corrosion rate of the metal?    | K2 | CO-1 |
|   | A                                                                                   | Relative surface area of an cathode and anode | В     | Nature of the metal oxide layer |    |      |
|   | С                                                                                   | Purity of metal                               | C     | All of these                    |    |      |
| 3 | The cathodic reaction that occurs during corrosion in oxygenated acidic solution is |                                               |       |                                 |    | CO-1 |
|   | Α                                                                                   | 2H+ + 2 e -→ H2                               | В     | 4 H+ + 4e - O2 -→4 OH-          |    |      |
|   | С                                                                                   | $2H2O + 2e \rightarrow 2H2 + 2OH$             | D     | 2H2O + 2e -→2OH-                |    |      |
| 4 | Which theory explains the oxidation of metals?                                      |                                               |       |                                 |    | CO-1 |
|   | Α                                                                                   | Collision theory                              | В     | Molecular orbital theory        |    |      |
|   | С                                                                                   | Wagner theory                                 | D     | Mixed potential theory          |    |      |
| 5 | Which of the following materials will undergo corrosion                             |                                               |       |                                 |    | CO-2 |
|   | Α                                                                                   | Metals                                        | В     | Metals and non metals           |    |      |
|   | С                                                                                   | Ceramics and plastics                         | D     | All of the above                |    |      |
| 6 | Which of the following subjects are important in controlling the corrosion?         |                                               |       |                                 |    | CO-2 |
|   | Α                                                                                   | Thermodynamics                                | B     | Electrochemistry                |    |      |
|   | C                                                                                   | Both                                          | D     | Materials characterization      |    |      |

| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wha    | at type of protection is galvanizi                                                                           | ng?    |                                                                                                                                                              | K1 | CO-2 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A      | Physical protection                                                                                          | В      | Sacrificial protection                                                                                                                                       |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С      | Both of the above                                                                                            | D      | None of the above                                                                                                                                            |    |      |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The    | following factors will play vital                                                                            | role   | in corrosion processes                                                                                                                                       | K1 | CO-2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A      | Temperature                                                                                                  | В      | Solute concentration                                                                                                                                         |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C      | Both                                                                                                         | D      | None                                                                                                                                                         |    |      |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Whi    | ch of the following is correct re                                                                            | gardi  | ing polarization ?                                                                                                                                           | K1 | CO-3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A      | It is the deviation from equilibrium potential                                                               | В      | It results from the change in net<br>current flow                                                                                                            |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С      | Magnitude in terms of over<br>voltage                                                                        | D      | It is the deviation from equilibrium<br>potential that occurred due to<br>change in current flow and its<br>magnitude is measured in terms of<br>overvoltage |    |      |
| 10 What is depicted in the given figure?<br>Anodic polarization<br>story (u) abgroup of the second secon |        |                                                                                                              |        |                                                                                                                                                              |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Current density ———                                                                                          |        | Resistance polarization of                                                                                                                                   |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A      | Concentration polarization of                                                                                | В      | Resistance polarization of                                                                                                                                   |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A      | -                                                                                                            | В      | hydrogen-hydrogen io                                                                                                                                         |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>C | Concentration polarization of                                                                                | B<br>D | hydrogen-hydrogen ioBoth activation and concentrationpolarization of hydrogen-hydrogen                                                                       |    |      |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C      | Concentration polarization of<br>hydrogen-hydrogen io<br>Activation polarization of<br>hydrogen-hydrogen ion | D      | hydrogen-hydrogen io<br>Both activation and concentration                                                                                                    | K1 | CO-3 |

|    | С      | The temperature of a solution                    | D              | The velocity of a solution                                                                                      |    |      |
|----|--------|--------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|----|------|
| 12 | 1      | t is the formula to calculate rate               | of o           | xidation or rate of reduction during                                                                            | K1 | CO-3 |
|    | A equi | librium?<br>r <sub>0</sub> =r <sub>R</sub> =i0nF | В              | $r_0 = r_R = i_0/nF$                                                                                            |    |      |
|    | C      | $r_0 = r_R = i_0 n/F$                            | D              | $r_0 = r_R = nF/io$                                                                                             |    |      |
| 13 |        |                                                  |                | nt metals such as Zn,Sn,Pb,Al on                                                                                | K3 | CO-4 |
| 15 |        | teel and Cu                                      | , por          |                                                                                                                 | K5 | 0.0  |
|    | Α      | Hot dipping                                      | В              | Anodic coating                                                                                                  |    |      |
|    | С      | Cathodic coating                                 | D              | Galvanizing                                                                                                     |    |      |
| 14 | is     | the process of coating of Fe or                  | stee           | el with Zinc is called                                                                                          | K1 | CO-4 |
|    | Α      | Tinning                                          | В              | Hot dipping                                                                                                     |    |      |
|    | C      | Galvanizing                                      | D              | None of these                                                                                                   |    |      |
| 15 | (      | Coating is non toxic in nature                   | ••••••••       | Anno 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1 | K3 | CO-4 |
|    | A      | Sn                                               | В              | Zn                                                                                                              |    |      |
|    | С      | Fe                                               | D              | Cu                                                                                                              |    |      |
| 16 | Corr   | osion can be prevented by                        | .1             | L                                                                                                               | K2 | CO-4 |
|    | A      | Applying coating that acts as a barrier          | В              | Materials react                                                                                                 |    |      |
|    | C      | Forms an oxide layer                             | D              | None of these                                                                                                   |    |      |
| 17 | The    | oxide coating around aluminum                    | .غ             | L                                                                                                               | K1 | CO-5 |
|    | A      | Protects the metal from<br>further corrosion     | В              | Iron only will rust                                                                                             |    |      |
|    | С      | More reactive metal than iron                    | D              | Iron will not rust                                                                                              |    |      |
| 18 | In ga  | alvanizingironthe Zinc reacts ins                | stead          | l ofiron and therefore be                                                                                       | K1 | CO-5 |
|    | A      | Iron will not rust                               | В              | Protect the metal from further corrosion                                                                        |    |      |
|    | C      | Corrosion can be prevented                       | D              | Corroded                                                                                                        |    |      |
| 19 | aı     | re used as corrosion inhibitors of               | f iroi         | n and steel in aqueous solution s                                                                               | K1 | CO-5 |
|    | Α      | Phosphates                                       | В              | Chromates                                                                                                       |    |      |
|    | C      | Sulphates                                        | D              | Bi carbonates                                                                                                   |    |      |
| 20 | Iden   | tify the group which is not used                 | as a           |                                                                                                                 | К3 | CO-5 |
|    | A      | Chromates                                        | В              | phosphates                                                                                                      |    |      |
|    | С      | Sulphates                                        | D              | Tungstates                                                                                                      |    |      |
|    |        | Sec<br>Answer All que                            | ctior<br>estio |                                                                                                                 |    |      |

| 21 | Α | Define corrosion. What are the consequences of corrosion ?                                                                            | K2         | CO-1 |
|----|---|---------------------------------------------------------------------------------------------------------------------------------------|------------|------|
|    |   | OR                                                                                                                                    |            |      |
|    | В | What are the differences between chemical (dry corrosion ) and electrochemical (wet corrosion )                                       | K1         | CO-1 |
| 22 | Α | Explain the Thermodynamics theory of corrosion.                                                                                       | K2         | CO-2 |
|    |   | OR                                                                                                                                    |            |      |
|    | В | What is meant by polarization ?how it can be measured ?                                                                               | K3         | CO-2 |
| 23 | A | Explain corrosion weight loss method in detail.                                                                                       | K3         | CO-3 |
|    |   | OR                                                                                                                                    |            |      |
|    | В | What is electrochemical impedance spectroscopy.                                                                                       | <b>K</b> 1 | CO-3 |
| 24 | A | Discuss the various factors influencing rate of corrosion and their prevention methods.                                               | K2         | CO-4 |
|    |   | OR                                                                                                                                    |            |      |
| •  | В | Explain the following 1. Hot dipping 2. Metal cladding                                                                                | K2         | CO-4 |
| 25 | Α | What is vapour phase inhibitors? Give examples.                                                                                       | K1         | CO-5 |
|    |   | OR                                                                                                                                    |            |      |
|    | В | Explain the inhibition of reinforcement of concrete steel in water environment.                                                       | K2         | CO-5 |
|    |   | Section C<br>Answer ANY THREE Questions (3 x 10 = 30)                                                                                 |            |      |
| 26 |   | What do you mean electrochemical corrosion? Explain the cathodic and anodic corrosion mechanism.                                      | K4         | CO-1 |
| 27 |   | Explain Pourbaix diagram of water, iron and aluminium in detail.<br>What are its limitations?                                         | К3         | CO-2 |
| 28 |   | Discuss briefly about potentio dynamic and galvano dynamic polarization techniques.                                                   | К3         | CO-3 |
| 29 |   | What do you mean by cathodic protection? Discuss the sacrificial anodic protection and impressed current cathodic protection methods. | К3         | CO-4 |
| 30 |   | What are corrosion inhibitors? Explain anodic and cathodic inhibitors in details.                                                     | K4         | CO-5 |

# QP CODE-20P3CHED01 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

### **DEPARTMENT OF CHEMISTRY**

# MODEL QUESTION PAPER

| Programme(s)  | Title of the Paper                        | Semester |
|---------------|-------------------------------------------|----------|
| M.Sc. PHYSICS | Elective paper: Applied Polymer Chemistry | III      |

Time: 3 Hrs.

#### Max.Marks :75

| Section A                          |
|------------------------------------|
| Answer all questions (10 x 1 = 10) |

| 1 | Polyethylene is a example for                                      |                                                |                     |                     |            | CO-1 |
|---|--------------------------------------------------------------------|------------------------------------------------|---------------------|---------------------|------------|------|
|   | A                                                                  | monomer                                        | В                   | High polymer        |            |      |
|   | С                                                                  | polymer                                        | D                   | none                |            |      |
| 2 | Th                                                                 | e degree of polymerization of 5                | 5 CH <sub>2</sub> = | =CH <sub>2</sub> is | K1         | CO-1 |
|   | Α                                                                  | 2                                              | В                   | 3                   |            |      |
|   | C                                                                  | 4                                              | D                   | 5                   |            |      |
| 3 | Th                                                                 | e linear polymer havemel                       | ting p              | oints               | <b>K</b> 1 | CO-1 |
|   | Α                                                                  | low                                            | В                   | high                |            |      |
|   | С                                                                  | medium                                         | D                   | none                |            |      |
| 4 |                                                                    | free radical mechanism initiatior<br>e radical | K3                  | CO-1                |            |      |
|   | Α                                                                  | Pair                                           | В                   | non-pair            |            |      |
|   | C                                                                  | three                                          | D                   | none                |            |      |
| 5 | In Zieglar Natta polymerization a vanadium catalyst gives aproduct |                                                |                     |                     |            | CO-2 |
|   | Α                                                                  | isotactic                                      | В                   | syndiotactic        |            |      |
|   | С                                                                  | eutectic                                       | D                   | none                |            |      |
| 6 | R-Ticl4 compound used incoordination                               |                                                |                     |                     |            | CO-2 |
|   | Α                                                                  | mono                                           | В                   | bimetallic          |            |      |
|   | С                                                                  | Both a and b                                   | D                   | none                |            |      |
| 7 | Th                                                                 | e following one is the example f               | or cop              | olymerisation       | K3         | CO-2 |
|   | Α                                                                  | PVC                                            | В                   | PE                  |            |      |

|    | С           | SBR                              | D            | none                        |            |      |
|----|-------------|----------------------------------|--------------|-----------------------------|------------|------|
| 8  | -A-         | A-A-A-B-B-B-B-A-A-A is the       | K2           | CO-2                        |            |      |
|    | Α           | block                            | В            | graft                       |            |      |
|    | С           | copolymerisation                 | D            | none                        |            |      |
| 9  | Rea         | activity ratio only depends on t | he           |                             | K2         | CO-3 |
|    | Α           | Т,Р                              | В            | Т,С                         |            |      |
|    | С           | Р,С                              | D            | none                        |            |      |
| 10 | The         | e dispersity is a measure of het | erogeneity   | ofof particles in a mixture | K2         | CO-3 |
|    | Α           | size                             | В            | length                      |            |      |
|    | С           | weight                           | D            | none                        |            |      |
| 11 | In v        | weight average method W1=        |              |                             | K2         | CO-3 |
|    | Α           | n1M1                             | В            | N1N2                        |            |      |
|    | С           | M1M2                             | D            | none                        |            |      |
| 12 | In l        | K4                               | CO-3         |                             |            |      |
|    | Α           | Mercury arc                      | В            | laser                       |            |      |
|    | С           | a and b                          | D            | none                        |            |      |
| 13 | The         | K1                               | CO-4         |                             |            |      |
|    | Α           | steel                            | В            | metal                       |            |      |
|    | С           | solid                            | D            | aluminium                   |            |      |
| 14 | In ro       | otational casting gelation takes | K1           | CO-4                        |            |      |
|    | Α           | 100-150                          | В            | 150-200                     |            |      |
|    | С           | 200-250                          | D            | 300                         |            |      |
| 15 | In i<br>unc | K2                               | CO-4         |                             |            |      |
|    | Α           | lerKg/Cm <sup>2</sup><br>1300    | В            | 1400                        |            |      |
|    | С           | 1500                             | D            | 1600                        |            |      |
| 16 | Blc         | w moulding is basically used i   | n            | industry                    | K2         | CO-4 |
|    | Α           | rubber                           | В            | Plastic                     |            |      |
|    | С           | glass                            | D            | steel                       |            |      |
| 17 | In l        | PVC preparation following one    | e is used as | a catalyst                  | K2         | CO-5 |
|    | Α           | mercury chloride                 | В            | metal chloride              |            |      |
|    | С           | Both a and b                     | D            | none                        |            |      |
| 18 | Pol         | vester is prepared by the conde  | ensation of  | terephthalic acid andglycol | <b>K</b> 1 | CO-5 |

| Α    | methylene                                                                                   | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С    | propylene                                                                                   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | acetylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sili | cone polymers are prepared by the hy                                                        | ydrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ysis of alkyl substitutedsilane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| А    | chloro                                                                                      | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bromo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| С    | iodo                                                                                        | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | flouro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| The  | e following one polymer is mainly use                                                       | ed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | contact lenses and dental restorations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| А    | Polymethyl methacrylate                                                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polyethyl methacrylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| С    | Both a and b                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Α    |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | К4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В    | Explain the following polymers a                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | К3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | · · · ·                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В    | Write short notes on cross linked po                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A    | -                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В    | How will determine the molecular w                                                          | veig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ht by viscosity method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A    | Write notes on die casting method                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | К3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                             | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В    | Explain the rotational casting metho                                                        | od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A    |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | olyester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                             | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В    | Briefly explain the electrically cond                                                       | <b>K</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | · · ·                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | · · · · · · · · · · · · · · · · · · ·                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Explain the following a) Injection                                                          | mou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lding b) Extrusion moulding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>K</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | C<br>Sili<br>A<br>C<br>The<br>A<br>C<br>A<br>B<br>A<br>B<br>A<br>B<br>A<br>B<br>A<br>B<br>A | C       propylene         Sili-one polymers are prepared by the hy         A       chloro         C       iodo         The following one polymer is mainly use         A       Polymethyl methacrylate         C       Both a and b         Sector       Answer All que         A       Explain the mechanism of cationic polymers         B       Explain the following polymers         B       Explain the following polymers         C       B         B       Write short notes on cross linked polymers         A       How to determine the molecular we         B       How will determine the molecular we         B       Explain the rotational casting method         B       Explain the following a)polyamide         B       Explain the following a)polyamide         B       Briefly explain the electrically cond         B       Briefly explain the electrically cond         B       Briefly discuss the kinetics of copol         How the molecular weight of the pol       How the molecular weight of the pol | CpropyleneDSilicone polymers are prepared by the hytrolAAchloroBCiodoDThe following one polymer is mainly used inAAPolymethyl methacrylateBCBoth a and bDSectionAnswer All queetinAExplain the mechanism of cationic polymersAExplain the following polymersBExplain the following polymersAGive an account of Ziegler Natta catalyAGive an account of Ziegler Natta catalyBWrite short notes on cross linked polymersAHow to determine the molecular weightAHow will determine the molecular weightAExplain the rotational casting methodBExplain the following a)polyamide b)pAExplain the following a)polyamide b)pBExplain the following a)polyamide b)pAExplain the following a)polyamide b)pBBriefly explain the electrically conductionBBriefly explain the electrically conductionBBriefly discuss the kinetics of copolymerBFriefly discuss the kinetics of copolymerBBriefly discuss the kinetics of copolymerBBriefly discuss the kinetics of copolymerBFriefly discuss the kinetics of copolym | CpropyleneDactivationSilicone polymers are prepared by the hydrolysis of alkyl substitutedsilaneAchloroBBromoCiodoDflouroThe following one polymer is mainly used in contact lenses and dental restorationsAPolymethyl methacrylateBPolyethyl methacrylateCBoth a and bDnoneSection BAnswer All questions (5 x 5 = 25)AExplain the mechanism of cationic polymer sa)BExplain the following polymers a) $ mex $ ORBWrite short notes on cross linked polymers and their applicationsAHow will determine the molecular weight by number average methodAWrite notes on die casting methodAWrite notes on die casting methodAExplain the rotational casting methodAExplain the following a)polyamide byotyster | CpropyleneDacetyleneK2Silicone polymers are prepared by the hydrolysis of alkyl substitutedsilaneK2AchloroBBromoCidoDflouroThe following one polymer is mainly used in contact lenses and dental restorationsK3APolymethyl methacrylateBPolyethyl methacrylateCBoth a and bDnoneSection B<br>Answer All questions (5 x 5 = 25)AExplain the mechanism of cationic polymer is atom of cationic polymers a) linearb) branchedBExplain the following polymers a) linearb) branchedc) networkBGive an account of Ziegler Natta catalystK2BWrite short notes on cross linked polymers and their applicationsK4AHow vill determine the molecular weight by number average methodK1CORK3BHow will determine the molecular weight by viscosity methodK4AWrite notes on die casting methodK2BExplain the following a)polyamide b)polyesterK1CORK2BBriefly explain the electrically conducting polymersK1CORK1BBriefly explain the electrically conducting polymersK1CORSBBriefly explain the electrically conducting polymersK1CORSBBriefly discuss the kinetics of copolymerisationK1How the molecular weight of the polymer is mea |

### QP CODE-20P3CHED02 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous) DEPARTMENT OF CHEMISTRY

#### **MODEL QUESTION PAPER**

| Programme(s)  | Title of the Paper                   | Semester |
|---------------|--------------------------------------|----------|
| M.Sc. PHYSICS | Elective paper: Industrial Chemistry | III      |

Time: 3 Hrs.

Max.Marks : 75

## Section A Answer all questions (20 x 1 = 20)

| 1 | Which of the following is the correct pairing between the initial reactant and major product of a type of fermentation? |                                                                       |   |                                                         | K1 | CO-1 |
|---|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---|---------------------------------------------------------|----|------|
|   | A                                                                                                                       | Lactate; glucose                                                      | В | Acetate; ethylene glycol                                |    |      |
|   | С                                                                                                                       | Ethanol; lactate                                                      | D | Glucose; lactate                                        |    |      |
| 2 | Wha                                                                                                                     | What is the primary function of fermentation?                         |   |                                                         |    |      |
|   | A                                                                                                                       | Production of ethanol to be<br>used as a fuel source                  | В | Regeneration of NAD+                                    |    |      |
|   | C                                                                                                                       | Regeneration of NADH                                                  | С | Production of lactic acid to be used as a fuel source   |    |      |
| 3 | Dur                                                                                                                     | During lactic acid fermentation, what is the final electron acceptor? |   |                                                         |    |      |
|   | A                                                                                                                       | Oxygen                                                                | В | Ethanol                                                 |    |      |
|   | С                                                                                                                       | Carbon dioxide                                                        | D | Pyruvate                                                |    |      |
| 4 | The                                                                                                                     | The type of fermentation observed in yeasts is                        |   |                                                         |    |      |
|   | Α                                                                                                                       | acrylic fermentation                                                  | B | lactic acid fermentation                                |    |      |
|   | C                                                                                                                       | pyruvic fermentation                                                  | D | alcoholic fermentation                                  |    |      |
| 5 | Cor                                                                                                                     | Correct melting point of the drug Aspirin is?                         |   |                                                         |    |      |
|   | Α                                                                                                                       | 124°C                                                                 | В | 321°C                                                   |    |      |
|   | С                                                                                                                       | 140°C                                                                 | D | 26°C                                                    |    |      |
| 6 | Which of the following fermentation processes is used in the production of penicillin?                                  |                                                                       |   |                                                         |    | CO-2 |
|   | A                                                                                                                       | Aerobic fermentation<br>followed by anaerobic<br>fermentation         | В | Anaerobic fermentation                                  |    |      |
|   | С                                                                                                                       | (c) Aerobic fermentation                                              | D | Anaerobic fermentation followed by aerobic fermentation |    |      |

| 7  | Whi   | ch of the following species is us                             | K1    | CO-2                                           |    |      |
|----|-------|---------------------------------------------------------------|-------|------------------------------------------------|----|------|
|    | Α     | Vitamin A                                                     | В     | Vitamin D                                      |    |      |
|    | С     | Vitamin E                                                     | D     | Vitamin K                                      |    |      |
| 8  |       | ch of the following events occur<br>cillium chrysogenum?      | s du  | ring the third phase of growth of              | K1 | CO-2 |
|    | A     | Autolysis of the medium starts                                | B     | Slight rise in pH due to liberation of ammonia |    |      |
|    | С     | The concentration of<br>antibiotic increases in the<br>medium | D     | All of the above                               |    |      |
| 9  | Phot  | tosynthetic pigments absorb                                   |       |                                                | K4 | CO-3 |
|    | A     | UV radiation                                                  | В     | IR radiation                                   |    |      |
|    | С     | Visible radiation                                             | D     | Gama radiation                                 |    |      |
| 10 | Whi   | ch one among the following is u                               | sed   | as red pigment                                 | K1 | CO-3 |
|    | Α     | Titanium dioxide                                              | В     | Iron oxide                                     |    |      |
|    | С     | Zinc oxide                                                    | D     | Carbon black                                   |    |      |
| 11 | Pign  | nent incorporation                                            |       | .4                                             | K4 | CO-3 |
|    | A     | Increases hardness of the film                                | В     | Reduces gloss                                  |    |      |
|    | С     | Improve masking ability                                       | D     | All of the above                               |    |      |
| 12 | -     | re of zinc oxide:                                             |       | e following term best describes the            | K1 | CO-3 |
|    | Α     | an acidic oxide                                               | B     | a neutral oxide                                |    |      |
|    | C     | an amphoteric oxide                                           | D     | a basic oxide                                  |    |      |
| 13 | Adh   | esives were                                                   |       |                                                | K3 | CO-4 |
|    | A     | Can't be used in the form of pressure sensitive tapes         | В     | Can't join two dissimilar metals               |    |      |
|    | C     | Cure instantaneously after application on a surface           | D     | None of these                                  |    |      |
| 14 | Ena   | mel can act in a sense like a                                 |       | 4                                              | K4 | CO-4 |
|    | Α     | A. Permeable membrane                                         | В     | Impermeable membrane                           |    |      |
|    | С     | Semipermeable membrane                                        | D     | Infrapermeable membrane                        |    |      |
| 15 | A fi  | fty percent straight dynamite con                             | ntain | S                                              | K4 | CO-4 |
| •  | Α     | 5 percent of nitroglycerin                                    | В     | 5 percent of trinitrotoluene (TNT)             |    |      |
|    | С     | 50 percent of trinitrotoluene<br>(TNT)                        | D     | 50 percent of nitroglycerin                    |    |      |
| 16 | In re | ecent years, dynamite has been re                             | eplac | ced commercially by                            | K3 | CO-4 |
|    | Α     | PETN                                                          | В     | Nitroglycerin                                  |    |      |

|           | C                                                                     | ТАТР                                                                                                                 | D        | Ammonium nitrate-based explosive                                          |            |              |
|-----------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------|------------|--------------|
| 17        | Mel                                                                   | K2                                                                                                                   | CO-5     |                                                                           |            |              |
|           | Α                                                                     | Higher, higher                                                                                                       | В        | Lower, lower                                                              |            |              |
|           | С                                                                     | Lower, higher                                                                                                        | D        | Higher, lower                                                             |            |              |
| 18        | Whi                                                                   | ich of the following is an exa                                                                                       | mple of  | fats?                                                                     | K1         | CO-5         |
|           | A                                                                     | Glyceryltrioleate                                                                                                    | В        | Vegetable ghee                                                            |            |              |
|           | C                                                                     | Coconut oil                                                                                                          | D        | Groundnut oil                                                             |            |              |
| 19        | Sele                                                                  | ect the incorrect statement from                                                                                     | m the fo | bllowing option.                                                          | <b>K</b> 1 | CO-5         |
|           | A                                                                     | Oils are saturated triglyceride                                                                                      | В        | Examples of oils are<br>glyceryltrioleate, coconut oil, olive<br>oil, etc |            |              |
|           | C                                                                     | Oils are liquid at room temperature                                                                                  | D        | Oils have lower melting points                                            |            |              |
| 20        | Hydrogenolysis is a reaction which leads to the reduction products of |                                                                                                                      |          |                                                                           |            | CO-5         |
|           | Α                                                                     | Aldehyde                                                                                                             | В        | Ketone                                                                    |            |              |
|           | С                                                                     | Alcohol                                                                                                              | D        | Ester                                                                     |            |              |
|           |                                                                       |                                                                                                                      | Section  | ı B                                                                       |            |              |
| ~ 1       |                                                                       |                                                                                                                      |          | $\sin(5 \times 5 = 25)$                                                   | K1         | CO-1         |
| 21        | A                                                                     | A Why is fermentation important in cocoa processing? What is the role of microorganisms in the fermentation process? |          |                                                                           |            |              |
|           | В                                                                     | What are the health benefit                                                                                          |          | OR armful effects of beer and wine?                                       | K1         | CO-1         |
| 22        |                                                                       |                                                                                                                      |          |                                                                           | K1<br>K1   | CO-1<br>CO-2 |
| <i>LL</i> | A                                                                     | A What are the different uses for aspirin?<br>OR                                                                     |          |                                                                           |            |              |
|           | П                                                                     | Evaluia there are estimated                                                                                          | V(       |                                                                           |            |              |
| ~~        | B                                                                     | Explain then properties and u                                                                                        | K6<br>K1 | CO-2                                                                      |            |              |
| 23        | A Write the Synthesis and uses of chromium oxide OR                   |                                                                                                                      |          |                                                                           |            | CO-3         |
|           |                                                                       |                                                                                                                      |          |                                                                           |            |              |
| ~ ·       | B                                                                     | Describe the preparation a                                                                                           |          | acteristics of cobalt blue                                                | K5<br>K1   | CO-3         |
| 24        | A Write a classification of adhesives?<br>OR                          |                                                                                                                      |          |                                                                           |            | CO-4         |
|           | В                                                                     | Explain the properties and                                                                                           | K6       | CO-4                                                                      |            |              |
| 25        | A                                                                     | State Saponification value?                                                                                          | 4505 01  |                                                                           | K0<br>K3   | CO-4<br>CO-5 |
| 45        | OR                                                                    |                                                                                                                      |          |                                                                           |            | 0-5          |
|           | В                                                                     | Write a properties and uses                                                                                          | K1       | CO-5                                                                      |            |              |

|    | Section C<br>Answer ANY THREE Questions (3 x 10 = 30)                       |          |              |  |
|----|-----------------------------------------------------------------------------|----------|--------------|--|
| 26 | Explain the preparation of ethyl alcohol from molasses.                     | K6       | CO-1         |  |
| 20 | Discuss the preparation, properties and uses of paracetamol & chlormycetin. | K0<br>K5 | CO-1<br>CO-2 |  |
| 28 | Explain the synthesis, properties and applications of Zinc oxide.           | K6       | CO-3         |  |
| 29 | Explain the preparation and uses of Gun Powder and Dynamite.                | K6       | CO-4         |  |
| 30 | Describe the Manufacture of cotton seed oil and soybean oil.                | K5       | CO-5         |  |