VIVEKANANDHA COLLEGE OF ARTS & SCIENCES FOR WOMEN

(AUTONOMOUS)
SCHEME OF EXAMINATIONS PG

PG AND RESEARCH DEPARTMENT OF PHYSICS

M.Sc., DEGREE - OBE SYLLABUS

2018 - 2019

About the College

Vivekananda College of Arts and Sciences for Women (Autonomous) was established and hailed into Women's Educational Service in the Year 1995. Angammal Educational Trust Chaired by the great Educationalist 'VidhyaRathna' Prof.Dr. M. KARUNANITHI, B.Pharm. M.S., Ph.D., D.Litt. sponsors this college and other institutions under the name of the great Saint Vivekanandha. Our institutions are situated on either side of Tiruchengode Namakkal Main Road at Elayampalayam, 6 kms away from Tiruchengode. This is biggest women's college in India with more than 7500 girl students and more than 18 departments. The strength of the college was just 65 at the time of its establishment. With the dedication, work, sacrifice and long vision of the chairman, this institution has grown into a Himalaya stage. As a result of which UGC, New Delhi, awarded 2f and 12b, extended Autonomous status for second cycle. The National Assessment and Accreditation Council reaccredited with grade 'A' for its successful performance.

As an Autonomous Institution, academic professionals of the college framed Curriculum and Syllabi in consultation with all its stakeholders to cater the needs of the young women to fulfill the women empowerment and present Industrial needs to the local benefits. The students are empowering with confidence and required skills to face the society.

Quality Policy

To provide professional training by establishing a high level center of learning that provides quality education at par with the international standards and Provide excellence education with well equipped infrastructure to all the rural women.

Our Vision

To be an academic institution exclusively for women, in dynamic equilibrium with the social and economic environment, strive continuously for excellence in education, research and technological service to the nation.

Our Mission

The mission of our institution is to discover, teach and apply knowledge for the intellectual, cultural, ethical, social and economic growth of women students.

M.Sc. (Physics)

I. SCOPE OF THE COURSE

M.Sc. (Physics), the recent developments in Physical sciences, has been included in the enriched syllabus to meet out the present day needs of academic and research, institutions and industries. The program expects a serious commitment of the student to take up challenging study schedules and assignments. The course involves a blend of theoretical education and practical training which run concurrently for a period of two years and equips a student with knowledge, ability, skills and other qualities required for a professional accountant.

The uniqueness of the program is its content and topic coverage, the teaching methodology and the faculty. The syllabus has been designed at a level equal to that of professional courses. The teaching methodologies include classroom lectures, industrial visits, orientation, internship, case study and research work. Focus is also on developing soft skills of the students. For Core subjects, Outsource Guest Lectures by Industrialists and Professional Men will be arranged to enable the students to get wider exposure.

I. SALIENT FEATURES

- ✓ Course is specially designed for a higher level Career Placement.
- ✓ Special Guest lectures from Industrialists will be arranged.
- ✓ Exclusively caters to students interested in pursuing higher studies.
- ✓ Special Industry Orientations and Training are parts of the Degree Course.
- ✓ Project work is included in the syllabus to enhance conceptual, analytical & deductive skills

III. OBJECTIVES OF THE COURSE

- ✓ The new syllabus throws light on the recent and emerging areas of Physics.
- ✓ Enable the students understand Physics and make them more relevant to the society.
- ✓ Develop the analytical ability in students so that they are become objective in solving problems.
- ✓ Help the students learn practical skills in a better way.
- ✓ Inculcate research aptitude in students.
- ✓ Enable the students to go to higher levels of learning Physics.
- ✓ Improve the employability of the students.
- ✓ To inspire the students to apply their knowledge gained for the development of society in general.

IV. ELIGIBILITY FOR ADMISSION

Candidates seeking admission to the first year Degree course (M.Sc. Physics) shall be required to have passed an Under Graduate degree, i.e. B.Sc., (Physics or Applied Sciences) of the Periyar University or an examination of some other University accepted by the syndicate as equivalent there to shall be permitted to be eligible.

V. DURATION OF THE COURSE

- ✓ The course shall extend over a period of two academic years consisting of four semesters. Each academic year will be divided into two semesters. The First semester will consist of the period from July to November and the Second semester from December to March.
- ✓ The subjects of the study shall be in accordance with the syllabus prescribed from time to time by the Board of Studies of Vivekanandha College of Arts and Sciences for Women with the approval of Periyar University.
- ✓ Each subject will have five hours of lecture per week apart from practical training at the end of each semester.

VI. CONTINUOUS INTERNAL ASSESSMENT

The performance of the students will be assessed continuously and the Internal Assessment Marks will be as under:

1. Average of two Tests - 10 Marks

Seminar - 5 Marks
 Assignment - 5 Marks

4. Attendance - 5 Marks

......

TP 4 1	27341
Total	= 25 Marks
i Otai	43 WIAINS

The distribution of attendance marks is given as follows,

76-80 %	- 1 Mark
81-85 %	- 2 Marks
86-90 %	- 3 Marks
91-95 %	- 4 Marks
96-100 %	- 5 Marks

VII. Question Paper Pattern:

Question Paper Pattern for the Examinations

Time: 3 Hours,	Maximum Marks: 75
Part - A Answer all the questions (Objective Type)	(20 x 1 = 20 Marks)
Part - B Answer all the following questions (Either or Type)	$(5 \times 5 = 25 \text{ Marks})$
Part – C Answer any three questions	$(3 \times 10 = 30 \text{ Marks})$

VII. PASSING MINIMUM

In the University Examinations, the passing minimum shall be 40 % out of 75 Marks for theory (38 marks) and 40% out of 60 marks for practical. (24 Marks).

VIII. ELIGIBILITY FOR EXAMINATION

A candidate will be permitted to appear for the University Examination only on earning 75 % of attendance and only when her conduct has been satisfactory. It shall be open to grant exemption to a candidate for valid reasons subject to conditions prescribed.

IX. CLASSIFICATION OF SUCCESSFUL CANDIDATES

Successful candidates passing the examination of Core Courses (main and allied subjects) and securing marks

- a) 75 % and above shall be declared to have passed the examination in first class with Distinction provided they pass all the examinations prescribed for the course at first appearance itself.
- b) 60% and above but below 75 % shall be declared to have passed the examinations in first class without Distinction.
- c) 50% and above but below 60% shall be declared to have passed the examinations in second class.
- d) All the remaining successful candidates shall be declared to have passed the examinations in third class.
- e) Candidates who pass all the examinations prescribed for the course at the first appearance itself and within a period of three consecutive academic years from the year of admission only will be eligible for University rank.

COMMENCEMENT OF THESE REGULATIONS

These regulations shall take effect from the academic year 2018 - 2019 (i.e.,) for the students who are to be admitted to the first year of the course during the academic year 2018 - 2019 and thereafter.

LIST OF CORE PAPRES

S.No	Code	Course Title
1.	18P1PH01	Mathematical Physics
2.	18P1PH02	Classical and Statistical Mechanics
3.	18P1PH03	Advanced Electronics
4.	18P2PH04	Electromagnetic Theory
5.	18P2PH05	Quantum mechanics –I
6.	18P2PH06	Spectroscopy
7.	18P3PH07	Condensed matter Physics
8.	18P3PH08	Quantum mechanics –II
9.	18P3PH09	Microprocessor and Microcontroller
10.	18P4PH10	Nuclear and Particle Physics
11.	1842PH11	Communication System

LIST OF ELECTIVES

S.No	Code	Course Title
1	18P1PHE01	Nano Science
2	18P2PHE02	Crystal Physics
3	18P4PHE03	Thin Film Technology
4	18P2PHE04	Bio Physics
5	18P2PHE05	Non Linear Dynamics
6	18P4PHE06	Sensors and Actuators
7	18P2PHE07	Medical Physics

LIST OF EXTRA DISCIPLINARY COURSE

S.No	Code	Course Title
1.	18P3PHED1	Solar Energy
2.	18P3PHED2	Electronics Appliances

SCHEME OF CURRICULUM – M.Sc., PHYSICS

(For the candidates admitted during the academic year 2018 - 2019 onwards)

Sem	Subject Code	Course	Subject Title	Hrs/ week	Credit	Exam Hrs	Int. marks	Ext. marks	Tot. marks
	18P1PH01	Core – I	Mathematical Physics	6	5	3	25	75	100
	18P1PH02	Core – II	Classical and Statistical Mechanics	6	5	3	25	75	100
	18P1PH03	Core – III	Advanced Electronics	6	4	3	25	75	100
I	18P1PHE01	Elective – I	Elective – I: Nano Science	4	4	3	25	75	100
	18P2PHP01	Core Practical	Practical – I: Advanced Electronics Experiments	4	-	4	-	-	-
	18P2PHP02	Core Practical	Practical - II – Advanced Physics Experiments - I	4	-	4	-	-	-
			Total	30	18	20	100	300	400
	18P2PH04	Core-IV	Electromagnetic Theory	6	5	3	25	75	100
	18P2PH05	Core-V	Quantum Mechanics - I	6	5	3	25	75	100
	18P2PH06	Core-VI	Spectroscopy	6	5	3	25	75	100
II	18P2PHE02	Elective-II	Elective – II: Bio Physics	4	4	3	25	75	100
	18P2PHP01	Core Practical-I	Practical - I: Advanced Electronics Experiments	4	4	4	40	60	100
	18P2PHP02	Core Practical-II	Practical - II: Advanced Physics Experiments - I	4	4	4	40	60	100
			Total	30	27	20	180	420	600
	18P3PH07	Core-VII	Condensed Matter Physics	5	5	3	25	75	100
	18P3PH08	Core-VIII	Quantum Mechanics - II	6	5	3	25	75	100
	18P3PH09	Core-IX	Microprocessor and Microcontroller	5	5	3	25	75	100
III	18P3CHED1	EDC	Applied Polymer Chemistry	4	4	3	25	75	100
	18P4PHP03	Core Practical -III	Practical - III: Microprocessor Experiments	4	-	4	-	-	-
	18P4PHP04	Core Practical -IV	Practical – IV: Advanced Physics Experiments - II	4	-	4	-	-	-
	18P3HR01		Human Rights	2	2	3	25	75	100
			Total	30	21	23	125	375	500
	18P4PH10	Core – X	Nuclear and Particle Physics	5	5	3	25	75	100
	18P4PH11	Core - XI	Communication Systems	5	5	3	25	75	100
	18P4PHE03	Elective - III	Elective – III: Thin Film Technology	4	4	3	25	75	100
IV	18P4PHP03	Core Practical	Practical - III: Microprocessor Experiments	4	4	4	40	60	100
	18P4PHP04	Core Practical	Practical - IV: Advanced Physics Experiments - II	4	4	4	40	60	100
	18P4PHPR01	Core - XI	Project Work	8	8	3	50	150	200
		wall Tatal (I. A.	Total	30	30	20	205	495	700
	Ove	rall Total (I &	II Year)	120	96	83	610	1590	2200

Distribution of Duration and Credit under Different Papers

Part	Paper	Hours / Week	Weeks/ Semester	Hour/ Paper	No. of Papers	Credit / Paper	Total Hours	Total Credit
I	Core paper	6	15	90	11	5	990	54
I	Core practical	4	15	60	4	4	240	16
II	Elective	4	15	60	3	4	180	12
II	EDC	4	15	60	1	4	60	4
-	Human Rights	2	15	15	1	1	15	2
-	Project Work	1	15	15	1	8	15	8
TOTAL CREDIT								

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elavampalayam, Tiruchengode-637 205.

MONEN EMBONERMEN	Elayampalayam, Tiruchengode-637 205.										
Programme	M.Sc.,	Programme Code		PPH Regulations				2018-2019			
Department	Phys	sics		Se		I					
			Pei	riods	Credit	Maximu	ım Marl	ks			
Course Code	Course	Name	per	Week							
			L	T F	C	CA	ESE	Total			
100101101	МАТНЕМАТ	MATHEMATICAL PHYSICS 5 1 0 5 25 75									
18P1PH01					<u> </u>	_1	ı				
COURSE OBJECTIVES	advance 2. The ma methods	advanced problems in physics.									
POs		PROGRAMME OUT	COME								
PO 1	Capable of der	nonstrating the basic conce	pt sand	compre	hensive knowl	edge from	undergr	aduate			
PO 2		ess thoughts and ideas effe ea in clear and concise mar	-	Commu	nicate with oth	ners using a	ppropri	ate media and			
PO 3	To identify the knowledge dev	relevant assumptions to forvelopment	rmulate	the arg	uments by foll	owing scie	ntific ap	pproach to			
PO 4		ve the different kinds of no			* * *						
PO 5	Ability to evaluarguments of o	uate the reliability and releventhers.	ance o	f eviden	ce identify log	ical flaws a	and hole	es in the			
PO 6	A sense of inquarticulating.	uiry and capability for askin	ng appr	opriate o	questions, prob	olematising	, synthe	sizing and			
PO 7	Ability to work	effectively and respectful	y with	diverse	teams.						
PO 8	Ability to analy Evidence and 6	yse, interpret and draw con experiences.	clusion	s from q	uantitative dat	a and critic	ally eva	luate ideas,			
PO 9		ility to lived experiences w	th self-	awarene	ess and reflexiv	vity of both	self and	d society.			
PO 10	1 7	se ICT in a variety of learn vant information sources.	_	ations, o	demonstrate ab	oility to acc	ess, eva	luate, and use a			
PO 11	Ability to worl	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.									
PO 12	Possess knowle	edge of the values and belie	efs of m	ultiple o	cultures and a g	global pers	pective.				
PO 13	Ability to emb	race moral values in condu- perspectives.	cting or	e's	life formulates	s a position	about a	n ethical issue			
PO 14	Capability for	mapping out the tasks of a	team or	an orga	nization.						
PO 15	Ability to acqui objectives	ire knowledge and skills, p	ersonal	develop	oment, meeting	g economic	, social	and cultural			

COs	COURSE OUTCOME
CO 1	Understand the complex variables, Understand the characteristic equation of matrix and evaluate Hamiltonian theorem
CO 2	Ability to solve the problem by computational method and acquire knowledge about prabability
CO 3	To acquire knowledge of Fourier and Laplace transform. Understand the Fourier integrals and Apply Fourier transformation in interferometer
CO 4	Understand the relation between beta and gamma function and evaluate the gamma function To find application by using special function
CO 5	Ability to solve PDE problem, To acquire knowledge of vector tensor and matrices. To acquire the knowledge of group theory.
Pre-requisites	To gain knowledge for solving problem

				Knov	wledg	e Lev	els								
1.Remembe	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing														
	CO / PO / KL Mapping														
(3/	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)														
COs				KLs				P	Os	•]	KLs		
									0.1					1	
CO 1					2) 2					2	
									0 3					2 3	
CO 2					1) 5					5	
202					-				06					1	
								PO	7				(6	
CO 3					1			PO 8				4			
								PO 9 PO 10				5			
CO 4					5			PO 10				2			
)				PO 12				2				
									13			3			
CO 5					5			PO 14				3			
					/ PO M	· · · · · · · · · · · · · · · · · · ·		PC	15					6	
(3)	/2/1 ind	icates t	he strei					2-med	ium 1-	weak)					
		icates t					e (POs)		14111, 1	wear,					
COs	PO	PO	РО	PO	PO	PO	PO7		PO	PO1	PO1	PO1	PO1	PO1	PO1
	1	2	3	4	5	6		8	9	0	1	2	3	4	5
CO1	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO2	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO3	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO4	1	1	1	1	3	1	2	2	3	1	1	1	1	1	2
CO5	1	1	1	1	3	1	2	2	3	1	1	1	1	1	2

Course Assessment Methods	
Direct	
	1. Continuous Assessment Test I, II & Model
	2. Assignment
	3. End Semester Examinations
Indirect	
1. Course End Delivery	

Content	of the Syllabus	,	,											
	Complex Vector and Matrices Analysis	Periods	12											
	Functions of complex variable Elements of complex analysis - Cauchy-Riemann condition, Differential													
	equation - Cauchy integral theorem - Cauchy integral formulas-Taylors Series- Laurent's Series - Residue													
Unit - I	theorem -Evaluation of definite integrals - Contour integration.													
	Vector algebra and vector calculus-Linear algebra- Linear vector spaces. Characteristic equation of a matrix,													
	Eigen values and Eigen vectors, Cayley - Hamilton theorem.													
	Vectors, Tensors and Matrices Numerical computational	Periods	12											
	Technique Linear vector spaces - Subspaces - Linear independents and orthogonality of vectors - Hilberts													
	- Transformation of coordinates - Summation convention, Contravariant	•	-											
	Rank of tensor, Kronecker delta, Symmetric and Antisymmetric ten													
Omt - m	Characteristic equation of a matrix - Eigen values and Eigen vectors - Cayle													
	of a matrixto diagonal form - Jacobi method - Sylvester's Theorem. Elen	nentary probabilit	y theory, random											
	variables, binomial, Poisson and normal distributions. Central limit theorem. Ele	ments of computa	tional techniques:											
	root of functions, interpolation, extrapolation, integration by trapezoid and Sim	pson's rule, Solu	tion of first order											
	differential equation using RungeKutta method. Finite difference methods.													
	Fourier Transforms and Laplace Transforms	Periods	12											
	Fourier series: Dirichlet's condition – determination of coefficient – function													
	series for square wave and half wave													
	Fourier Transform: Properties of Fourier transform - Fourier transform of derivative - Fourier's sine and													
Unit -III	Complete of Francisco													
Oint -111	Different forms of Fourier integrals - Application of Fourier Transformation in Interferometer.													
	Laplace Transform: Properties of Laplace transform - Laplace transform of derivative function - Laplace													
	transform of integrals - Laplace transform of periodic function - Inverse Laplace transform - Properties of													
	inverse Laplace transform-Laplace transform of some special functions	- Evaluation of	integral using											
	InverseLaplace Transform - Applications of Laplace Transform- solving e	equations for LCR	circuit											
	Special Functions and Differential Equations	Periods	12											
	Beta function - Symmetry property of beta function - Evaluation of beta fu	unction -Transfor	rmation of beta											
	function - Different forms of beta function- Evaluation of gamma function	on - Transforma	tion of Gamma											
	function - Reduction of definite integrals to gamma function - Relation be	tween Beta and C	Samma functions											
Unit-IV	- Dirac delta function.													
	Linear ordinary differential equations of first & second order -Solution for	_	_											
	Hermite differential equations -Properties - Generating functions, Rodrigues	s formula, Orthog	gonal properties,											
	Recurrence relation.	T	T											
	Group Theory, Application of PDE and Tensor	Periods	12											
	Basic Definition - Multiplication Table - Sub groups - Cosets and Classes, D	_	-											
	group, Space groups, Rotation groups - Symmetry elements an		=											
*** **	Representation theory - Homomorphism and Isomorphism - Reducible ar - Schurs Lemma- The great Orthogonality theorem - Character Table -		-											
Unit - V	Treatment of molecular structure. SU(2)	C2 v and C3 v a	as examples,											
	Laplace, wave and heat equations in two and three dimensions- Contravariant	Covariant and m	nixed tensors											
	Rank of tensor, Kronecker delta, Symmetric and Antisymmetric tensors	, Covariant and II	iinou telisois,											
	Total Periods		60											
	Total I Cliods		00											

Text Books	
1	1. Mathematical Physics, B.D. Gupta, Vikas Publishing House, (2004).
2	2. Mathematical Physics, Satyaprakash, Sultan Chand and Sons, (2004).
References	
1	1. Mathematical Physics, P.K. Chattopadhyay, Wiley Eastern India, (1990).
2	2. Chemical applications of group theory, F.A. Cotton, Wiley Eastern India, (2001).
3	3. Elements of group theory for physicist, A.W Joshi, New age international Publishers, (2002).
E-References	
1	1. https://www.khanacademy.org/math/differential-equations/laplace-transform
2	2. https://www.khanacademy.org/math/linear-algebra#vectors-and-spaces
3	3. https://www.khanacademy.org/math/linear-algebra#matrix-transformations

EN EMPOWER			- uenengot			T								
Programme	M.Sc., Programme Code PPH Regulations 2018-													
Department		Physics		Semester										
			Period	S	Credit	Maximu	m Marl	KS .						
Course Code		Course Name												
			L T	P	С	CA	ESE	Total						
	CLASSICAL 6 0 0 5 25 75													
18P1PH02	ANDSTATIST MECHANICS	ICAL												
COURSE	1. The main goal of the course is to introduce students to classical mechanics and its applications in physi													
OBJECTIVES	and studied rigorously using advanced mathematical techniques.													
POs	PROGRAMME OUTCOME													
PO 1	Capable of demo	onstrating the basic concept sa	and compre	ehei	nsive knowledg	ge from und	ergradu	iate						
	programme of study.													
PO 2		s thoughts and ideas effective		unic	ate with others	using appr	opriate	media and						
		in clear and concise manner												
PO 3	To identify the relevant assumptions to formulate the arguments by following scientific approach to													
	knowledge devel													
PO 4		e different kinds of non-famil												
PO 5		te the reliability and relevance				-								
	sources then draw valid conclusions and support them with evidence and examples, and addressing opposing													
PO 6	viewpoints.	C	4 141-		1			1:						
PO 6	_	ms, formulate hypotheses, t se-and-effect relationships an				-								
	experiment	se-and-effect relationships an	id ability it) pi	in, execute and	report the i	i esurts (nan						
PO 7	Ability to work effectively and respectfully with diverse teams, facilitate cooperative or coordinated effort													
10 /		group and act together as a group		ica	ms, racimate e	ooperative	01 00010	imated errort						
PO 8		e, interpret and draw conclus		ดเมลา	ntitative/qualita	ntive data ar	nd critic	cally evaluate						
		and experiences from an open		-	•									
PO 9		ty to lived experiences, with					If and so	ociety.						
PO 10		e ICT in a variety of learning												
		nt information sources and us												
PO 11		ndependently, identify appro						age a project						
	through to comp	letion												
PO 12	Capability to effe	ectively engage in a multicult	tural societ	y aı	nd interact resp	ectfully wit	h diver	se groups.						
PO 13	Capable of demo	onstrating the ability to identi-	fy ethical i	ssue	es related to on	es work, av	oid une	thical						
	behaviour such a	s fabrication, falsification or	misreprese	enta	tion of data									
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an													
		building a team who can help												
PO 15		e knowledge and skills, inclu	ding how t	o le	earn, that are ne	cessary for	particip	pating in						
	learning activitie	es throughout life.												

COs	COURSE OUTCOME
CO 1	To understand the fundamental principles of Lagrange formulation. Apply linear harmonic oscillator in
	Lagrange formulation.
CO 2	To acquire knowledge of Hamiltons canonical equations. Understand the harmonic oscillator problem.
CO 3	Understand the angular momentum of a rigid body.
CO 4	Understand the ideas liouvlies theorem. Synthesis phase space.
CO 5	To understand the equations Fermi Dirac statistics .Apply ideal Bose Einstein gas blackbody radiation
Pre-requisites	To Acquire idea about statistics

]	Know	ledge	Level	S							
1.Reme	mberi	ng, 2.	Unde	rstand	ling, 3	3.App	lying,	4.An	alyzin	g, 5.E	valuat	ing, 6.	Synth	esizinş	g	
					(CO / PC) / KL 1	Mappin	g							
		(3/2	/1 indic	ates the	e streng	gth of c	orrelati	on, 3-si	trong, 2	?-mediu	m, 1-we	ak)				
CO	s]	KLs				PO				K)	Ls		
									PO				1			
CO	1				2				PO				2			
									PO				2			
СО	2		1						PO				3			
CO	2								PO			5				
								PO 7				6				
CO	3		2					PO 8				4				
								PO 9					5			
								PO 10					1			
CO	4		6				PO 11					2				
								PO 12					2			
	_				2			PO 13					3			
CO	5				3			PO 14 PO 15					3 6			
						CO /	PO Ma	nnino	ro i	J				,		
		(3/2	/1 indic	ates the	e strens				trong. 2	2-mediu	m, 1-we	ak)				
		(rogram				,	,				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO1:	
CO1	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1	
CO2	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1	
CO3	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1	
CO4	1	1	1	1	2	1	1	1	2	1	1	1	1	1	3	
	1	1	1	•	~	1		1	~	1	1	1	1	1	,	

CO5

Course Assessment Methods	
Direct	
	1. Continuous Assessment Test I, II & Model
	2. Assignment
	3. End Semester Examinations
Indirect	
Course End Delivery	

Content of the S	Syllabus													
	Fundamental Principles and Lagrangian Formulation Periods 12 Mechanics of a system of particles - Conservation laws and Theorems - Constraints, Generalized													
		orems - Constrai	nts, Generalized											
	coordinates – D'Alembert's principle –Lagranges equation of motion	on from D'Alem	bert's principle-											
Unit - I	Procedure for formation of Lagrange's equation - Application of Lagrange													
	oscillator - Simple pendulum -Atwood's machine - Particle moving on													
	particle moving in an Electromagnetic field- Hamiltons principle - Derivation of Lagranges equation of motion from Hamiltons principle - Conservation theorems and Symmetry properties.													
	Hamiltons Formulation of Mechanics Periods 12													
	Hamiltons Canonical equations of motion - Physical Significance of H -I	Deduction of Ham	iltion's equation											
Unit - II	from modified Hamiltion's principle-(OR) Hamiltons Canonical equa	ations from varia	tion principle -											
	Principle of least action -Jacobi's form of the principle of least action	on - Canonical tr	ransformations -											
	Hamilton - Jacobi method - Harmonic oscillator problem using Ham	iltonian Jacobi n	nethod -Poisson											
	brackets and Lagrang's brackets - Properties.													
	Rigid Body Motion(OR) Dynamics of a Rigid	Periods	12											
	Bodyand Special theory of relativity													
Unit - III	Generalized co-ordinates for Rigid Body Motion – Body and Space reference system–Euler's theorem													
Unit - III	Euler Angles -Components of Angular Velocity - Angular Momentum of a rigid body: Moments and													
	Products of Inertia -Moment of inertia of a rigid body - Eulers equ	ation of motion	- Motion of											
	symmetrical top.													
	Relativistic Approach Lorentz transformation - Kinematic effects of L													
	energy equivalence - Lagrangian formulation of Relativistic mechanics	-Hamiltonian Fo	rmulation of											
	Relativistic mechanics.	T	T											
	Classical Statistics	Periods	12											
	Phase Space - Ensemble - Definition of Micro Canonical - Canonical and Grand Canonical ensembles -													
Unit - IV	Liouvilles theorem - Microstates and Macro states - Sterlings formula, Entropy in statistical mechanics -													
	Partition function - Doppler broadening of spectral lines - Principle of equ	uipartition of ener	gy - connection											
	between Partition function and thermodynamically quantities.	T	T											
	Quantum Statistics Periods 12													
	Identical particles and Symmetry requirements - Maxwell - Boltzman Statistics, Bose -Einstein Statistics													
Unit - V	and Fermi - Dirac statistics - Ideal Bose Einstein gas and its application: l													
	Radiation Law - Gas degeneracy - Bose - Einstein Condensation - Randon													
	Ideal Fermi Dirac gas: Electron gas - Thermionic emission - Paulis theory	of Paramagnetis												
	Total Periods		60											

Text Books	
1	Classical Mechanics, Gupta, Kumar and Sharma, Pragati Prakashnan, Meerut, (2011).
2	Classical Mechanics, J.C. Upadyaya, Himalaya Publishing House, (2014).
3	Statistical Mechanics, Gupta and Kumar, PragatiPrakashnan, Meerut, (2005).
References	
1	Classical Mechanics, H. Goldstein, Narosa Publishing House, New Delhi, (2005)
2	Classical Mechanics, C.R.Mondal, Prentice - Hall of India, New Delhi, (2008).
E-References	
1	https://www.britannica.com/science/classical-mechanics
2	https://www.chegg.com/homework-help/definitions/classical-Mechanics-II.

SOMEN EMPONERMENT													
Programme	M.Sc.,	2018-2019											
Department	Phys	1											
	Periods Credit Maximum Marks												
Course Code	Course Name per Week												
			L T P	С	CA	ESE	Total						
18P1PH03	ADVANCED ELECTRONICS 6 0 0 4 25 75 10												
COURSE OBJECTIVES	 The aim of the course is to introduce the students to the advanced concepts of electronics. Acquire basic knowledge of advanced electronics such as Operational Amplifier, Memory and Optoelectronic Devices etc. 												
POs	PROGRAMME OUTCOME												
PO 1	programme of	Capable of demonstrating the basic concept sand comprehensive knowledge from undergraduate programme of study.											
PO 2	interpret the id	Ability to express thoughts and ideas effectively Communicate with others using appropriate media and interpret the idea in clear and concise manner.											
PO 3	•	To identify the relevant assumptions to formulate the arguments by following scientific approach to											
PO 4		knowledge development											
PO 4 PO 5	Capacity to solve different kinds of non-familiar problems and apply to real life situations. Ability to evaluate the reliability and relevance of evidence, analyse and synthesise data from a variety of												
103	sources then d	raw valid conclusions and											
	opposing view												
PO 6	To define pr	roblems, formulate hy	potheses, test	hypotheses,	analyse, 11	nterpr	et and draw conclusion						
	s from data n	redict cause-and-effect rela	ntionships and	ahility to plar	n execute an	nd ren							
	ofan	realet eduse dia circet feit	itionships und	donney to plui	i, execute un	ia rep	ort the results						
	experiment												
	Ability to wor	k effectively and respectful	ly with diverse	teams, facilita	ite cooperativ	ve or c	coordinated effort						
PO 7		a group and act together as											
P.O.O.	•	yse, interpret and draw con-	•			a and o	critically evaluate						
PO 8		e and experiences from an o		•	_								
PO 9		ility to lived experiences, w			•		•						
DO 10		ise ICT in a variety of learn	-		•		aluate, and use a						
PO 10		vant information sources an	* * *										
PO 11	Ability to work	k independently, identify ap	propriate resou	irces required	for a project	, and i	manage a project						
PO 12		effectively engage in a multi	icultural society	and interact	respectfully	with d	iverse groups						
1 0 12		monstrating the ability to id											
PO 13	_	n as fabrication, falsification				a, 010							
		mapping out the tasks of a				tion,fo	ormulating an						
PO 14		n, building a team who can	_		3	•	Č						
	Ability to acqu	nire knowledge and skills, in	ncluding how to	learn, that ar	e necessary	for pa	rticipating in						
PO 15	learning activi	ties throughout life.											

COs	COURSE OUTCOME
CO 1	To get knowledge about the basics information's of ideal Op-amp.
CO 2	Apply the sample and hold circuit in simultaneous equations and differential equations
CO 3	Understand the filters, basic DAC and ADC techniques.
CO 4	Synthesis the basic monolithic IC's.
CO 5	To acquire Knowledge the memory devices and apply in opto electronic devices.
Pre-requisites	To Acquire idea about Advanced Electronics

Knowledge Levels

1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing

CO / PO / KL Mapping

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

(5/2/1 mail	tuces the surength of confedences, s	rength of correlation, 5 strong, 2 medium, 1 weak)							
COs	KLs	POs	KLs						
		PO 1	1						
CO 1	1	PO 2	2						
		PO 3	2						
		PO 4	3						
CO 2	3	PO 5	5						
		PO 6	1						
		PO 7	6						
CO 3	2	PO 8	4						
		PO 9	5						
		PO 10	1						
CO 4	6	PO 11	2						
		PO 12	2						
		PO 13	3						
CO 5	1	PO 14	3						
		PO 15	6						

CO / PO Mapping

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

L	((6.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.														
	COs				Progra	mme C	utcom	e (POs)								
	COS	PO	PO	PO	PO	PO	PO	PO7	PO	PO	PO1	PO1	PO1	PO1	PO1	PO1
		1	2	3	4	5	6		8	9	0	1	2	3	4	5
	CO1	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
	CO2	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1
	CO3	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
Ī	CO4	1	1	1	1	2	1	1	1	2	1	1	1	1	1	3
ſ	CO5	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1

Course Assessment Methods	
Direct	
	1. Continuous Assessment Test I, II & Model
	2. Assignment
	3. End Semester Examinations
Indirect	
1. Course End Delivery	

	Operational Amplifier	Periods	12							
	Operational amplifiers: Basic information - Ideal op-amp - Open loop of amp - Inverting and Non-inverting amplifier, Voltage Follower, Differ									
II '. I	Characteristics - Input bias current, Input offset current, Input offset voltage									
Unit - I	Thermal drift.AC Characteristics - Frequency Response, Stability									
	Compensation, Slew rate - Electrical Parameters.	or an op-any	o, Trequency							
	Analog Computation and Waveform Generators	Periods	12							
	Basic Op-amp Applications - Sample and hold circuits, Logarithmi									
	amplifiers. Analog multiplier - Analog divider - Differentiator - Integr	_	_							
Unit - II										
	Analog Computation - Solving Simultaneous equation and Differential equation - Sine wave oscillator - RC Phase shift oscillator - Wein - Bridge oscillator, method - Harmonic oscillator problem using									
	Hamiltonian Comparator, Schmitt trigger, Astable and Monostablemultivibrators - Triangular wave									
	generator	D : 1	12							
	Filters and Data Converters	Periods	12							
	RC Active filters - First order low pass filter, Second order active filter, Higher order low pass filter,									
TT!4 TTT	High pass active filter, Band pass filters and Band reject filters; Phase sensitive detectors (PSD)- Phase lock loop (PLL). Basic DAC techniques - Weighted resistor DAC, R-2R Ladder DAC. ADC- Counter									
Unit - III	type, Successive approximation A/D convertor, Dual - Slope AD									
	Resolution, Accuracy, Linearity and Stability.	e, brieffibe i	pecifications.							
	IC Fabrication	Periods	12							
	Basic monolithic ICs - Thin film fabrication - Epitaxial growth - Masking	z - Etching - Impu	rity diffusion.							
Unit - IV	fabricating monolithic resistors, Diodes, Transistors, Inductors and Capacitors. IC 555 timer -									
Omt - I v	Description of the functional diagram, Mono stable multivibrator – Astable multivibrator - Bi-Stable									
	multivibrator - Schmitt trigger.									
	Memory and Optoelectronic Devices	Periods	12							
** **	Architecture of ROM - PROM, EPROM, EEPROM, EAROM. RAM - Static RAM - Dynamic RAM and									
Unit - V	Integrated RAM - Compact Disk. Solar cells - LED - Photo diode - Pin Di	ode - LCD - LDR								
	Total Periods		60							

Text Books	
1	1. Handbook of Electronics, Gupta and Kumar, PragatiPrakashnan, Meerut, (2003).
2	2. Linear Integrated Circuits, D. Roy choudry, New Age Publications, (2015).
References	
1	Electronic Measurement and Instrumentation, WilliamCooper, TMG Hill, (2001).
2	2. Operational Amplifier, Robert F, Pearson Hill, (2015).
E-References	
1	1. www.khanacademy.org/science/physics/electronics/operational amplifier.
2	2. www.khanacademy.org/science/physics/electronics/memory and optoelectronic devices.

HOWEN ENDONERMEN	Elayampalayam, Tiruchengode-637 205.									
Programme	M.Sc.,	M.Sc., Programme Code PPH Regulations								
Department	Phy	I								
			Period	S	Credit	Maximu	ım Mar	ks		
Course Code	Course	per We	per Week							
			LI	Р	C	CA	ESE	Total		
18P1PHE01	ELECTIVE:	NANOSCIENCE	4 0	0	4	25	75	100		
COURSE		the basic skills required to u			relop, and desi	gn Nanom	aterials			
OBJECTIVES	2. To enhance	e the research interest in Nar	notechnolo	ogy						
POs		PROGRAMME OUTC	COME							
PO 1	-	emonstrating the basic conce	pt sand co	ompre	ehensive know	ledge fron	n under	graduate		
	programme of		: 1.0			1 .		1. 1		
PO 2	-	oress thoughts and ideas effe dea in clear and concise man		ommı	inicate with ot	ners using	approp	riate media and		
				ne arg	uments by fol	lowing sci	entific :	approach to		
PO 3	-	To identify the relevant assumptions to formulate the arguments by following scientific approach to knowledge development								
PO 4	Capacity to so	olve different kinds of non-f	amiliar pr	oblen	ns and apply to	o real life s	situation	ıs.		
20.	Ability to evaluate the reliability and relevance of evidence, analyse and synthesise data from a									
PO 5	variety of sources then draw valid conclusions and support them with evidence and examples, and									
		posing viewpoints.								
PO 6	To define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, predict cause-and-effect relationships and ability to plan, execute and report the results of an									
100	experiment.	edict cause-and-effect felanc	msmps an	u abi	nty to plan, ex	ecute and	report t	ne results of an		
PO 7		rk effectively and respectful part of a group and act togetl			teams, facilita	ite coopera	tive or	coordinated		
		Ability to analyse, interpret and draw conclusions from quantitative/qualitative data and critically								
PO 8	evaluate ideas, evidence and experiences from an open-minded and reasoned perspective									
PO 9	Critical sensibility to lived experiences, with self awareness and reflexivity of both self and society. Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a									
DO 10										
PO 10		evant information sources and rk independently, identify ap								
PO 11	through to con		эргориас	10501	arces required	ioi a proje	ci, and	manage a project		
PO 12	•	effectively engage in a mult	icultural s	ociet	v and interact	respectfull	y with	diverse groups.		
-		emonstrating the ability to id								
PO 13	behaviour suc	ch as fabrication, falsification	n or misre	prese	ntation of data	a				
		mapping out the tasks of a		_		setting dir	ection,f	ormulating an		
PO 14		on, building a team who can								
DO 15		uire knowledge and skills, in	ncluding l	now t	o learn, that ar	e necessar	y for pa	articipating in		
PO 15	learning activities throughout life.									

COs	COURSE OUTCOME
CO 1	To acquire more knowledge about mechanical, electrical, optical properties of nano particles.
CO 2	Analyze the nano fabrication and nano patterning
CO 3	Understand characterization techniques of nano particles Analyze the SEM and TEM equipments.
CO 4	Acquire knowledge about working principle of photo loumninescene spectroscopy. Understand the workingprinciple of XRD and UV.
CO 5	Apply carbon nano tubes for electronics applications.
Pre-requisites	To Acquire idea about Nano Science

Knowledge Levels								
1.Remembering, 2.	Understanding, 3.Applyi	ng, 4.Analyzing, 5.Evalua	ting, 6.Synthesizing					
	CO / PO / KL Map	· •						
(3/2/1 indic	eates the strength of correlation,	3-strong, 2-medium, 1-weak)						
COs	KLs	POs	KLs					
		PO 1	1					
CO 1	1	PO 2	2					
		PO 3	2					
		PO 4	3					
CO 2	4	PO 5	5					
		PO 6	1					
		PO 7	6					
CO 3	2	PO 8	4					
		PO 9	5					
		PO 10	1					
CO 4	2	PO 11	2					
		PO 12	2					
		PO 13	3					
CO 5	3	PO 14	3					
		 						

CO / PO Mapping

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

COs	Programm					e Outcome (POs)									
COS	РО	РО	РО	РО	РО	РО	PO7	РО	РО	PO1	PO1	PO1	PO1	PO1	PO1
	1	2	3	4	5	6		8	9	0	1	2	3	4	5
CO1	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO2	1	1	1	2	2	1	1	3	2	1	1	1	2	2	1
CO3	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO4	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO5	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1

PO 15

6

Course Assessment Methods
Direct
Continuous Assessment Test I, II & Model
Assignment
End Semester Examinations
Indirect
1. Course End Delivery

Content of	the Syllabus								
	Basic Properties of Nanoparticles (Concept of Nanoscience)	Periods	12						
Unit - I Introduction of nanoscale science – Quantum Size effect- Particle Size- Top down and bottom up ideas - Particles shape; Nanostructures – Zero, One, Two and Three dimensional structure; and properties of nano-particles - Physical properties of nanoparticles: Particle density; Melting point; Surface tension; Wettability and Composite structure; Surface characteristics of nanoparticles - Specific surface area and pore; Mechanical properties; Crystalline properties: Optical properties; Electrical properties; Magnetic									
	properties; Concept of vacuum technology.								
	Nanofabrication and Nan patterning	Periods	8						
Unit - II	Top down and bottom up ideas - Top down approach - Sol - gel; Hydrothermal; CVD method - Optical, X-ray, and electron beam Lithography - Bottom up approach: PVD method; thermal Evaporation; Self assembled organic layers - Microwave techniques								
	Characterization Techniques	Periods	11						
Unit - III	Surface Analysis: Scanning Electron Microscope (SEM); Transmission Electron Microscope (TEM); Atomic Force Microscope (AFM); Scanning Tunneling Microscope (STM) Working Principle, Instrumentation and applications - Structural analysis: XRD, XRF - Optical analysis: Photoluminescence (PL) Spectroscopy - UV-vis-NIR Spectroscopy analysis. Elemental dispersive EDAX analysis. Thermal analysis: Differential Scanning Calorimeter (DSC), Differential Thermal Analyzer (DTA), Thermogravimetric Analysis (TGA)								
	Nano Systems	Periods	8						
Unit - IV	Juit - IV Quantum dot - Quantum wire - Quantum Hall effect - Carbon nano structures: C ₆₀ ; Basics of fullerenes derivatives; CNT: SWNT - MWNT; applications - Graphene nanomaterials: Polymer nanocomposites: Tunnel diode - Molecular transistor - Single electron transistor - Spin polarized transistor- Thin film self assembly								
	Applications of Nanomaterial	Periods	9						
Unit - V	Optoelectronic properties of molecular materials - Nanotechnology devices: OLEDs, OTFTs.								
Omt - v	Bioelectronics and biosensors: Charge Transport - DNA and Protein function	tional systems, El	ectronic noses						
	and biosensors								
	Total Periods		48						

Text Book	TS .
1	. Roland Wiesendanger â€" Scanning Probe Microscopy and Spectroscopy â€" Methods and
	Applications – Cambidge University Press, (1994).
2	Joel I. Gersten, Frederick W. Smith â€" The Physics and Chemistry of Materials; John Wiley and Sons,
	(2001).
3	John C. Vickerman; Surface Analysis (The principal Techniques); John Wiley and Sons, (2003).
Reference	s
1	D. Briggs, M.P. Seah; Practical Surface Analysis-Auger and X-ray Photoelectron Spectroscopy, Wiley
	Interscience, (1990).
2	Sergei N. Magonov, Myung-Hwan Whangbo; Surface Analysis with STM and AFM: Experimental and
	Theoretical Aspects of Image Analysis, VCH Publishers, (1996).
3	Nanoscale materials in chemistry, Kenneth, John Wiley and Sons, (2003).
E-Referen	ces
1	https://www.google.com/search?q=Basic%20Properties%20of%20Nanoparticle+filetype%3Adoc
2	https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=2ahUKE
	wiO_cDVnvvcAhXJqY8KHTN2D_YQFjAEegQIBhAC&url=http%3A%2F%2Fwww.lehigh.edu%2F~inm
	atpac%2Fsyllabus%2Fs2004mat398.doc&usg=AOvVaw18OmcUT7mNM2qfDrdLTkkG

MOMEN EMPONERMENT	Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc.,	Programme Code			PF	'H	Regulat	tions	2018-2019
Department		Physics				Semester			II
	Periods Credit Maximum Marks								
Course Code	Course Name per Week								
			L	Т	P	С	CA	ESE	Total
	OHANTI	JM MECHANICS - I	6	0	0	5	25	75	100
18P2PH05	QUAITE	JWI WILCHANICS - I	0	U	U		23	73	100
COURSE	1 To acquire kn	owledge of non-relativistic a	nd rel	ativi	stic	quantum mecl	nanics		
OBJECTIVES		understand concepts and to						ticles.	
POs		PRC)GRA	MM	E O	UTCOME			
PO 1	Capable of demo	onstrating the basic concepts	and c	omp	rehe	nsive knowled	lge from ur	ndergrad	uate
	programme of st	tudy.							
PO 2	Ability to expres	ss thoughts and ideas effective	vely C	omn	nunic	cate with other	s using ap	propriate	media .
PO 3	•	elevant assumptions to form	ulate t	he a	rgun	nents by follow	ving scient	ific appr	oach to
	Ū	knowledge development.							
PO 4		e different kinds of non-fam				** *			
PO 5	•	ate the reliability and relevan	ice of	evide	ence	, analyse and	synthesise	data fror	n a variety of
	sources .								
PO 6	-	ems, formulate hypotheses,	test hy	potl	neses	s, analyse, inte	erpret and c	lraw con	clusions
DO 7	from data.	CC .: 1 1 .C.11	2/1 1			C :1:4 4			1: 1 00 1
PO 7	•	effectively and respectfully v	with di	ivers	e tea	ms, facilitate	cooperative	e or coor	dinated effort
DO 0	on the part of a		_:	C			4-4: 1-4-	1	11 1 4 -
PO 8		se, interpret and draw conclu and experiences from an ope			•	-		and critic	carry evaluate
PO 9		ty to lived experiences, with						alf and a	ogioty
PO 10		e ICT in a variety of learning					•		•
1010		nt information sources.	Situa	.10113	, uci	nonstrate aom	ity to acces	s, evarua	ite, and use a
		independently, identify appro	onriate	e res	ource	es required for	a project	and man	age a project
PO 11	through to comp		ортии	7105	ourc	os required ro	a project,	una man	age a project
PO 12		ectively engage in a multicu	ltural	socie	ety a	nd interact res	pectfully w	ith dive	rse groups
		onstrating the ability to ident			-		• •		
PO 13	behaviour such a		-				,		
	Capability for m	apping out the tasks of a tear	m or a	n or	ganiz	zation, and set	ting directi	on, form	ulating an
PO 14	inspiring vision,	building a team who can he	lp ach	ieve	the v	vision, motiva	ting and in	spiring te	eam members
	to engage with t	hat vision.							
PC 15	Aller	1 1 1 1 1 1 1 1 1	1.		, 1	d .	-		
PO 15		re knowledge and skills, incl	_			-	-	or partici	pating in
	learning activitie	es throughout life, through se	eii-pac	ed a	na s	eir-airected le	arning.		

Course Assessment Methods

Direct

- 1. Continuous Assessment Test I, II & Model
- 2. Assignment
- 3. End Semester Examinations

Indirect

1. Course End Delivery

COs	COURSE OUTCOME
CO 1	To get the knowledge about Ehrenfest theorem .Understand the Expectation values of dynamical quantities
CO 2	Able to understand spin angular momentum. To analyze the eigen values spectrum. Evaluate the properties.
CO 3	Understand the characteristic equation of a matrix. To analyze the Hibert space.
CO 4	Apply the time independent perturbation theory in non degenerate cases. Analyze the fundamental concepts
	Variation method and its uses.
CO 5	Apply the selection rule for dipole radiation. Evaluate adiabatic and sudden approximation.
Pre-	GET KNOWLEDGE
requisites	

Knowledge Levels

1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-

weak)								
COs	KLs	POs	KLs					
		PO 1	1					
CO1	1	PO 2	2					
		PO 3	2					
		PO 4	3					
CO 2	2	PO 5	5					
		PO 6	1					
		PO 7	6					
CO 3	4	PO 8	4					
		PO 9	5					
		PO 10	1					
CO 4	3	PO 11	2					
		PO 12	2					
		PO 13	3					
CO 5	5	PO 14	3					
		PO 15	6					

CO / PO Mapping

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1weak)

COs		Programme Outcome (POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO2	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO3	1	1	1	2	2	1	1	3	2	1	1	1	2	2	1
CO4	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1
CO5	1	1	1	1	3	1	2	2	3	1	1	1	1	1	2

Unit - I	General Formalism of Quantum Mechanics Linear vector space – Linear operator –Adjoint and Self adjoint operator	s- Figenfunctions	1							
Unit - I		5- Ligennunctiona	ınd							
	Eigenvalue – Hermition operator for dynamical variables – Postulates of									
	and the Schroedinger equation -Expectation values of dynamical quanti	ties - Probability	of							
	current density - Ehrenfest theorem -Orthonormality -Uncertainty prin	nciple - Relation	s -							
	Simultaneous measurability of observables - Dairacs notation - Equ	uation of motion	1 -							
	Schrodinger, Heisenberg and Dirac representation (Picture									
	representation.									
	Angular Momentum	Periods	12							
	Orbital Angular Momentum and their properties- Spin Angular M	Momentum - To	tal Angula							
TT 1: TT	Momentum Operators - Commutation relations fof Total Angular Mo		_							
Unit - II	Ladder operators - Commutation Relation of Jz with J+ and J-, Eigen val		•							
	Jz, Matrix Representation of J2, Jz, J+ and J-, Addition of angular	_								
	Coefficients - Selection rules - Properties and its Evaluation.									
	XXXXXX	Periods	12							
	Eigen values, Eigen vectors: Characteristic equation of a matrix,									
Unit - III	Interaction (Pictures) matrix representation - Unitary transformations associated with translations and									
	rotations.									
	Diracs Bra and Ket vectors: Dual Space, HibertSpace, Projection Ope	erator. Unit Opera	ator. Unita							
	Operatorand Matrix Theory of Harmonic Oscillator	, , , , , , , , , , , , , , , , , , ,	,							
	Approximation Methods	Periods	12							
	Equation in various orders of time dependent perturbation theory – the no	n-degenerate case	: the First							
Unit - IV	order – the second order – Selection rule - The degenerate case – Removal of Degeneracy - Ground									
	State of Helium Atom - Application to ground state of anharmonic oscillator and Stark Effect in									
	Hydrogen - Spin - Orbit interaction - Variation Method & its application to Hydrogen Molecule -									
	WKB Approximation									
	Time Independent Perturbation Theory in Non - Degenerate Case, Ground State of Heliu									
	Atom, Degeneracy - Stark Effect in Hydrogen & Spin - Orbit interac									
	application to Hydrogen Molecule - WKB Approximation.									
	Time Dependent Perturbation Theory	Periods	12							
	Time Dependent Perturbation Theory - First and Second Order Transitions - Transition to Continuum									
Unit - V	of States: Fermi Golden Rule - Constant and Harmonic Perturbation									
	Selection Rules for Dipole Radiation - Adiabatic and Sudden Approxim	nation - Charged	Particle in							
	anElectromagnetic Field.									

Text Books		
1	Quantum Mechanics â€" Theory and Problems by S. L. Kakani and H.M. Chandalia, Sultan	
	Chand & Sons,(2007).	
2	Advanced Quantum Mechanics, Satya Prakash, KedarNath Ram Nath Publications, (2013).	
3	Quantum Mechanics, Claude, Frank and Bernard, John Wiley Inter science, (2003).	
References		
1	1. A text book of Quantum Mechanics, Mathews and Venkatesan, TMG Hill, (2002).	
2	2. Quantum Mechanics, Jasprit Singh, John Wiley Interscience, (2005).	
E-Reference	es	
1	http://alan.ece.gatech.edu/ECE6451/Lectures/ECE6451L4PostulatesOfQMAndOperatorsVer2.	
	pdf	
2	ttps://www.phas.ubc.ca/~mcmillan/rqpdfs/5_qm_in_one_dimension.pdf	

Programme	M.Sc.,	Programme Code	PF	2018-2019								
Department	Phy	vsics		Sen	nester			II				
			Credit	Maxim	ım Mar	ks						
Course Code	Course Name per Week											
	L T P C CA ESE											
	SPECTROS	L T P C CA ESE Total PECTROSCOPY 6 0 0 5 25 75 100										
18P2PH06	212011102	7 20 70 100										
COURSE	To know the	To know the Basic ideas about different types of spectroscopic theories and to know the principle and										
OBJECTIVES	functions of s	pectroscopic instrumentati	ions.		_							
POs		PROGRAMME OUT	ГСОМЕ									
PO 1	Capable of de	emonstrating the basic con-	cepts and cor	npre	hensive know	ledge from	n underg	graduate				
	programme of	f study.										
PO 2	Ability to exp	oress thoughts and ideas ef	fectively Cor	nmu	nicate with ot	hers using	approp	riate media .				
PO 3	To identify th	e relevant assumptions to	formulate the	arg	uments by fol	lowing sci	entific a	approach to				
	knowledge de	*										
PO 4		olve different kinds of non										
PO 5	Ability to eva	luate the reliability and re	levance of ev	iden	ce, analyse a	nd synthes	ise data	from a variety of				
	sources .											
PO 6	•	blems, formulate hypothe	eses, test hyp	othe	ses, analyse, i	nterpret an	d draw	conclusions				
	from data.											
PO 7	· ·	rk effectively and respectf	ully with div	erse	teams, facilita	ite coopera	tive or	coordinated effor				
DO 0	on the part of		1		1.1.1.1	1'4 4' 1	4 1	::: 11 1 1 A				
PO 8		llyse, interpret and draw co					ata and	critically evaluate				
PO 9		ce and experiences from a bility to lived experiences,	_			_	th calf o	and againty				
PO 10		use ICT in a variety of lea				-						
1010		evant information sources.	-	, iiis, t	icinonstrate a	omity to ac	ccss, cv	aruate, and use a				
PO 11		rk independently, identify		eson	rces required	for a proje	ct and	manage a project				
1011	through to con		ирргоргиис г	CSOU	rees required	ror a proje	ct, una	manage a project				
PO 12	Ŭ	effectively engage in a mu	ılticultural so	ciety	and interact	respectfull	v with o	diverse groups				
PO 13		emonstrating the ability to		_			*					
-	_	ch as fabrication.	<i>y</i>				,					
PO 14		r mapping out the tasks of	a team or an	orga	nization, and	setting dire	ection, f	formulating an				
		on, building a team who ca										
		ngage with that vision.	•		•	Č	•	-				
PO 15	Ability to acq	uire knowledge and skills.	, including ho	w to	learn, that ar	e necessar	y for pa	rticipating in				
	-	rities throughout life, throu	_				•	- -				

COs	COURSE OUTCOME
CO 1	Understand the techniques of atomic spectroscopy and rotation of molecules and their spectra. Analyze the microwave spectrometer.
CO 2	Analyze IR and Raman spectroscopy. Evaluate the Born Oppenheimer approximation.
CO 3	Understand the instrumentation of UV Photo electron spectroscopy. Analyze the frank Condon principle.
CO 4	Understand the Quantum Mechanical and Classical Description. Apply NMR spectroscopy for determining
	the content and purity of samples.
CO 5	Understand the principles of ESR spectrometer and analyze the experimental techniques in hyperfine
	interaction.
Pre-requisites	GET KNOWLEDGE ABOUT SPECTROSCOPY

				Kı	nowle	dge L	evels								
1.Remem	berinş	g, 2. U	nders	tandi	ng, 3.	Apply	ing, 4	.Anal	yzing,	, 5.Eva	aluatir	ıg, 6.S	ynthe	sizing	
						KL Ma									
	(3/2/1	indicat	es the s	trength	of cor	relation	, 3-stro	ong, 2-r	nedium	, 1-wea	k)				
COs				KLs				P	Os				KLs		
									0.1					1	
CO 1					2) 2					2	
) 3					2	
CO 2					4				0 4					3	
CO 2					4) 6					5	
) 7					6	
CO 3				2				PO 8				4			
								PO 9				5			
								PO 10				1			
CO 4					3			PO 11				2			
								PO 12				2			
GO 5								PO 13 PO 14				3			
CO 5					4) 14			<u>3</u>			
					CO / PO	Э Марр	vina.	PC	7 13					0	
	(3/2/1	indicat	es the s				-	ong. 2-r	nedium	, 1-wea	k)				
	(2) = 1					Outco			,	, •	,				
COs	PO	PO	PO	PO	РО	РО	PO7		PO	PO1	PO1	PO1	PO1	PO1	PO15
	1	2	3	4	5	6	- 0 /	8	9	0	1	2	3	4	
CO1	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO2	1	1	1	2	2	1	1	3	2	1	1	1	2	2	1
CO3	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO4	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1
CO5	1	1	1	2	2	1	1	3	2	1	1	1	2	2	1

Course Assessment Methods		
Direct		
Continuous Assessment Test I, II & Model		
2. Assignment		
B. End Semester Examinations		
Indirect		
1. Course End Delivery		
Content of the Syllabus		
Atomic Spectroscopy and Microwave Spectroscopy	Periods	12
Atomic Spectroscopy: Quantum states of electron in atoms – Hydroscopy: Stern-Gerlach experiment – Zeeman effect – Stark effect. Microwave Spectroscopy: Rotation of molecules and their Spect line spectra, The effect of isotropic substitution, Non - rigid rotator and (Linear and Symmetric top molecules), Classical theory of Raman Spectra, Clinear and Symmetric top molecules), Stark offert. Microscopy	tra, Diatomic mo their spectra, Po Effect, Pure	olecules, Intensity of olyatomic molecules Rotational Raman
Spectra (Linear and Symmetric top molecules), Stark effect – Microv	wave Spectromet	er.
IR and Raman Spectroscopy	Periods	12
Infrared Spectroscopy: Vibrational energy of diatomic molec Anharmonic oscillator, Diatomic vibrating rotator, Vibration - Rotati Breakdown of Born - Oppenheimer Approximation, Influence of rotation of	ion spectrum o	f carbon monoxide,
Unit - II (Linear and Symmetric top Molecules). Raman Spectroscopy: Raman Effect, Classical and Quantum Theo Raman Spectra (Linear and Symmetric top molecules), Selection Rules - Raman Spectrum - Vibrational Raman Spectrum - Structure determination Principles and Working of Raman Spectrometer.	Degree of depol	arization - Rotational
Electronic Spectroscopy	Periods	12
Born-Oppenheimer Approximation, Vibrational Coarse and the Principle-Dissociation energy and their products - Rotational fine structure Molecular Orbital theory - Spectrum of molecular hydrogen-Change of sharp by electronic spectroscopy-Re-emission of energy by excited molecule-I Spectroscopy - Zeeman Effect.	of electronic - Vape on excitation	/ibration Transition - n - Chemical analysis
NMR and NQR Spectroscopy	Periods	12
NMR Spectroscopy: Quantum Mechanical and Classical Descriperocesses - Principle and Working of High Resolution - NMR Spectromen NMR Spectroscopy.	•	•
Unit - IV NQR Spectroscopy: Basic principles - Fundamental requirement detection of NQR frequencies - Interpretation and Chemical explanation of		
ESR and Mossbauer Spectroscopy	Periods	12
Unit - V ESR Spectroscopy: Basic Principles, ESR Spectrometer - Reflection Construction - Hyperfine Structure.Mossbauer Spectroscopy: Mossbauer absorption- Mossbauer Spectrum: Experimental techniques - Hyperfine in Doppler velocity shift - Magnetic hyperfine interaction - electric quadrup	r Effect, Recointeraction - Che	lless emission and
Total Periods		60
•		

Text Books				
1	D.N.Sathyanarayana, Vibrational Spectroscopy: Theory and Applications, First Edition, New Age International Publishers Pvt., Ltd., New Delhi (2011).			
G.Aruldhas, Molecular Structure and Spectroscopy, Second Edition, PHI Learning Pvt., Ltd., New Dell (2008).				
C.N.Banwell and E.Mccash, Fundamentals of Molecular Spectroscopy, Fifth Edition, Mcgraw- Hill Education India Pvt., Ltd., New Delhi (2013).				
References				
1	B.P.Straughan and S.Walkar, Spectroscopy, Volume I-III, Chapman and Hall, New York (1976).			
2	Randhawa, Modern Molecular Spectroscopy, Macmillan India Ltd., New Delhi (2003).			
E-References				
1	www.khanacademy.org/science/physics/spectroscopy/microwave spectroscopy.			
2	www.khanacademy.org/science/physics/spectroscopy/IR/raman spectroscopy.			

Programme	M.Sc., Programme Code PPH Regulations						201	18-2019				
Department	Physics Semester											
			Period	ls	Credit	Maxim	um Mar	ks				
Course Code	Course	e Name	per W	eek								
			L		С	CA	ESE		Total			
	ELE	CTIVE: BIO PHYSICS	4 (4	25	75		100			
18P2PHE02	222	T 0 0 7 23 /3 100										
COURSE	To learn abou	it the basic biophysics and to	o know ab	out th	e principle an	d working	of bio i	nstrur	nentations			
OBJECTIVES	and its applic	ations.										
POs		PROGRAMME OUT	COME									
PO 1	Capable of de	emonstrating the basic conce	epts and co	mpre	hensive know	ledge fron	n underg	gradua	ite			
	programme o											
PO 2	Ability to exp	oress thoughts and ideas effe	ectively Co	mmu	nicate with ot	hers using	appropi	riate n	nedia .			
PO 3		e relevant assumptions to for	ormulate th	ne arg	uments by fol	lowing sci	entific a	approa	ich to			
	knowledge de											
PO 4		olve different kinds of non-f										
PO 5	•	luate the reliability and rele	vance of e	viden	ce, analyse a	nd synthes	ise data	from	a variety of			
	sources .											
PO 6	-	blems, formulate hypothes	ses, test hy	pothe	ses, analyse, i	nterpret ar	d draw	(conclusions			
DO 7	from data.	1 66 7: 1 1 76.1	11 '41 1'		C :1:4	,	,·	1.	1 1 00			
PO 7	on the part of	rk effectively and respectful	ily with div	verse	teams, facilita	ite coopera	tive or o	coorai	inated effor			
PO 8		llyse, interpret and draw cor	olucione fi	rom o	uantitativa/au	alitative d	ata and	critica	illy avaluate			
108	•	ce and experiences from an					ata anu	CITTICa	illy Cvaluati			
PO 9		bility to lived experiences, v	_			_	th self a	nd so	ciety			
		use ICT in a variety of learn										
PO 10		evant information sources.	8	,		,	,		,			
	<u>_</u>	rk independently, identify a	ppropriate	resou	rces required	for a proje	ct, and	manag	ge a project			
PO 11	through to co				•							
PO 12	Capability to	effectively engage in a mult	ticultural s	ociety	and interact	respectfull	y with c	diverse	e groups			
PO 13	Capable of de	emonstrating the ability to ic	dentify ethi	ical is	sues related to	ones wor	k, avoid	l unetl	nical			
		ch as fabrication.										
		r mapping out the tasks of a										
PO 14		on, building a team who can	help achie	eve th	e vision, moti	vating and	l inspirii	ng tea	m			
		ngage with that vision.										
PO 15		uire knowledge and skills, i	_				y for pa	rticipa	ating in			
	learning activ	rities throughout life, through	h self-pace	ed and	l self-directed	learning.						

COs	COURSE OUTCOME
CO 1	To acquire the knowledge about strong and weak bonds.
CO 2	Acquire knowledge about radioactivity. Apply GM counter for the detection of ionizing radiation.
CO 3	Acquire the knowledge about Biomolecules and biological energy. Analyze the DNA and RNA
	conformation. Synthesis the ATP.
CO 4	To acquire the knowledge about the movement of organisms. To understand the Nerve impulse and nervous
	system.
CO 5	To get the knowledge about Ballistic control in a simplified visual system. To understand the mental
	processing.
Pre-requisites	GET KNOWLEDGE ABOUT biophysics

				Knov	vledg	e Lev	els								
1.Remembe	ering, 2	2.Und	erstai	nding,	, 3.Ap	plyin	g, 4.A	nalyz	ing, 5	.Evalu	ating,	6.Syn	thesiz	ing	
				CO / P	O / KI	Марр	ing								
(3	/2/1 ind	icates t	he strei	ngth of	correla	tion, 3-	strong,	2-med	ium, 1-	weak)					
COs				KLs				P	Os			I	KLs		
) 1					1	
CO 1					1) 2					2	
) 3					2	
CO 2					3) 4					3 5	
CO 2					3) 6					1	
								PO 7				6			
CO 3				4				PO 8				4			
								PO 9				5			
								PO 10				1			
CO 4					2			PO 11				2			
								PO 12 PO 13				3			
CO 5					2			PO 13 PO 14				3			
003					2				15					6	
				СО	/ PO M	Iapping	L Ţ								
(3	/2/1 ind	icates t	he strei					2-med	ium, 1-	weak)					
CO-				Progra	mme C	utcom	e (POs)								
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO1	PO1 3	PO1 4	PO1 5
CO1	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO2	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1
CO3	1	1	1	2	2	1	1	3	2	1	1	1	2	2	1
CO4	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO5	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1

Course Assessment Methods	
Direct	
	1. Continuous Assessment Test I, II & Model
	2. Assignment
	3. End Semester Examinations
Indirect	
1. Course End Delivery	

Content of the	Syllabus								
	Bonds	Periods	8						
	Ionization energy electron affinity - chemical bonding - electronegativit	y - strong bond	ls secondary						
Unit - I	bonds. Energies-forces-bonds: Interatomic potentials for strong and we	ak bonds -bond ei	nergies. Rates						
	of reaction: reaction kinetics- water, acids, bases and aqueous reactions.	Transport process	: Diffusion -						
	viscosity-thermal conduction								
	Radioactivity	Periods	8						
Unit - II	Radiation Biology: Radio activity- Natural radiation (Cosmic rays) - Art	tificial (or) Induce	d radioactivity -						
Oilit - II	Radioactive disintegration - Geiger-muller counter - Crystal cou	inter: Method o	f detection of						
	disintegration frequency - Biological effects of radiation.								
	Biological structure	Periods	8						
	Biomolecules and biological energy Biological polymers: Nucleic acids-DNA-RNA-conformation-								
Unit - III	proteins protein folding. Biological Membranes: Historical background-membrane chemistry and								
	structure-membrane physics. Biological energy: Energy consumption respiration-photosynthesis-ATP								
	synthesis.								
	Nature of organisms	Periods	8						
	Movement of organisms Bacterial motion-chemical memory in primitive organisms-muscular								
Unit - IV	movement-human performance, nerve signals and memory Excitable membranes: Diffusion and mobility								
	of Ions-resting potential Nerve signals: Passive response-Nerve impulses (action potentials)- nervous								
	system.								
	Instrumentation	Periods	12						
	Control of movement Primary of movement-Ballistic control in a simplified visual system-								
Unit - V	more sophisticated-mode of control-structure of muscle fibres-centr	al pattern genera	itors-						
	conditioned								
	reflexes-volition-and Free will-consciousness Passive verses active in m	ental processing.	40						
	Total Periods		40						

Text Books	
1	RodyneyM.J.Cotterill, Biophysics: An introduction, John Wiley and sons Publications, (2014).
2	Roland Glacer, Biophysics, Springer Publications, (2006).
References	
1	P.K.Srivastava, Elementary Biophysics An introduction, Narosa Publishing House, (2005).
2	M.V.Volkenshtein, Biophysics, Mir Publications, Moscow, (2010).
E-References	
1	https://www.google.com/search?q=httt%2Fwww.biophysics&ie=utf-8&oe=utf-8&client=firefox-b-ab
2	https://www.google.com/search?q=http%2F+radiation+physics&ie=utf-8&oe=utf-8&client=firefox-b-ab

HOWEN EMPOWERMENT	Elayampalayam, Tiruchengode-637 205.											
Programme	M.Sc.,	Programme Code	P	PH		Regulat	ions	20	018-2019			
Department	Phy	Physics Semester II										
			Period	S	Credit	Maximu	ım Mar	ks				
Course Code	Course	e Name	per We	ek								
		L T P C CA ESE Total										
18P2PH04	ELECTROMAGNETIC THEORY 6 0 0 5 25 75 100											
COURSE	1.To provide	the basic skills required to	ınderstand	l, dev	elop, and desi	gn Electro	magnet	ic m	aterials			
OBJECTIVES	2. To enhance	e the research interest in ele	ctricity an	d ma	gnetism.							
POs		PROGRAMME OUTO	COME									
PO 1	Capable of d	emonstrating the basic conce	ept sand c	ompr	ehensive know	vledge from	n under	grac	luate			
	programme o	,										
PO 2		press thoughts and ideas effe	-	omm	unicate with o	thers using	gapprop	oriat	e media and			
DO 2		idea in clear and concise ma			. 1 0	11 .			• •			
PO 3	_	he relevant assumptions to fo	ormulate t	he ar	guments by to	llowing sc	ientific	appı	roach to			
PO 4	knowledge development											
PO 5		Capacity to solve different kinds of non-familiar problems and apply to real life situations. Ability to evaluate the reliability and relevance of evidence ,analyse and synthesise data from a variety										
103	_	•				-			ii a variety			
		posing viewpoints.	valid conclusions and support them with evidence and examples, and viewpoints.									
PO 6		oblems, formulate hypothes	ses, test hy	poth	eses, analyse,	interpret a	nd draw	V (conclusions			
	from data, pr	edict cause-and-effect relation	onships ar	id ab	ility to plan, ex	xecute and	report 1	the r	esults of an			
	experiment											
PO 7	Ability to wo	ork effectively and respectful	lly with di	verse	e teams, facilit	ate coopera	ative or	coo	rdinated			
	on the part of	f a group and act together as	a group									
PO 8	evaluate	alyse, interpret and draw cor					lata and	l crit	ically			
PO 9	ideas, evidence and experiences from an open-minded and reasoned perspective Critical sensibility to lived experiences, with self awareness and reflexivity of both self and society.											
109		use ICT in a variety of learn										
PO 10		evant information sources a	_			•			ate, and use a			
	·	ork independently, identify a							nage a			
PO 11		gh to completion			•	1 0						
PO 12		effectively engage in a mul			*		•					
200		emonstrating the ability to ic	dentify eth	ical	ssues related t	o ones wo	rk, avoi	d un	ethical			
PO 13		h as fabrication.										
DO 14	1 2	or mapping out the tasks of a	team or a	n org	anization, and	setting dir	rection,	forn	nulating an			
PO 14	inspiring visi		1 1.	1	. 1		<u> </u>	,•	· ,· ·			
PO 15	-	quire knowledge and skills, i	ncluding	now	to learn, that a	re necessar	ry for p	artic	ipating in			
	rearning activ	vities throughout life.										

COs	COURSE OUTCOME
CO 1	To understand the concept of electrostatics. Acquire conceptual knowledge molecular polarisability.
	Analyze the Laplace equation.
CO 2	Understand the techniques biot-savarts and amperes circuital law.
CO 3	Understand the faraday laws of induction and evaluate the Maxwells equation.
CO 4	Understand the propagation of waves in rectangular wave guides. Apply the concept of wave guides in
	homogeneous wave equation.
CO 5	Acquire the knowledge about Plasma physics. Apply the Plasma or welding techniques.
Pre-requisites	To Acquire idea about Electrodynamics

				Knov	vledg	e Lev	els								
1.Remembe	ering, Z	2.Und	ersta					nalyz	ing, 5	.Evalu	ating,	6.Syn	thesizi	ing	
(2	/2/1 ind	iontos t	ha atra			Mapp	_	2 mad	ium 1	vyzalt)					
COs	/2/1 III u	icates t	ile su ei	KLs	COITCIA	111011, 3-	-strong,		Os	weak)		I	KLs		
				TELS					O 1					1	
CO 1					1) 2					2	
								P(O 3					2	
								PO	O 4					3	
CO 2					2				O 5				,	5	
									0 6					1	
GO 2								PO 7				6			
CO 3			2				PO 8 PO 9				5				
								PO 10					1		
CO 4			3				PO 11				2				
								PO 12				2			
								PO 13				3			
CO 5					3			PC	14					3	
								PO 15 6					6		
(2	(0/1:1					1apping				•					
(3	/2/1 ind	icates t	he strei						ium, I-	weak)					
COs							e (POs)			701	7.04	7.04	704	7.04	DO1
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4	PO1 5
CO1	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO2	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO3	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO4	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1
CO5	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1
	1			,	1	1	1		1	1		2	5	5	1

Course Assessment Methods
Direct
. Continuous Assessment Test I, II & Model
2. Assignment
B. End Semester Examinations
Indirect
1. Course End Delivery

Content of the	Syllabus								
	Electrostatics	Periods	14						
	Coulombs law - Field due to point and continuous charges - Gauss Law	and its application	on - Laplace and						
TI:4 T	Poissons equations - Solution of Laplace equation in spherical Coord	inates - Point cha	arge infront of a						
Unit - I	conducting sphere - Multipole expansion - Electrostatic energy -	Dielectrics - P	Polarization and						
	Displacement vectors, Boundary conditions - Dielectric sphere in	n a uniform fie	ld - Molecular						
	polarizabilityand Electrical susceptibility - Electrostatic energy in	dielectric med	ium - Clausis-						
	Mossotti equation.								
	Magnetostatics	Periods	10						
	Biot-Savarts law - Divergence and curl of magnetic induction - Magr	netic vector poten	tial - Amperes						
Unit - II	circuital law - Magnetic field of a localized current distribution - Magnetic field current distribution - Magnetic field current distribu	agnetic moment a	and force on a						
Oint - II	current distribution in an electric field - Magneto static energy - Magnetic induction and Magnetic field								
	in a macroscopic media - Concept of magnetic dipole - Boundary conditions - Uniformly magnetized								
	sphere -Magnetic Scalar & Vector Potential - Characteristics.								
	Electromagnetics	Periods	10						
	Faradays law of induction - Maxwells equation in free space and isotropic media - Maxwells								
Unit - III	displacements current - Vector and Scalar potential - Boundary conditions on the field at interfaces -								
	Relation between field theory and circuit theory - Gauge transformation, Lorentz Gauge - Coulomb gauge								
	- Conservationlaws for a system of charges - Poynting theorem.								
	Wave Propagation	Periods	14						
	Propagation of an electromagnetic wave in free space - Conducting and Non conducting medium -								
Unit - IV	Skin depth, Reflection and Transmission at dielectric boundaries - Polarization - Fresnels Law -								
	Interference, Coherence and Diffraction - Guided waves - Wave guides - Propagation of waves in								
	rectangular wave guide, Inhomogeneous wave Equation and Retarded potentials, Field and Radiation								
	due to an oscillating electric dipole.								
	Plasma Physics	Periods	12						
	Plasma - Debye length - Plasma oscillations - Plasma behaviour in a magnetic field - Boltzmann equation								
Unit - V	- Magneto hydrodynamic equations - Electron plasma oscillations - D								
	confinement in a magnetic field - Pinch effect - Magneto hydrody								
	Dynamicsof charged particle in uniform electromagnetic fields - Plasma	arc welding tech	-						
	Total Periods		60						

Text Books	
1	1. Introduction to Electrodynamics, Griffith, Prentice Hall of India, (2015).
2	2. Electromagnetic Waves and Fields, Paul Corson and Dale, CBS Publishers, (2005).
References	
1	1. Basic Electromagnetics with Application, N. Narayana, Prentice Hall of India, (2001).
2	2. Electromagnetic Theory and Applications, Umesh Sinha, Tech India Publications, (2005).
E-References	
1	https://www.google.com/search?q=http%2F+electromagnetic+theory&ie=utf-8&oe=utf-8&client=firefox-b-ab
2	.https://www.google.com/search?q=hppt%2F+magnetostatics&ie=utf-8&oe=utf-8&client=firefox-b-ab

NOWEN EMPONERMENT	Elayampalayam, Tiruchengode-637 205.											
Programme	M.Sc., Programme Code PPH Regulations											
Department	Physics Semester											
Course Code	Course	Course Name Periods Credit Maximum Marks per Week L T P C CA ESE										
18P3PH07	CONDENSED MATTER PHYSICS 5 0 0 5 25 75											
COURSE OBJECTIVES	students	This subject provides an advanced introduction to condensed matter physics. 2.To challenge the students Provide a foundation for further advanced studies.										
POs		PROGRAMME OUTCO	OME									
PO 1	Capable of der	monstrating the basic conceptudy.	pts and	compre	ehensivo	e know	ledge from	n undergi	raduate			
PO 2	Ability to expr	ess thoughts and ideas effect ea in clear and concise man		Comm	ınicate	with ot	hers using	g appropri	ate media a			
PO 3	•	relevant assumptions to for		the arg	guments	by fol	llowing sc	ientific ap	oproach to			
PO 4	_	•	amiliar	probler	ns and a	apply to	o real life	situations	S.			
PO 5	Ability to eval	Capacity to solve different kinds of non-familiar problems and apply to real life situations. Ability to evaluate the reliability and relevance of evidence, analyse and synthesize data from a variety of sources then draw valid conclusions										
PO 6	To define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, predict cause-and-effect relationships and ability to plan, execute and report the results of an experiment.											
PO 7	Ability to work	c effectively and respectfull art of a group and act togeth iently as a member of a tear	ner as a									
PO 8	evaluate	yse, interpret and draw cond e and experiences from an o			•	-			ritically			
PO 9									nd society.			
PO 10	a	Critical sensibility to lived experiences, with self awareness and reflexivity of both self and society. Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources and use appropriate software for analysis of data.										
PO 11	Ability to work project through to con	Ability to work independently, identify appropriate resources required for a project, and manage a project										
PO 12			icultura	l societ	y and ir	nteract	respectful	ly with di	iverse group			
PO 13	unethical beha	Capability to effectively engage in a multicultural society and interact respectfully with diverse groups. Capable of demonstrating the ability to identify ethical issues related to ones work, avoid unethical behavior such as fabrication, falsification or misrepresentation of data or committing plagiarism, notadhering to intellectual property rights.										
PO 14	an inspiring vi	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team membersto engage with that vision.										
PO 15	-	ire knowledge and skills, in	ncludin	g how t	o learn,	that ar	re necessar	ry for par	ticipating in			

COs	COURSE OUTCOME
CO 1	Acquire the knowledge about the energy bands. To understand the Kronig penny model
CO 2	To Understand Drudes Lorentz Free electron theory. Analyze Thermionic Emission
CO 3	To Understand the Langevin classical theory of diamagnetism. Apply the Guoys method in diamagnetism.
CO 4	Understand the concept of London equation. Apply the super conductors for commercial applications.
CO 5	To Understand and Apply the qualitative ideas of MEMs spintronics.
Pre-requisites	To Acquire idea about materials science

Knowledge Levels 1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) COs KLs POs KLs PO 1 CO 1 PO 2 PO 3 PO 4 CO 2 PO 5 PO 6 PO 7 PO 8 CO 3 PO 9 PO 10 PO 11 CO 4 PO 12 PO 13 CO 5 PO 14 PO 15 CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) Programme Outcome (POs) COs PO PO PO1 PO1 PO1 PO1 PO1 PO1 PO PO PO PO PO PO PO7 CO1 CO2 CO3 CO4

Course Assessment Methods

Direct

- 1. Continuous Assessment Test I, II & Model
- 2. Assignment

CO₅

3. End Semester Examinations

Indirect

1. Course End Delivery

Content of th	e Syllabus								
	Electron Energy Bands	Periods	14						
	Fundamentals of crystailline states- Bravais lattice- Miller indices -Simple crytal structure-Basic concept								
Unit - I	of energy bands - Fermi surface - Density of states - The Blochs Theorm - Kronig Penney model - Zone								
	schemes for energy bands - Brillouin zones - Energy bands in a general periodic potential - Motion of a								
	electron in one dimensional lattice - Effective mass of an electron - Effective band gap and								
	band overlapping - Anomalous skin effect - De Hass van Alphen effect.								
Unit - II	Free Electron Theory of Metals	Periods	12						
	Free electron in metals - Drude Lorentz free electron theory - Electrical conductivity - Thermal conductivity- Weidemann Franz law - Sommerfield free electron theory - Mattiessens Rule - Thermionic								
Omt - H	emission - Relaxation time - Collision time - Mean free path -Quantum theory of free electrons - Escape of								
	electrons from metal - Potential energy of an electron outside the metal.								
	Diamagnetism, Paramagnetism and Ferromagnetism	Periods	12						
	Diamagnetism -Langevin classical theory of Diamagnetism -Paramagnetism - Weiss theory of								
T	paramagnetism -Quantum theory of Paramagnetism - Adiabatic demagnetization-Demagnetization of a								
Unit - III	paramagnetyic salt - Determination of susceptibility of para and diamagnetism using Guoys method -								
	Ferromagnetism - Spontaneous magnetization in ferromagnetic materials - Quantum theory of								
	ferromagnetism - Curie - Weisslaw - Weiss molecular field - Domain theory-Ferromagnetic domai								
	Antiferromagnetism - Ferrimagnetism								
	Superconductivity	Periods	12						
Unit - IV	Superconductivity and its historical perspective - Critical Temperature - Persistent current - Energy gap								
	and its Temperature dependence - Type I and Type II superconductors - BCS theory - Flux quantization -								
	London equation - Josephson tunneling effect - DC and AC Josephson effect Power Applications of								
	superconductors - High temperature Superconductors - High temperature Ceramic Superconductors Potential application of super conductivity.								
	Semiconductor Devices	Periods	10						
Unit - V	Introduction to semiconductors-Hall effect in semi conductors - Vacuum level and Work function of metals - Solar cells, Qualitative ideas of MEMs, Spintronics, Quantum Dots (QDs) & Molecular Electronics - LED and Photodiode, Pindiode, Schottky diode.								
	Total Periods	60							

Text Books					
1	Solid State Physics - S.O. Pillai, New Age Publication, 2nd Edition, 2002.				
2	Solid State Physics – Gupta &Saxeena, PragattiPraashan, 9th Edition, 2004				
References					
1	Introduction to Solid State Physics - C.Kittel (John Wiley and Sons), 7th Edition, 2005				
2	Superconductivity Fundamentals and Applications – Werner Buckel, Reinhold Kleiner -VCH				
	Publications, 2nd revised and enlarged edition 2004.				
E-References					
1	https://physics.ku.edu/research/condensed-matter-physics				
2	https://physics.uiowa.edu/research/condensed-matter-and-materials-physics				

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

NOWEN EMPOWER MEN											
Programme	M.Sc.,	Programme Code	PPH Regulations				tions	2018-2019			
Department	Phy	sics	Semester					III			
			Periods Credit			Maxim	Maximum Marks				
Course Code	Course Name		per W	eek							
			L	ТР	С	CA	ESE	Total			
18P3PH08	QUANTUM	MECHANICS - II	6	0 0	5	25	75	100			
COURSE OBJECTIVES	1.To acquire knowledge of non-relativistic and relativistic quantum mechanics. 2.The ability to understand concepts and to perform calculations of scattering of particles.										
POs	PROGRAMME OUTCOME										
PO 1	Capable of demonstrating the basic concepts and comprehensive knowledge from undergraduate programme of study.										
PO 2	Ability to express thoughts and ideas effectively Communicate with others using appropriate media and interpret the idea in clear and concise manner.										
PO 3	To identify the relevant assumptions to formulate the arguments by following scientific approach to knowledge development.										
PO 4	Capacity to solve different kinds of non-familiar problems and apply to real life situations.										
PO 5	Ability to evaluate the reliability and relevance of evidence, analyse and synthesise data from a variety of										
103	sources then draw valid conclusions										
PO 6	To define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from										
100	data,predict cause-and-effect relationships and ability to plan, execute and report the results of an										
	experiment.										
PO 7	Ability to work effectively and respectfully with diverse teams, facilitate cooperative or coordinated effort										
	on the part of a group and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.										
	Ability to analyse, interpret and draw conclusions from quantitative/qualitative data and critically evaluate										
PO 8	ideas, evidence and experiences from an open-minded and reasoned perspective.										
PO 9		pility to lived experiences, w						and society.			
	Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a										
PO 10	variety of relevant information sources and use appropriate software for analysis of data.										
PO 11	Ability to work independently, identify appropriate resources required for a project, and manage a project										
	through to completion.										
PO 12		effectively engage in a mult					•				
PO13	Capable of demonstrating the ability to identify ethical issues related to ones work, avoid unethical										
1013	behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism,										
	not adhering to intellectual property rights. Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an										
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team										
	membersto engage with that vision.										
	Ability to acquire knowledge and skills, including how to learn, that are necessary for participating in										
PO 15		ities throughout life.	neruumg i	now t	o icarii, mat a	10 110005541	y roi pa	a despating in			
	rearring activ	inoughout me.									

COs	COURSE OUTCOME
CO 1	To acquire the knowledge of emission and absorption of radiation.
CO 2	Analyse partial wave analyses, Evaluate scattering amplitude through scattering cross section.
CO 3	To acquire the knowledge of Symmetrical and anti-symmetrical wave function
CO 4	Apply Klein-Gordon equation to find relativistic wave equation.
CO 5	To acquire the knowledge of quantization of the wave field.
Pre-requisites	To Acquire idea about materials science

Knowledge Levels

1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing

CO / PO / KL Mapping

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

COs	KLs	POs	KLs
		PO 1	1
CO 1	1	PO 2	2
		PO 3	2
		PO 4	3
CO 2	4	PO 5	5
		PO 6	1
		PO 7	6
CO 3	3	PO 8	4
		PO 9	5
		PO 10	1
CO 4	5	PO 11	2
		PO 12	2
		PO 13	3
CO 5	4	PO 14	3
		PO 15	6

CO / PO Mapping

COs	Programme Outcome (POs)														
COS	PO	PO	PO	PO	PO	PO	PO7	PO	PO	PO1	PO1	PO1	PO1	PO1	PO1
	1	2	3	4	5	6		8	9	0	1	2	3	4	5
CO1	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO2	1	1	1	2	2	1	1	3	2	1	1	1	2	2	1
CO3	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1
CO4	1	1	1	1	3	1	2	2	3	1	1	1	1	1	2
CO5	1	1	1	2	2	1	1	3	2	1	1	1	2	2	1

Course Assessment Methods
Direct
1. Continuous Assessment Test I, II & Model
2. Assignment
3. End Semester Examinations
Indirect
1. Course End Delivery

Content of the	Syllabus								
	Semi classical Theory of Radiation	Periods	12						
	Emission & Absorption of radiation - Electric dipole approximation -Ei	nstein's Transition	n probabilities						
TT:4 T	and A & B Coefficients - Selection rules -Quantization of radiation field	d - Interaction with	n matter -						
Unit - I	Spontaneous & Stimulated emissions Quantum theory of Valence Bond	VB method - Hit	ler - London						
	theory of Hydrogenmolecule in VB method - Refinements of Simple M	O and VB approx	imations.						
	Scattering Theory	Periods	12						
	Scattering cross section-Scattering amplitude - Greens function - Partial	wave analysis - F	hase shifts - The						
Unit - II	scattering amplitude in terms of phase shift -Scattering by Coulomb pot	ential - Low energ	gy						
	scattering: Scattering length and effective range - Scattering by a perfectly rigid sphere								
	Many Electron Atoms	Periods	12						
Unit - III	Indistinguishable particles - Symmetrical and Anti symmetrical wave functions - Paulis Exclusion principle- Inclusion of spin - Spin functions for two electrons - Spin functions for three electrons - Helium atom - Central field approximation - Thomas Fermi model of the atom - Hatree Equation - Hatree - FockEquation								
	Relativistic Wave Equation	Periods	12						
Unit - IV	Klein - Gordan Equation - Diracs equation for a free particle - Dirac Matrics - Covariant form of dirac								
Omt - IV	equation - Probability density and current density - Plane wave solution - Negative energy states								
	- Hydrogen atom								
	Quantum Field Theory	Periods	12						
	Quantization of the wave fields - Classical Lagrangian equation - Classical Hamiltonian								
Unit - V	equation - Field Quantization of the non relativistic Schrodinger equation - Creation, Destruction								
	and Number Operators - Anti Commutation Relations - Quantization of Electromagnetic Field								
	Total Periods		60						

Text Books						
1	1. Quantum Mechanics – GAruldhas - Prentice Hall of India, (2006).					
2	2. Quantum Mechanics – Satyaprakash - Sultan Chand Publishers, (2013).					
3	3. Quantum Mechanics – Gupta Kumar Sharma - JaiprakashNath Publications, Meerut, (2013).					
References						
1	A text Book of Quantum Mechanics – P. M.Mathews&K.Venkatesan–Tata Mc Graw Hill, (2004).					
2	Introduction to Quantum Mechanics – David J.Griffths – Pearson Prentice Hall, 2nd edition,					
	(2009).					
3	Quantum Mechanics – L. I. Schiff - Tata Mc Graw Hill, (2010).					
E-References						
1	https://nptel.ac.in/syllabus/115104045/					
2	https://www.ntnu.edu/studies/courses/TFY4205/					
3	https://www.ntnu.edu/studies/courses/TFY4205/					

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

ONEN EMPOWERMEN		Elayampalayam, 11	ruchenge	oue-o.	37 203.			
Programme	M.Sc.,	Programme Code	F	PH		Regulati	ions	2018-2019
Department	Phys	sics		Sen	nester			III
			Period	ls	Credit	Maximu	ım Mar	ks
Course Code	Course	Name	per W	eek				
				ГР	С	CA	ESE	Total
	MICROPRO	CESSORS AND				CH	Lon	Total
18P3PH09	MICROCON		5	0 0	5	25	75	100
	Menocory	INOLLENS		9 0			70	100
COURSE	1.The Basic ki	nowledge and buildings bloc	cks of cor	npute	rs and its proc	essors.2.To	o opera	te the processors
OBJECTIVES	and controllers	s with basic idea.		-	•		-	•
POs		PROGRAMME OUTC	OME					
PO 1	-	monstrating the basic concep	pts and co	ompre	hensive know	ledge from	underg	graduate
70.4	programme of	-						
PO 2		ress thoughts and ideas effect	-	ommu	nicate with ot	thers using	approp	riate media and
DO 2	•	lea in clearandconcise mann			1 C.1	1:-	<u>.</u> : C:	
PO 3	knowledge de	e relevant assumptions to for	rmulate ti	ne arg	uments by for	llowing scie	entific a	approach to
PO 4	_	lve different kinds of non-fa	miliar nr	ohlem	is and annly to	o real life si	ituation	ne .
PO 5		uate the reliability and relev						
103		raw valid conclusions	unce or c	viden	cc,anaryse an	a synthesiz	c data i	rom a variety of
PO 6		olems, formulate hypotheses	, test hyp	othese	es,analyse, int	terpret and	draw co	onclusions from
		ause-and-effect relationship				•		
PO 7	Ability to wor	k effectively and respectfull	y with di	verse	teams,facilita	te cooperati	ive or c	oordinated effort
	on the part of	a group						
PO 8	-	yze, interpret and draw cond					ata and	critically evaluate
		e and experiences from an o						
PO 9		ility to lived experiences, w				-		-
PO 10		ise ICT in a variety of learning						
70.44	•	vant information sources and						
PO 11	-	k independently, identify ap	propriate	resou	rces required	for a project	ct, and	manage a project
DO 12	through to con	1	1, 1	. ,	1: 4 4	40.11	5.1	1.
PO 12	1 ,	effectively engage in a multi		-			·	<u> </u>
PO 13	behavior as fal	monstrating the ability to ide	entity eth	ical is	sues related to	ones work	k, avoic	i unetnical
PO 14		mapping out the tasks of a t	eam or o	1 0500	nization and	setting dire	ection 4	formulating an
1014	inspiring visio	11 0	cam or a	ı orga	mzanon, and	scuing unt	CHOII, I	ormulating an
PO 15		nire knowledge and skills, in	ncluding 1	now to	learn, that at	e necessary	y for na	rticipating in
		ties throughout life.			, 41		, Pu	3-F 8
L								

COs	COURSE OUTCOME
CO 1	To acquire the knowledge of evolution of microprocessor. Understand the hardware and software interrupts.
CO 2	To get the knowledge about Assembly language. Understand the instruction set of 8085. Apply the 8bit addition in 8085.
CO 3	To acquire the knowledge of INTEL 8257.Apply the direct memory access in Data transfer.
CO 4	To get the knowledge about applications of microprocessor architecture of 8051. Understand the counters and timers.
CO 5	To get the knowledge about architecture of 8051 and instruction set of 8051. Apply the ascending and descending order program in 8051.
Pre-requisites	To Acquire idea about microprocessor programming

				Knov	vledg	e Lev	els									
1.Remembe	ering, 2	2.Und	erstai	nding,	, 3.Ap	plyin	g, 4.A	nalyz	ing, 5.	Evalu	ating,	6.Syn	thesiz	ing		
				CO / P	O / KI	. Марр	ing									
(3.	/2/1 ind	icates t	he strer	ngth of	correla	tion, 3-	strong,	2-med	ium, 1-	weak)						
COs				KLs				P	Os			F	KLs			
								PO	O 1					1		
CO 1					1) 2					2		
									0 3					2		
GO 2					_				0 4					3		
CO 2			5) 6					5		
) 7					6		
CO 3			1				PO 8				4					
								PO 9				5				
								PO 10					1			
CO 4					3			PO 11					2			
								PO 12					2			
CO 5			2				PO 13 PO 14				3					
CO 3			2					PO 15					6			
				СО	/ PO M	lapping		- 10	- 10							
(3,	/2/1 ind	icates t	he strei					2-med	ium, 1-	weak)						
60				Progra	mme C	Outcom	e (POs)									
COs	PO	PO	РО	РО	РО	PO	PO7	PO	PO	PO1	PO1	PO1	PO1	PO1	PO1	
	1	2	3	4	5	6		8	9	0	1	2	3	4	5	
CO1	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1	
CO2	1	1	1	1	3	1	2	2	3	1	1	1	1	1	2	
CO3	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1	
CO4	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1	
CO5	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1	

Course Assessment Methods
Direct
1. Continuous Assessment Test I, II & Model
2. Assignment
3. End Semester Examinations
Indirect
1. Course End Delivery

Content of the	ne Syllabus								
	EVOLUTION AND ARCHITECTURE OF MICROPROCESSORS 8085	Periods	12						
	Evolution of Microprocessors - INTEL 8085 microprocessor Pin config	guration - Pins and	their functions -						
Unit - I	Bus system - Control and status signals - Externally initiated signals in	ncluding interrupts	- Architecture -						
	ALU - Flags - Registers. Timing and Sequencing: Insertion cycle, M	achine cycle -Hal	t state and Wait						
	state.								
	Interrupts: Types of interrupts - Hardware and Software interrupts-mask	king and unmaskin	g interrupts.						
	MICROPROCESSORS 8085 INSTRUCTION SETS &	Periods	12						
	PROGRAMMING OF MICROPROCESSOR 8085								
	Assembly language - Instruction sets of 8085 - Stacks - Counters	- Subroutines - N	MACRO - Dela						
Unit - II	Subroutine - Examples of Assembly language Programming - 8bit a	addition - 8bit sul	otraction - 16 bi						
	Addition - 16 bit Subtraction - 16 bit Multiplication - 16 bit Division - 7	The Largest and Si	nallest number ir						
	a data array - Sorting - Sum of a series - Factorial of a given number								
	APPLICATIONS OF MICROPROCESSORS PERIPHERAL	Periods	12						
	DEVICES AND THEIR INTERFACING								
	Address space - Partitioning - interfacing - Memory and I/O interfacing -I/O ports: Non programmable								
Unit - III	I/O port INTEL 8212 - Programmable Peripheral Interface (PPI) INTEL 8255 - Programmable Interval								
	(Counter) Timer (PIT) INTEL 8253. Data Transfers: Types of parallel and serial data transfer schemes -								
	Direct Memory Access (DMA) controller INTEL 8257. 8085A interrupt system: Software & hardware								
	interrupts - interfacing - Working and Programming of PIC 8259 with 8	085.							
	APPLICATIONS OF MICROPROCESSOR 8085	Periods	12						
Unit - IV	Introduction – Water level indicator – Stepper motor – Traffic control – Analog to digital converter (ADC 0800) – Digital to analog converter (DAC 0800) – Seven segment display interfacing – Temperature measurement and control.								
	ARCHITECTURE OF MICROCONTROLLER 8051	Periods	12						
	Introduction - Comparison between microcontroller and micropro	ocessors - Archit	ecture of 8051 -						
Unit - IV	Key features of 8051- Memory organization Data memory and pr								
	organization - Special function registers - Control registers - I/C) ports - Counte	rs and Timers						
	Interrupt structure. ARCHITECTURE AND PROGRAMMING THE	Periods	12						
	MICROCONTROLLER 8051	Periods	12						
	Introduction— Comparison between microcontroller and microp	rocessors - Kev f	eatures of 8051						
Unit - V	Architecture of 8051 – Instruction set of 8051 – Arithmetic, Logical, Data move jump and call								
		instructions - Addressing modes - Immediate, register, direct and indirect addressing modes -							
	Assembly language programming – Simple programs to illustrate ar								
	Sum of 'n' numbers - biggest and smallest in an array - Ascending and array - Software time delay.	d descending orde	er program in an						
	Total Periods		60						
	101411 011043		00						

Text Books	
1	Ramesh S.Gaonkar, <i>Microprocessor Architecture, Programming and Applications with the 8085</i> , Fifth Edition, Penram International Publishing Pvt., Ltd., Mumbai (2000).
2	B. Ram, <i>Fundamentals of Microprocessors and Microcontrollers</i> , Ninth Edition, Dhanpat Rai Publications Pvt., Ltd., New Delhi (2019).
3	Kenneth J. Ayala, <i>The 8051 Microcontroller – Architecture, Programming & Applications</i> , Third Edition, West Publishing Company, New York India (2007)

References	
1	Nagoor Kani, Microprocessors and Microcontrollers, Second Edition, Mcgraw-Hill Education India Pvt.,
	Ltd., New Delhi (2017
2	A.P.Godse and D.A.Godse, <i>Microprocessors and Microcontrollers</i> , Technical Publications, Pune (2015).
2	M.Gilmore, Microprocessor Principles and Applications, Second Edition, Mcgraw-Hill Education India
3	Pvt., Ltd., New Delhi (1995).
1	Aditya P.Mathur, Introduction to Microprocessors, Third Edition, Mcgraw-Hill Education India Pvt.,
4	Ltd., New Delhi (2006).
E-References	
1	https://onlinecourses.nptel.ac.in/noc18_ec03
2	https://www.elprocus.com/microprocessor-and-microcontroller/

Signature of BOS Chairman

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elavampalavam. Tiruchengode-637 205.

POWEN EMPOWERING														
Programme	M.Sc.,	Programme Code		PP	Н		Regulations		201	8-2019				
Department	Phy	sics		Semester						III				
			Pei	riods		Credit	Maximu	ım Mar	ks					
Course Code	Course	Name	per	Wee	ek									
			L	Т	P	С	CA	ESE		Total				
	EDC : SOLA	R ENERGY	4	0	0	4	25	75		100				
18P3PHED1	220,202.2													
COURSE	1.Energy resources around us. 2.Threatening to our energy resources. 3. How to conserve e													
OBJECTIVES POs	PROGRAMME OUTCOME													
PO 1	•	Capable of demonstrating the basic concepts and comprehensive knowledge from undergraduate												
		programme of study.												
PO 2		Ability to express thoughts and ideas effectively Communicate with others using appropriate media.												
PO 3	-	To identify the relevant assumptions to formulate the arguments by following scientific approach to												
DO 4	Ŭ	knowledge development. Capacity to solve different kinds of non-familiar problems and apply to real life situations												
PO 4 PO 5				•		11.0				aami atz. a£				
PO 3	sources .	luate the reliability and rele	evance	oi ev	iaen	ce, anaryse a	na synmes	ize data	HOIII	a variety of				
PO 6		blems, formulate hypothese	e test	hvno	thesi	es analyse in	ternret and	l draw c	onclus	sions from				
100	data.	oroms, formulate hypothese	, test 1	пуро	tiios	cs, anaryse, m	terpret une	i di di v	oneras	510115 11 0111				
PO 7		k effectively and respectfu	lly with	n dive	erse	teams, facilita	ite coopera	tive or	coordi	nated effort				
	on the part of	•	J			Ź	1							
PO 8	Ability to ana	lyse, interpret and draw con	nclusio	ns fro	m q	uantitative/qu	alitative da	ata and	critica	lly evaluate				
	ideas, evidenc	e and experiences from an	open-n	ninde	d an	d reasoned pe	erspective.							
PO 9		pility to lived experiences, v								•				
PO 10		use ICT in a variety of learn	ning sit	uatio	ns, o	demonstrate a	bility to ac	cess, ev	aluate	, and use a				
	,	vant information sources.												
PO 11	-	k independently, identify a	ppropri	iate r	esou	rces required	for a proje	ect, and	manag	ge a project				
70.40	through to cor	*												
PO 12		effectively engage in a mul						-						
PO 13		monstrating the ability to io	aentity	ethic	al is	sues related to	ones wor	k, avoic	ı uneth	nical				
DO 14		h as fabrication.	400		~#-		aattin - 1'	4i '	Com 1	atima				
PO 14		mapping out the tasks of a on, building a team who car			-		_			_				
		on, building a team who car ngage with that vision.	i neip a	cine	ve in	e vision, mon	ivating and	mspiri	ng teal	111				
PO 15		uire knowledge and skills,	includi	no ho	w to	learn that ar	e necessar	y for na	rticina	iting in				
1013	-	ities throughout life, through		-				y 101 pa	пистра	5 111				
	rearming activi	inos unougnout me, unoug	, 5011-	Jucol		a som amoutu	rouring.							

COs	COURSE OUTCOME
CO 1	Acquire the knowledge of energy sources. Understand the concept of Geothermal and wind energy.
CO 2	Acquire the knowledge of renewable energy sources. Apply solar thermal energy in solar cooker and solar
	pond.
CO 3	To get the knowledge of photovoltaic effect and synthesis the solar cells.
CO 4	To get knowledge of bio mass energy .Understand the biomass conversion technology.
CO 5	To acquire the knowledge of energy storage mechanism and understand the storage devices.
Pre-requisites	GET KNOWLEDGE ABOUT various energy

Knowledge Levels 1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing

CO / PO / KL Mapping

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

(S/2/1 maie	ates the strength of confederon, 5 str	ong, 2 mearam, 1 weak)	
COs	KLs	POs	KLs
		PO 1	1
CO 1	1	PO 2	2
		PO 3	2
		PO 4	3
CO 2	3	PO 5	5
		PO 6	1
		PO 7	6
CO 3	6	PO 8	4
		PO 9	5
		PO 10	1
CO 4	2	PO 11	2
		PO 12	2
		PO 13	3
CO 5	2	PO 14	3
		PO 15	6

CO / PO Mapping

COs		Programme Outcome (POs)													
COS	PO	PO	PO	PO	PO	PO	PO7	PO	PO	PO1	PO1	PO1	PO1	PO1	PO1
	1	2	3	4	5	6		8	9	0	1	2	3	4	5
CO1	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO2	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1
CO3	1	1	1	1	2	1	1	1	2	1	1	1	1	1	3
CO4	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO5	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1

Course Assessment Methods
Direct
Continuous Assessment Test I, II & Model
Assignment
End Semester Examinations
ndirect
. Course End Delivery

Content of the	Syllabus										
	Introduction to Energy Sources	Periods	9								
Unit - I	Classification of Energy sources - Worlds reserve of commercial energy	gy sources and th	eir availability -								
Oilit - I	Geothermal energy - wind energy - Ocean thermal energy conversion - Energy from waves and tides										
	(basicideas) - Merits and Demerits.										
	Solar Thermal Energy	Periods	9								
Unit - II	Renewable energy sources - Solar energy - Solar water heater - Solar sp	ace heating and co	ooling - Solar								
Omt - II	thermal technologies - Solar cooker - Solar Pond - Merits and pumping, Solar furnace.	Demerits of so	olar energy-Solar								
	Solar Cell	Periods	9								
Unit - III	Photo voltaic effect - Performance of solar cell Solar cell parameter characteristics and efficiency-Single crystal silicon solar cell-Choice requirements forobtaining an effective solar cell - Power generation by	of materials for									
	Biomass Energy Fundamentals	Periods	9								
Unit - IV	Biomass energy - Classification - Photosynthesis - Biomass conversion Biogas generation-Introduction basic process and energetic, Advantages										
	Disadvantages of biomass energy.		T								
	Energy Storge	Periods	9								
Unit - V	Introduction - Liquid media storage - Solid media storage - Grou Capacitor, Electromagnets-Superconducting Magnet Energy Storage		-								
	Total Periods	, ,	45								

Text Books	
1	G.D. Rai, Non Conventional Energy Sources, 4th, 5th Edition, (2011).
2	G.D. Rai, Solar Energy Utilization, 5th Edition, (2011).
3	S.P. Sukhatme, Solar Energy, Tata McGraw Hill Publishing Company, 3rd Edition, (2005).
References	
1	1. D.S. Chauhan, S.K. Srivastava, Non Conventional Energy Sources, Ed.V, first edition, (2004).
2	2. Solar Energy, Fundamentals, Design, Modelling and Applications, G.N.Tiwari, Narosa Publications, (2004).
E-References	
1	https://www.renewableenergyworld.com/solar-energy/tech.html
2	https://en.wikipedia.org/wiki/Solar_power

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

FOMEN EMPOWERMEN	Elayampalayam, Tiruchengode-637 205.													
Programme	M.Sc.,	Programme Code		PP	Н		Regulat	ions	2018	3-2019				
Department	Phys	sics	Semester											
		Periods Credit Maximum Marks												
Course Code	Course	Name	per	Wee	ek									
			L	Т	P	С	CA	ESE		Total				
18P4PH10	NUCLE		100											
	PHYSICS													
COURSE	1.Explain central concepts, laws and models in nuclear and particle physics.2.Use basic laws and relations													
OBJECTIVE S	to solve simple problems													
POs		DDOCD ANAME OUTCOME												
		PROGRAMME OUTCOME												
PO 1	*	Capable of demonstrating the basic concepts and comprehensive knowledge from undergraduate												
		programme of study.												
PO 2		Ability to express thoughts and ideas effectively Communicate with others using appropriate media and												
DO 2		ea in clearandconcise manne		41				:6	1	- 4 -				
PO 3	knowledge dev	relevant assumptions to form	nuiate	tne	argu	iments by folio	owing scie	ntific a	pproacr	1 10				
PO 4	9	ve different kinds of non-far	niliar 1	aroh	lami	and apply to	raal lifa si	tuations	,					
PO 5		ate the reliability and releva								variety of				
100	•	aw valid conclusions			aciic	e, unaryses un	a synthesi	ze data	mom u	variety of				
PO 6		lems,formulate hypotheses, t	test hy	poth	eses	analyse, inter	pret and d	raw cor	clusion	ns from				
		use-and-effect relationships				, ,	1							
PO 7	Ability to work	effectively and respectfully	with o	dive	rse t	eams,facilitate	cooperati	ve or co	ordina	ted effort				
	on the part of a	group												
PO 8	Ability to analy	se, interpret and draw concl	usions	fro	m qu	ıantitative/qua	litative da	ta and c	ritically	y evaluate				
		and experiences from an op												
PO 9		lity to lived experiences, wit								-				
PO 10		se ICT in a variety of learning							ıluate, a	and use a				
	-	ant information sources and												
PO 11	-	independently, identify app	ropria	te re	sour	ces required f	or a projec	et, and r	nanage	a project				
DC 12	through to com	1	1, 1		• ,	1	+C 11	1.1 1	•					
PO 12		ffectively engage in a multic			_									
PO 13	behaviour as fa	nonstrating the ability to iden	ınıy et	ınıca	ıı 1SS	sues related to	ones work	., avoid	unetnic	zai				
PO 14		mapping out the tasks of a te	am or	an o	rgar	nization and s	etting dire	ction fo	ormulat	ing an				
1017	inspiring vision		w111 OI	an C	. 5ui	iization, and s	cang and	C.1011, 10	Ji iiiuiui	6				
PO 15		ire knowledge and skills, inc	luding	g hov	w to	learn, that are	necessarv	for par	ticipati	ng in				
		ies throughout life.	2			,		r	r					
L														

COs	COURSE OUTCOME
CO 1	To acquire the knowledge of nuclear models. Analyze the collective models bhor and Mottelson.
CO 2	Understand the nuclear reaction and nuclear mechanism and analyze the partial wave of nuclear reaction.
CO 3	To acquire knowledge of nature of nuclear forces. Understand the np scattering .Evaluate Yukawa potential.
CO 4	Understand the Gamows theory of alpha decay. Analyze the comparative half-lives.
CO 5	Acquire the knowledge of elementary particles and understand the weak and strong interactions.
Pre-requisites	To Acquire idea about nuclear and particle physics

Knowledge Levels

1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing

CO / PO / KL Mapping

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

(0/=/		3,,	
COs	KLs	POs	KLs
		PO 1	1
CO 1	1	PO 2	2
		PO 3	2
		PO 4	3
CO 2	2	PO 5	5
		PO 6	1
		PO 7	6
CO 3	1	PO 8	4
		PO 9	5
		PO 10	1
CO 4	5	PO 11	2
		PO 12	2
		PO 13	3
CO 5	4	PO 14	3
		PO 15	6

CO / PO Mapping

(
COs	Programme Outcome (POs)														
COS	PO	PO	PO	РО	PO	PO	PO7	PO	PO	PO1	PO1	PO1	PO1	PO1	PO1
	1	2	3	4	5	6		8	9	0	1	2	3	4	5
CO1	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO2	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO3	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO4	1	1	1	1	3	1	2	2	3	1	1	1	1	1	2
CO5	1	1	1	2	2	1	1	3	2	1	1	1	2	2	1

Course Assessment Methods	
Direct	
	1. Continuous Assessment Test I, II & Model
	2. Assignment
	3. End Semester Examinations
Indirect	
1. Course End Delivery	

Content of the	e Syllabus								
	NUCLEAR MODELS NUCLEAR PROPERTIES AND MODELS	Periods	12						
	Basic nuclear properties: Size, shape and charge distribution-spin and parity-determination of								
Unit - I	nuclear mass-binding energy-semi empirical mass formula-nuclear sta	bility-Mass Parab	ola-Liquid						
	drop model-Shell Model-Prediction of Magic numbers and energy le	vels by shell mod	lel-Optical						
	Model - Collective model of Bohrand Mottelson.								
	NUCLEAR REACTIONS	Periods	12						
	Nuclear reactions and reaction mechanism, Types of reactions and	conservation law	s - Reciprocity						
Unit - II	theorem- Energetics of nuclear reactions-Q-value equation-Scatteri	-							
	Compound nucleus reactions-Direct reactions Stripping, Pick up rea		•						
	nuclear reaction cross-section-Breit-Wignerone level formula- continu	um theory of nuc	lear reaction.						
	NUCLEAR INTERACTIONS	Periods	12						
	Nature of Nuclear forces-Exchange forces-Two body problem-ground state of deuteron- Magnetic								
Unit - III	moment-Quardrapole moment-Tensor forces-Nucleon-nucleon interaction-NP scattering, PP scattering								
	at low energy, non- central-Meson theory of nuclear forces -Yukawa potential-Nucleon-Nucleon								
	scattering- form of nucleon-Nucleon potential-Effective range theory-Spin dependence of nuclear								
	forces-Chargeindependence and charge symmetry of nuclear forces - Isospin formalism.								
	NUCLEAR DECAY	Periods	12						
	Gamows theory of alpha decay &Fermis theory of beta dacay -Total decay rate-Mass of the								
Unit - IV	neutrino-Angular momentum and parity selection rules-Allowed and forbidden decays -								
	Comparativehalf-lives-Neutrino physics Neutrino Hypothesis-Hel	•							
	parity-Multipole transitionsin nuclei-Angular momentum and pari conversion-Nuclear isomerism	ty selection rule	s-Internal						
	ELEMENTARY PARTICLE PHYSICS	Periods	12						
Unit - V	Types of interaction between elementary particles -Hadrons-leptons-mesons-Baryons-hyperons-pions-Symmetries and conservation laws-Elementary ideas of CP and CPT invariance- Gellman-nishijima formula-SU(2) and SU(3) multiplets-Gell-Mann-Okubo mass formula for octet and decuplet-Quark model-color flavor- weak and strong interactions- Basic concepts of relative kinematics.								
	Total Periods		60						

Text Books	
1	D. Griffiths, Introduction to Elementary Particle Physics, Harper & Row, New York, (2006).
2	R. R. Roy and B.P. Nigam, Nuclear Physics, New age Intl. New Delhi, (2005).
References	
1	H. A. Enge, Introduction to Nuclear Physics, Addison-Wesley, Tokyo, (2006).
2	Y. R. Waghmare, Introductory Nuclear, Physics, Oxford-IBH, New Delhi, (2006).
E-References	
1	https://onlinecourses.nptel.ac.in/noc18_ph02/course
2	https://en.wikipedia.org/wiki/Particle_physics

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

NOWEN EWBOMELMEN	Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc.,	2018-2019							
Department	Physics Semester								
Course Code	Course	Name		Periods Credit			Maxim	um Marks	
			L	T	C	CA	ESE	Total	
18P4PH11	COMMU	NICATION SYSTEMS	6	0 0	5	25	75	100	
COURSE	1. The work	ring principles of communica	ation s	ystems.	2.How to ha	andle the co	mmunica	ntion elements.	
OBJECTIVES POs		PROGRAMME OUTC	OME						
PO 1	programme of	<u> </u>							
PO 2		ress thoughts and ideas effec	-			`			
PO 3	-	e relevant assumptions to for	mulat	e the ar	guments by t	following sc	eientific a	approach to	
	knowledge de		:11:	1.1		- 41 1:C-	-:44:		
PO 4 PO 5		Capacity to solve different kinds of non-familiar problems and apply to real life situations Ability to evaluate the reliability and relevance of evidence, analyses and synthesize data from a variety of sources.							
PO 6	To define producta.	To define problems, formulate hypotheses, test hypotheses, analyses, interpret and draw conclusions from data.							
PO 7	on the part of	<u> </u>				•			
PO 8		Ability to analyses, interpret and draw conclusions from quantitative/qualitative data and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.							
PO 9	Critical sensibility to lived experiences, with self-awareness and reflexivity of both self and society								
PO 10	Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources.								
PO 11	Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.								
PO 12	Capability to effectively engage in a multicultural society and interact respectfully with diverse groups								
PO 13	Capable of demonstrating the ability to identify ethical issues related to ones work, avoid unethical behaviour such as fabrication.								
PO 14	inspiring visio	mapping out the tasks of a ton, building a team who can an angage with that vision.		_		-		-	
PO 15		uire knowledge and skills, in ities throughout life, through		-				rticipating in	

COs	COURSE OUTCOME
CO 1	Understand the frequency modulation and apply modulation system in BPSK and QPSK
CO 2	Acquire the knowledge of single mode and multi-mode communication. Understand splicing and
	connectors.
CO 3	Analyze the reflex klystron and applying microwave system.
CO 4	Apply satellite communication system in RADAR.
CO 5	Apply mobile communication in digital cellular radios.
Pre-requisites	Laser in Medicine Communication Systems

Knowledge Levels

1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing

CO / PO / KL Mapping

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

COs	KLs	POs	KLs
		PO 1	1
CO 1	2	PO 2	2
		PO 3	2
		PO 4	3
CO 2	1	PO 5	5
		PO 6	1
		PO 7	6
CO 3	4	PO 8	4
		PO 9	5
		PO 10	1
CO 4	3	PO 11	2
		PO 12	2
		PO 13	3
CO 5	3	PO 14	3
		PO 15	6

CO / PO Mapping

COs		Programme Outcome (POs)													
COS	PO	PO	PO	PO	PO	PO	PO7	РО	PO	PO1	PO1	PO1	PO1	PO1	PO1
	1	2	3	4	5	6		8	9	0	1	2	3	4	5
CO1	2	3	3	2	1	2	1	1	1	2	3	3	2	2	1
CO2	3	2	2	1	1	3	1	1	1	3	2	2	1	1	1
CO3	1	1	1	2	2	1	1	3	2	1	1	1	2	2	1
CO4	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1
CO5	1	2	2	3	1	1	1	2	1	1	2	2	3	3	1

Course Assessment Methods	
Direct	
1. Continuous Assessment Test I, II & Model	
2. Assignment	
3. End Semester Examinations	
Indirect	
1. Course End Delivery	

Content of th	e Syllabus								
	MODULATION SYSTEMS	Periods	12						
	Theory of Amplitude modulation - Theory of frequency modulation - T	Theory of phase m	odulation - Pulse						
TT '4 T	code modulation - Pulse width modulation - Sampling theorem - low	pass and band pa	ss signals, PAM						
Unit - I	Channel BW for a PAM signal, Natural Sampling, Flat top Sam	npling, Signal re	ecovery through						
	holding, Quantization of signals, Differential PCM delta modulation	on - Delta modul	ation - Adaptive						
	Delta modulation - BPSK, QPSK.								
	FIBER OPTICS COMMUNICATION	Periods	12						
	Basics of Fiber Optics - Classification - Single mode and multimode	, Step index and	Graded index.						
Unit - II	Acceptance angle, Numerical Aperture, Fiber Losses - Attenuation, Abs	sorption, Leaky m	odes, Bending						
	losses, Transmission losses, and Core and cladding losses - Chromatic and modal dispersion. Splicing								
	and connectors.								
	MICROWAVE COMMUNICATION SYSTEM	Periods	12						
	Microwave Generation - Multicavity Klystron - Reflex Klystron - Magnetron - Travelling Wave Tubes								
Unit - III	(TWT) - Propagation modes, Microwave communication system - Analog Microwave Communication -								
	LOS microwave system - OTH microwave system - Digital Hierarchies, Digital Microwave Systems,								
	Bandwidth efficiency								
	SATELLITE COMMUNICATIONS	Periods	12						
	Orbital Satellites, Geostationary Satellites, Orbital Patterns, Look	angles, Orbital	Classifications,						
Unit - IV	Spacing and frequency allocation, Radiation Pattern, foot prints, Satellite System link models, Satellite								
	system link equation - Non-ideal system parameters - INSAT communications satellites - Multiple								
	Accessing Frequency Hopping, Channel Capacity – RADAR.								
	MOBILE COMMUNICATION	Periods	12						
Unit - V	Evaluation and fundamentals - Cellular structure and planning - Frequency allocations - Propagation								
Omt - v	Problems - Base station antennas and mobile antennas - Type of mobil	e system - Acces	s method -						
	TDMA, FDMA and CDMA - DIGITAL Cellular Radio.								
	Total Periods		60						

Text Books	
1	1. Electronic Communication Systems –George Kennedy& Davis, Tata McGraw Hill, 4th Edition,
	(2006).
2	2. John M. Senior, Optical Fiber Communications, Second Edition, PHI, 6th Edition, (2009).
3	Wireless Communication Principles & Practice – Theodore S. Rappaport, 2nd Edition, (2002).
References	
1	Taub and Schiling, Principles of Communication Systems, Second edition, Tata Mc Graw Hill, 3rd
	Edition,
	(2010).
2	Simon Haykin, Communication system, Third edition John Wiley & Sons, Inc. 4th Edition, (2007).
3	Wayne, Electronic Communication Systems, 6th Edition, (2004).
E-References	
1	https://en.wikibooks.org/wiki/Communication_Systems.
2	https://www.elprocus.com/what-is-a-communication-system-and-its-basic-elements.

Signature of BOS Chairman

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

MONEN EMPOWERMEN	Elayampalayam, Tiruchengode-637 205.									
Programme	M.Sc.,	Programme Code	P	PPH Regulations						
Department	Phy	ysics	Semester IV							
	Periods Credit Maximum Marks									
Course Code	Course	e Name	per W	eek						
				ΓР	С	CA	ESE	Total		
100/07/00	ELECTIVE:	THIN FILM		0 0	4	25	75	100		
18P4PHE03	TECHNOLO	OGY								
COURSE	To examine	the electrical properties in	metallic th	in filn	ns. To explore	the transp	ort prop	perties of semi		
OBJECTIVES	conducting a	and insulating film. To know	w how the	optica	al properties o	f thin film	is utiliz	ed in solar		
	cell applicati	ions.								
POs		PROGRAMME OUT	COME							
	Canable of d	lemonstrating the basic con	cents and o	compi	ehensive kno	wledge fro	m unde	rgraduate		
PO 1	programme of		- spio una (pi	LILLIOI VO MITO		unac	- 0		
DC 5		press thoughts and ideas ef	fectively C	Comm	unicate with	others usin	g appro	priate media an		
PO 2		idea in clear and concise m	-				1			
DO 2	To identify t	he relevant assumptions to	formulate	the ar	guments by for	ollowing s	cientific	approach to		
PO 3	knowledge d	-								
PO 4		Capacity to solve different kinds of non-familiar problems and apply to real life situations								
PO 5		raluate the reliability and re	levance of	evide	ence, analyse a	and synthe	sise data	a from a variety		
	of sources then draw valid conclusions and support them with evidence and examples, and addressing									
sources then draw valid conclusions and support them with ev opposing viewpoints.					vitii evidelice	and examp	oles, and	addressing		
PO 6	To define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions						conclusions			
		redict cause and effect relat		-		-				
	an experiments									
	Ability to wo	ork effectively and respects	ully with c	liverse	e teams, facili	tate coope	rative or	coordinated		
PO 7		part of a group and act tog		group	or a team in t	he interest	s of a co	ommon cause		
	and workefficiently as a member of a team									
	Ability to an	alyse, interpret and draw co	onclusions	from	quantitative/c	qualitative	data and	d critically		
PO 8	evaluate					- amam a atic va				
PO 9		nce and experiences from a						and society		
107	Critical sensibility to lived experiences, with self awareness and reflexivity of both self and society Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use									
PO 10	a a variety of rearring situations, demonstrate ability to access, evaluate, and us									
	•	levant information sources								
PO 11	Ability to work independently, identify appropriate resources required for a project, and manage a project							l manage a		
PO 11										
PO 12	through to completion. Capability to effectively engage in a multicultural society and interact respectfully with diverse groups.									
PO 13		lemonstrating the ability to			<u> </u>					
-	_ ^	havior such as fabrication,	-							
		notadhering to intellectual p			-			-		
PO 14	Capability fo	or mapping out the tasks of	a team or	an org	ganization, and	d setting di	irection,	formulating ar		
	inspiring vis	ion, building a team who ca	an help acl	nieve 1	the vision, mo	tivating ar	nd inspir	ring team		
		engage with that vision.								
PO 15	-	quire knowledge and skills	_							
	_	vities throughout life, throu	-	ced ar	nd self-directe	ed learning	aimed a	at personal		
	development	t, meeting economic, social								

COs	COURSE OUTCOME
CO 1	Acquire the knowledge of preparation of thin film. Understand the construction and uses of vapour sources.
CO 2	Apply the deposition monitoring and control in micro balance.
CO 3	Analyse electrical conduction in thin metallic films.
CO 4	Understand DC conduction mechanism and analyze structure and optical properties of UV
	Spectrophotometer.
CO 5	Synthesis thin films for Solar cell application
Pre-requisites	To get knowledge

				Knov	vledg	e Leve	els								
1.Remember	ring, 2	2.Und	ersta	nding	, 3.Ap	plyin	g, 4.A	Analyz	ing, 5	.Evalu	ating,	6.Syn	thesiz	ing	
(3/	/2/1 ind	icates t	he strei			Mappi	-	g, 2-med	lium, 1-	weak)					
COs				KLs					Os]	KLs		
								P	O 1					1	
CO 1					1				O 2					2	
									O 3					2	
GO 2								0.4					3		
CO 2			3					PO 5				5			
								PO 6 PO 7				6			
CO 3			4					PO 8				1			
							O 9			1					
								PO 10				1			
CO 4					2			PO 11				1			
								PO 12 PO 13				1			
GO 5					_									1	
CO 5					6			PO 14 PO 15				1			
_				CO	/ PO M	1apping	, ,	PC	, 13					1	
(3/	2/1 ind	icates t	he strei					g, 2-med	lium, 1-	weak)					
						Outcome									
COs	РО	РО	PO	РО	РО	PO	PO	7 PO	РО	PO1	PO1	PO1	PO1	PO1	PO1
	1	2	3	4	5	6		8	9	0	1	2	3	4	5
CO1	3	2	2	1	1	3	1	3	3	3	3	3	3	3	3
CO2	1	2	2	3	1	1	1	1	1	1	1	1	1	1	1
CO3	1	1	1	2	2	1	1	1	1	1	1	1	1	1	1
CO4	2	3	3	2	1	2	1	2	2	2	2	2	2	2	2

CO5

Course Assessment Methods	
Direct	
. Continuous Assessment Test I, II & Model	
Assignment	
. End Semester Examinations	
Indirect	
1. Course End Delivery	

Content of	the Syllabus		
	Preparation of Thin Films	Periods	12
	Basics of thin film - Nucleation and growth of thin films -four sthin film vacuum coating unit - Construction and uses of vapor source vacuum pumps; and electron bombardment heated sources.		
Unit - I	Thin film preparation methods: Physical vapor deposition(PVD) beam evaporation; Sputtering-Study of glow Discharge- Experimen magnetron sputtering , Pulsed laser deposition; Ion beam assisted deposit (CVD) - MOCVD and PECVD processes. Chemical methods: Qualitativ films by Electroplating ; vapor phase growth and adonization.	ntal set up for tion - Chemical va	DC and RF apor deposition
	Deposition Monitoring and Control	Periods	8
Unit - II	Electrical methods: Micro balance , quartz crystal monitor; Crys Resistance Monitor - Optical methods: Multiple Beam Interferometer, Fize of equal chromatic order (FECO) method - Ellipsometry(qualitative only).		
	Electrical properties	Periods	8
Unit - III	Electrical conduction in thin metallic films - Resistivity of the Hall size effect - Calculation of mobility - DC conduction mechanism - Low Breakdown mechanism in dielectric films-AC conduction mechanism conductivity. Thermal treatment process: Effect of ageing and annealing; O	v field and high fi n. Temperature	eld conduction. dependence of
	Dielectric Properties	Periods	11
Unit - IV	DC conduction mechanism - Low field and high field conduct dielectric films-AC conduction mechanism. Temperature dependence Optical Properties: Study of structure of thin films using x-ray diffraction size-Optical constants of thin films - UV spectrophotometer- Transmittan band gap. Surface morphological properties – Scanning electron microscopy microscopy (TEM).	e of conductivity n method-Calcula ace, absorption, de	Structure and tion of particle etermination of
	Application of Thin Films	Periods	9
	- Pr		-
Unit - V	Thin film resistors: Materials and Design of thin film resistors Clarea-Trimming of thin film resistors-sheet resistance control - Individu capacitors: Materials-Capacitor structures-Capacitor yield and capacitor transistors: Fabrication and characteristics-Thin film solar cells - anti reflections.	al resistor trimn stability. Thin fi	ing. Thin film

Text Books	
1	Hand book of Thin films Technology: L I Maissel and R Clang, New York: McGraw-Hill, 1970.
2	Thin film Phenomena: K.L. Chopra, NewYork: Mc Graw-Hill, 1969.
3	Thin films processes – J.L.Vilsan,1993.
References	
1	Physics of thin films, Vol. 12, First Edition Georg Hass Maurice H. Francombe John L. Vossen.
2	Thin films solar cells –K.L. Chopra and S. R. Das, 1983.
3	Vacuum deposition of thin films – L.Holland , 1956.
E-References	
1	https://www.tno.nl/en/focus-areas/industry/expertise-groups/thin-film- technology/

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

HOWEN EMPOWERMENT	Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc.,	Programme Code]	PPH		Regulati	ions	2018-201	19
Department	Phy	sics		Sen	nester			IV	
			Perio	ds	Credit	Maximu	ım Mar	ks	
Course Code	Course	Name	per W	/eek					
			L	T P	С	CA	ESE	Tota	al
18P4PHE07	ELECTIVE:	MEDICAL PHYSICS	4	0 0	4	25	75	100	0
COURSE OBJECTIVES		To examine the particle accelerators. To explore the construction of X-ray generator used in Diagnostic radiology. To know about the radioisotopes, laser applications in medicine.							
POs		PROGRAMME OUTC	COME						
PO 1	Capable of do	emonstrating the basic conce f study	epts and	compi	ehensive know	wledge fror	n undei	rgraduate	
PO 2	interpret the	oress thoughts and ideas effective dea in clear and concise ma	nner.					•	
PO 3	To identify the knowledge de	ne relevant assumptions to for evelopment	ormulate	the ar	guments by fo	ollowing sc	ientific	approach to	0
PO 4	1 .	olve different kinds of non-f			117				
PO 5	Ability to evaluate the reliability and relevance of evidence, analyze and synthesize data from a variety of sources then draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints.								
PO 6	To define problems, formulate hypotheses, test hypotheses, analyze, interpret and draw conclusions from data, predict cause and effect relationships and ability to plan, execute and report the results of an experiments								
PO 7	Ability to work effectively and respectfully with diverse teams, facilitate cooperative or coordinated effort on the part of a group and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team								
PO 8	Ability to analyse, interpret and draw conclusions from quantitative/qualitative data and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective								
PO 9		bility to lived experiences, v				•			
PO 10	a	use ICT in a variety of learn evant information sources an	_						d use
PO 11	Ability to wo project through to co	rk independently, identify a mpletion.	ppropria	te reso	ources required	l for a proj	ect, and	l manage a	
PO 12		effectively engage in a mult			· ·		•		ups.
PO 13	_	emonstrating the ability to ic avior such as fabrication, fa	-						
		otadhering to intellectual pro			norepresentati	on or uata	or com	munig	
PO 14	Capability fo inspiring visi	r mapping out the tasks of a on, building a team who can engage with that vision.	team or	an org		_		-	g an
PO 15	Ability to accive	uire knowledge and skills, i rities throughout life, throug meeting economic, social.	7	-					in

COs	COURSE OUTCOME
CO 1	To learn the construction and working of different types of particle accelerators.
CO 2	To learn the construction of X-ray generator used in Diagnostic radiology.
CO 3	To learn the radioisotopes produced from the above equipment and their medical applications
CO 4	Applications of Laser in Medicine
CO 5	Applications of Ultrasound in Medicine
Pre-requisites	To get knowledge about Medical Physics.

				Knov	vledg	e Leve	els								
1.Remembe	ring, 2	2.Und	ersta	nding,	3.Ap	plyin	g, 4.A	nalyz	ing, 5	.Evalu	ating,	6.Syn	thesiz	ing	
				CO / P	O / KL	Mapp	ing								
(3/	2/1 ind	icates t	he strei	ngth of	correla	tion, 3-	strong	, 2-med	ium, 1-	weak)					
COs				KLs				P	Os]	KLs		
									O 1					1	
CO 1			1) 2					2	
									0 3					2	
CO 2							PO 4				3				
CO 2			3					PO 5 PO 6				5			
) 7					6	
CO 3					4				0.8					1	
								PO 9				1			
								PC	10					1	
CO 4					2			PO 11				1			
								PO 12				1			
GO 5								PO 13				1			
CO 5					6			PO 14 PO 15				1			
				CO	/ PO M	lapping	, <u> </u>	rc	7 13					1	
(3/	2/1 ind	icates t	he strei					, 2-med	ium, 1-	weak)					
						Outcome									
COs	PO	РО	PO	PO	РО	PO	PO7		PO	PO1	PO1	PO1	PO1	PO1	PO
	1	2	3	4	5	6		8	9	0	1	2	3	4	5
CO1	3	2	2	1	1	3	1	3	3	3	3	3	3	3	3
CO2	1	2	2	3	1	1	1	1	1	1	1	1	1	1	1
CO3	1	1	1	2	2	1	1	1	1	1	1	1	1	1	1

CO4

CO5

Course Assessment Methods
Direct
1.Continuous Assessment Test I, II & Model
2.Assignment
3.End Semester Examinations
Indirect
1. Course End Delivery

Content of the	he Syllabus		
	X-ray Generators	Periods	12
Unit - I	Discovery - Production - Properties of X-rays - Characterist. Design of hot cathode X-ray tube - Basic requirements of medical industrial radiographic tubes - Rotating anode tubes - Hooded and standard exposure charts, Limitations on loading Safety devices in cooling of X-ray tubes -Design requirements for x-ray equipment equipment such as pitting of anode, filament evaporation etc., - radiography, CT, Interventional radiology, C-Arm, Mammography dental X-ray units etc.,).	al diagnostic, the ode tubes - Ration X-ray tubes - Eart, Faults detect Types of x-ray	nerapeutic and ing of tubes – Insulation and ition in X-ray units (Fixed
	Particle Accelerators	Periods	8
Unit - II	Particle accelerators for industrial, medical and research a transformer Cascade generator - Van De Graff Generator - Pel Cyclotron- Linear Accelerator - Klystron and magnetron - Tra Acceleration - Microtron - Electron Synchrotron-Proton synchrotion) accelerators. Working principle of Cyclotron and charged partiof cyclotrons in medicine, Types of Cyclotrons: self-shielded an locally shielded. Beam transport systems - Beam delivery system Ridge filter - Range Shifter - Uniform and Pencil beam scanning sy equipment and their safety significance: vacuum pumps, RF-pc cooling system, control software and programs used for medical cycles.	letron - Betatro avelling and St otron- Hadron (icle accelerators d unshielded (in ns- Energy slits ystems-beam du ower, magnet p clotron operation	on - Synchro- anding Wave proton/carbon , Applications n-bunker) and - degrader - mp- Auxiliary bower supply; n.
	Radiation Sources and their Medical Applications	Periods	8
Unit - III	Radiation sources - Natural and artificial radioactive sources isotopes Reactor produced isotopes (60 Co, 192 Ir, 99 Mo etc.,) - (18 F, 13 N, 15 O, 11 C)- Fission products (137 Cs, 99 Mo, 131 I, Requirement for brachytherapy sources - Description of radium an 60 Co, 192 Ir, 125 I and other commonly used brachytherapy so ophthalmic applicators (90 Sr, 125 I, 106 Ru etc.,) Thermal and fa Be, 252 Cf etc.,).	Cyclotron produ 90 Sr) –Telethe d radium substit ources. Beta ray	crapy sources— rutes - 137 Cs, applicators —
	Lasers in Medicine	Periods	11
Unit - IV	Lasers in medicine-applications of Ultrafast pulsed Lasers -Las and cell biology - Lasers in blood flow measurement - Fiber optics medicine - birefringence - Fluorescence microscope - confocal m and their safety measures.	s in medicine -	microscopy in
	Ultrasound in Medicine	Periods	9
Unit - V	Production, properties and propagation of ultrasonic waves characteristics of human body- Ultrasonic Dosimetry - High pov Ultrasound cardiography (UCG) – Doppler effect -Double dopp ultrasonic tomography -applications of ultrasound in medicine	wer ultrasound	in theraphy –
	Total Periods		48

Text Books	
1	F. M. Khan, The Physics of Radiation therapy, 3rd Edition, LIppincott Williams & Wikins, Philadelphia, 2003.
2	H. E. John and J. R. Cunningham, Physics of Radiology, 4th Edition, (Charles C Thomas Pub. Ltd,. 1983.

3	J. P. Woodcock, Ultrasonic, Medical Physics Handbook series 1, Adam Hilger, Bristol, 2002.
4	J. R. Greening, Medical Physics, North Holland Publishing Co., New York, 1999
References	
1	W. R. Hendee, Medical Radiation Physics, Year Book Medical Publishers Inc., London, 2003.
2	R. Pratesi and C. A. Sacchi, Lasers in Photo medicine and Photobiology, Springer Verlag, West Germany, 1980.